Envelope and phase statistics of Cauchy
quadratures

Yawei Li¥, Xiaofeng Li, Norman C. Beaulieu and
Zhizhong Fu

Non-Gaussian quadratures, especially Cauchy quadratures, are widely
used to model impulsive noise environments. The envelope and phase
statistics of Cauchy quadratures are investigated. The probability
density functions and cumulative distribution functions of the envelope
and phase of Cauchy quadratures are given in closed-form expression.
The characteristics of the derived distributions are also discussed.

Introduction: Non-Gaussian quadrature models find widespread appli-
cations in impulsive noise environments such as wireless communi-
cation, signal detection, and signal processing [1-2]. Among them,
Cauchy quadrature model is one of the most commonly encountered
non-Gaussian models in communication studies. The Cauchy prob-
ability model is widely used to model strong impulsive additive noise
such as electromagnetic interference [3] and under-ice noise [4].

As system designers strive to attain the maximal possible performance
from communications systems, and as applications of data communi-
cations spread into new and foreign transmission environments, it is
now important to design for non-Gaussian quadratures in addition to
the ubiquitous Gaussian quadratures. Although the Gaussian quadra-
tures are very well understood and modelled, there is less understanding
of non-Gaussian quadratures, and in particular, of the Cauchy quadra-
tures, despite their widespread application.

Therefore, the stimulus of obtaining optimal performance from com-
munication systems encourages researchers to study the statistics of
non-Gaussian quadratures, and in particular of Cauchy quadratures.
The literature reports the envelope and phase statistics of
non-Gaussian quadratures based on different assumptions. Roberts [5]
derived the envelope statistics of Cauchy quadrature model based on
the assumption that Cauchy noise is ergodic and circularly symmetric.
Dias and Yacoub [6] reported the x —u joint phase—envelope distri-
bution based on the independence of quadrature components. Yacoub
[7] adopted the same assumption and obtained a new Nakagami-m
phase—envelope distribution. In this Letter, we derive the envelope
and phase statistics for independent Cauchy quadratures.

Cauchy noise: Let N=X+jY denote the Cauchy quadrature model,
where X and Y are independent Cauchy quadratures. We can also
rewrite N as N=Rexp (jO), where R and © are the envelope and
phase of N and are given by
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The probability density function (PDF) of the independent Cauchy
quadratures is given by

b
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where Z=X or Z=Y, b is a scaling parameter. Since X and Y are inde-
pendent random variables, the joint two-dimensional PDF of them is
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Using the transformations in (1), fze(r, 6) = |Jfxy(x, ), where |J] is the

Jacobian determinant of the transformations in (1). Note that |J]=r.
Thus, the joint envelope—phase distribution of N is given by

fxr (x,y) = 3
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Doing a double integration of the joint PDF of R and © gives the joint
cumulative distribution function (CDF) of R and ©
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Although the closed-form expression of (5) cannot be derived, it can be

numerically computed. The marginal statistics of R and © are derived
by integrating (4) on » and 6, respectively. To derive the marginal
PDF of R, we first rewrite (4) as
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where ¢=r*/[4b*(b*+ r*)]. Integrating (6) from 6 =0 to 2z, the mar-
ginal PDF of R is obtained

Jro(r, 0) =
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Furthermore, we derive the marginal CDF of R as
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Similarly, to obtain the marginal PDF of ©, we first need to rewrite (6)
as two separated parts, i.e.
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Then integrating (9) with respect to » from 0 to oo, one gets the PDF
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Finally, integration of (10) gives the CDF of O, i.e.
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where Liy(-) is a polylogarithm function [8], pp = sgn(cot ), and s(6)
is a staircase function given by
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Discussion: The envelope distribution is an unimodal curve. The peak

of fz(r) occurs at r; = by/+/17 — 1/2 and its value is

16v/+/17 — 1
Jr(r) = (13)
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The phase PDF tends to be infinite at 6 = 7/2, 7, 37/3, and 27 because the
denominator approaches 0 at these locations of 8. The reason is that
Cauchy distribution is a heavy-tailed distribution with only 50% prob-
ability falls in the interval [—b, b]. When the quadrature components
are distributed along the x and y axes, more energy are gathered at
0 =n/2, n, 37/3, and 2z. When 6 = /4, 37/4, 57/4, and 77/4, both the
numerator and the denominator tend to be 0. In this case, the limit of
fo (0) towards /4 is 1/7%, i.e.

. In (tan® 6) 1
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For other locations of 6, we can get the same limit value.

Fig. 1 shows the PDF of the envelope of Cauchy noise for values of
b=1, 2, 4, and 8. The location of the mode of the envelope PDF
approaches 0 with the decrease of b, while the height of the mode
increases. This is also obvious from (13). The envelope PDF will be
similar to an impulsive function with a much larger value of b
because more probability is distributed around 0. Fig. 2 shows the cor-
responding phase PDF. Note from (10) and (11) that the phase PDF and
CDF are independent of the parameter b, so each is represented by only
one curve. Observe also that the Cauchy noise phase PDF has singular-
ities at 8 =0, 7/2, x, and 37/2.
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Fig. 3 Comparison between envelope CDF of Gaussian and Cauchy
quadratures

Comparison with Gaussian quadratures: The envelope and phase
PDFs of independent Gaussian quadratures are Rayleigh distribution
with a parameter o and uniform distribution over [0, 27]. The phase
PDF of Cauchy quadratures is quite different from the uniform one of
Gaussian quadratures. However, the two envelope PDFs are similar in
that they are both unimodal with one controlling parameter. The
maximum value of the envelope PDF of Gaussian quadratures is

1//ec, occurring at r, =o. The peaks of the two envelope PDF both
fall with larger controlling parameters, while their locations move
towards oco. The main difference is that the envelope PDF of Cauchy
quadratures has a much heavier tail. Fig. 3 shows and compares the
envelope CDFs of Cauchy quadratures and Gaussian quadratures for
b=1 and b=4. o is chosen so that the peaks of the envelope PDF of
Gaussian and Cauchy quadratures are equal, namely

16v/v/17 — 1 _ 1
mb(VTT+ 7)Y +3  Veo
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Solving the equation above results in o ~ 2b. Under this constraint,
the heavy-tail effect of Cauchy distribution is obvious from Fig. 3
where the CDF of Cauchy envelope approaches 1 slower than
Gaussian envelope at the tail part.

Conclusion: 1In this Letter, we have derived the envelope and phase dis-
tributions of Cauchy quadratures. The statistical characteristics of the
envelope and phase PDF are also discussed. The envelope PDF is a
unimodal curve and tends to be an impulsive function with the decrease
of b. The phase PDF is not uniform with the minimum values occurring
at 6 =n/4, 3n/4, Sn/4, and 7x/4. 1t has singularities at 6 =0, 7/2, , and
37/2. We also compare the envelope and phase statistics of Cauchy
quadratures with those of Gaussian quadratures. The Cauchy envelope
has a much heavier tail than Gaussian envelope.
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