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Abstract—Super-resolution (SR) algorithms for multiview
videos aim at refining the low-resolution (LR) views using high-
frequency detail information from adjacent high-resolution (HR)
views. However, to refine a LR view, the state-of-the-art methods
only exploit the spatial redundancy of a multiview video. To
take full advantage of the spatial and temporal redundancy,
a new spatiotemporal SR algorithm is proposed in this paper.
Depth-image-based rendering (DIBR) establishes coordinate cor-
respondences between different views. Motion estimation handles
object motion between different frames. The high-frequency
details are extracted in transform domain and added to LR
images. In order to merge the details from different HR images,
a combination of global and local weights is proposed. The
effectiveness of the proposed algorithm is proved theoretically
and shown experimentally.

Index Terms—Spatial redundancy, temporal redundancy,
super-resolution, multiview video, discrete cosine transform

I. INTRODUCTION

Recently, multiview video processing has attracted consid-
erable attention of researchers. Due to the huge cost and
bandwidth requirements to store and transmit multiview video,
the multiview video plus depth (MVD) format is exploited as
an efficient representation method. In order to further reduce
the data size, the mixed resolution (MR) format is proposed.
The MR-MVD representation allows some views of a video
sequence to be decimated and stored in low resolution (LR)
while the others to be stored in the original high resolution
(HR) [1]-[4]. Afterwards, the display system utilizes super-
resolution (SR) algorithms to recover the LR views.

Depth image based rendering (DIBR) is a basic technique
used to establish coordinate correspondences between different
views and to synthesize the missing high-frequency detail of
the LR views [5]. Garcia et al. proposed a SR algorithm that
took advantage of the high-frequency information in the HR
views to increase the visual quality of the LR views [1]. The
authors used sum of absolute difference as a threshold to
reject the mismatched coordinate correspondences. The same
authors introduced consistency check to tackle the mismatched
coordinates [2]. Since the SR algorithm in [2] is sensitive to
depth error, Richter ef al. proposed a robust SR algorithm that
used displacement estimation and compensation to make up
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for pixel displacements due to depth error. Besides exploiting
the spatial redundancy of MR-MVD video, one can also utilize
temporal redundancy to extract high-frequency information.
Brandi et al. used high-frequency information from the key
frames to refine the non-key frames [6]. Similarly, Ancuti et
al. used HR still photographs to recover the missing details
of a LR frame [7]. Lengyel ef al. devised a non-local means
(NLM) algorithm to reconstruct the high-frequency content of
the LR frames [8].

Compared with spatial-domain operation, high-frequency
information extraction and combination in discrete cosine
transform (DCT) domain, also have a compelling prospect.
Hung et al. reported the advantages of the transform-domain
SR algorithm [9]. Fu e al. designed an algorithm that used all
available HR views to extract detail information. The extracted
details were then merged with respect to the optimal weights
determined by the correlation between a LR view and the
adjacent HR views [10]. However, the lack of using temporal
redundancy prohibited the SR algorithm from advancing.

In this paper, we propose a spatiotemporal SR algorithm that
takes full advantage of the spatial and temporal redundancies
of a MR-MVD video. DIBR or the so-called view projection
projects the adjacent HR views onto the LR view. Motion
estimation is introduced to make up for the motion between
consecutive frames. A combination of the global image weight
and the local block weight is proposed to merge the details
extracted from the HR views. The rest of the paper is organized
as follows. Section 2 describes the multiview setup of the
proposed algorithm. Section 3 explains the SR algorithm
in detail. Section 4 proves the merits of using both spatial
and temporal redundancies. Section 5 shows the experimental
results. Section 6 concludes the paper.

II. THE MULTIVIEW SETUP

The multiview setup is shown in Fig. 1, where View V
is the LR view to be refined, View V,,_; and V,,; are
the HR views. The notations 7 — 1, 7, and 7 4+ 1 repre-
sent three consecutive time indices. We refer to the images
I.—1,, and I, q, as the spatial neighbors of I, . while
Is1(s=k—1,k+1;t=7—1,7+ 1) as the spatiotemporal
neighbors. For the simplicity of notation, all the neighbors
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Fig. 1. Multiview setup.
of I, are denoted as I,(n = 1,---,N). The aim is to

enhance the visual quality of I, with the aid of all its
neighbors. The setups for other LR images are identical. In this
paper, we exploit both view projection and motion estimation
to compensate for the displacements between I, . and its
neighbors. View projection is implemented between the HR
view and LR view. In order to further compensate for the
motion between different frames, motion estimation is carried
out after view projection.

III. THE PROPOSED ALGORITHM

Fig. 2 shows the flowchart of the proposed algorithm. The
inputs consist of HR images and LR images. The input images
are preprocessed for the sequel operation. We first interpolate
the LR image I, . to the same resolution as HR images,
resulting in its low-frequency part I ,f - The HR images I,
undergo blurring, decimation, and interpolation to generate
their low-frequency parts IZ. Meanwhile, the HR images are
warped to the LR view via view projection.

IL and T ,f - are used for motion estimation and the calcula-
tion of global and local weights. Blockwise motion estimation
is enforced between I, KLJ and its spatiotemporal neighbors.
Global weights are calculated between I ,f - and its neighbors
while local weights are calculated for the blocks of images. For
every target LR block, the high-frequency details are extracted
from HR images and are merged to form the desired high-
frequency information. At last, the result is added to the low-
frequency parts of the LR frames.

A. View Projection

View projection is used to establish coordinate correspon-
dences between different views. We assume the well-known
pinhole camera model. The pixel (u,v) in .41, is first
projected to the 3D position, yielding

(z,y,2)" = R;ilA;ilD(u, v)(u, v, )T+t (1)

where Ryy1, Ac+1, and .1 represents the rotation matrix,
the intrinsic matrix, and the translation vector of the camera in
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Fig. 2. Flowchart of the proposed algorithm.

view V.1, respectively. D(u,v) is the physical depth value
of pixel (u,v). Then the 3D point is projected to the image
plane of IX | ie.

K,T?
w(u ,v ,1)T = A, R:[(z,y, z)T — ty]. 2)
B. Motion Estimation

Since there is relative motion between I,fﬁ and its spa-
tiotemporal neighbors even after view projection, we need to
implement motion estimation to compensate for it. We define
IF(s =k —1,k4+1;t =7 — 1,7 + 1) as the target frames
and [ ,f - as the anchor frame. Let B, be a block in the anchor
frame. The aim is to find a matching block B, in every target

frame that minimizes the mean square error, i.e.
B, = argmin &, = argmin || B,(X) — B;(X + D)||§ 3)

where X is the position of block B,, D is the relative
motion between the B, and B;. We uses the exhaustive block-
matching algorithm (EBMA) to find the best match for each
block in the target frame.

C. Global Weight Calculation

Different views of multiview videos have varying degrees
of correlation depending on the spatial distance between them
[10]. The optimal weight calculation in [10] doesn’t satisfy
real-time display because it needs the whole video sequence.
Actually, we find that the frames with the same time indices
between different views have almost the same degree of
similarity. Meanwhile, we also need to evaluate the similarity
of different frames in the same view. Therefore, we define the
global weight of I'Z as the correlation coefficient between [ ,f -
and IL, ie.

S Y (L, — UL - 1Y)
J(Esut - 1) (ST at-17°)

7L 7L L L
where I, and I, are the means of [;7 and I

g —
Wy =

“4)

D. Local Weight Calculation

The local weight is calculated blockwise. Different blocks
of two images have varying degrees of similarities. Thus,
it’s useful to incorporate the local weight into the weighting
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procedure. Let B be the interpolated block of a LR block B
in I, ;. After view projection and motion estimation, B’ has
a matching block B,, in every IZ. BH is the HR counterpart
of B, in the image I,,. Let the mean square error between B’
and B, be £, = || B! — Bn||§. Then the local weight of B,
is

wy, = exp(—En/207) )

where o is the decaying factor. Having obtained the global
and local weights, we multiply them and normalize them to
achieve the final complete weights, i.e.

! l
wn = wlw, / Z wlwy, (6)
n

E. High-Frequency Component Extraction and Merging

High-frequency information extraction and merging is car-
ried out in DCT domain. We transform the HR blocks B to
DCT domain and represent the derived DCT coefficients by a

blocked matrix,
B B
B, = [ Bglo gl ] (7N

where B, B1°, and B}! are the high-frequency components,
B is an inaccurate low-frequency component. The derived
high-frequency components from multiple HR images are
summed with respect to the weights w,, and constitute the
detail information of B. The DCT coefficients of B acts as
the low-frequency components of its refined block. Thus, we
have the merged DCT coefficients

X 2B S w, B
B = Z wan zn: wnBH ®)

At last, BB is transformed to spatial domain, resulting in the
super-resolved block of B.

IV. WEIGHTED SUM OF HIGH FREQUENCY DETAIL

In this section, we prove the validness of exploiting both
spatial and temporal redundancies of MR-MVD videos. The
captured pixel value at position x is the actual light intensity
corrupted by additive white Gaussian noise (AWGN), i.e.

P(x) = p(x) +6(x) ©)

where 1(x), ¢(x) and §(x) represent the captured pixel
value, the light intensity, and Gaussian noise, respectively. The
Gaussian noise is with zero mean and variance o2.

With view projection and motion estimation, a series of

measurements of the same position can be observed,
q/}TL(X) = SD(X) + 5n(x),n = 15 2’ e aN

where J,,(x) are independent identically distributed (i.i.d.)
random variables. The mean and variance of ,,(x) are (x)
and o2, respectively. Here, we compute the weighted sum of
the observed measurements as

(10)

R N N
h(x) = Y wathn(x) = @(x) + Y _wabn(x) (1D
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Fig. 3. PNSR results for Ballet.
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Fig. 4. PSNR results for Breakdancers.

where w,, are the computed weights subject to > w, = 1.
Since d,,(x) are i.i.d random variables, the mean and variance
of the computed statistic are

E[§(x)] = ¢(x) (12)
Var [i(x)] = (i wZ) o? (12b)

Considering the constrains of the weights, we have the result
that 3" w2 < 1. In conclusion, the weighted sum )(x) has the
same mean as ¥, (x) but smaller variance. Thus, the noise is
reduced and ¢(x) has better performance than ,, (x).

V. EXPERIMENTAL RESULTS

In this section, we shows the experimental results. We test
our SR algorithm on the sequences Ballet and Breakdancers
[11].The size of the blocks for motion estimation and high-
frequency component extraction is 8 x 8. The search area for
motion estimation is 31 x 31. The decaying factor is set to 5.
We adopt a 2-tap two-dimensional Lanczos filter to blur the
HR frames and downsample the result with the downsampling
rate being 2. For the the proposed algorithm, View 3 is selected
as the LR view while View 2 and View 4 are the HR views.
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Fig. 5. (a) - (c) are details of bilinear interpolation, SROW, and the proposed
method for Ballet.
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Fig. 6. (a) - (c) are details of bilinear interpolation, SROW, and the proposed
method for Breakdancers.

Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity
(SSIM) [12] are used to compare the performance of different
SR algorithms.

We compare the proposed algorithm with SR using optimal
weights (SROW) [10] and SR using sum of absolute difference
(SRSAD) [1]. Two or four HR views are available for SROW
while one or two views are used for SRSAD. In contrast,
only two views are available for the proposed algorithm. Since
the spatiotemporal neighbors are considered, six images are
actually used to refine a LR image. The SR results of Frame 65
are listed in Table 1. SRSAD has very limited improvements.
When two HR views are available for SROW, the proposed
algorithm outperforms it with a large margin. When the avail-
able HR views are mounted to four, the proposed approach still
works better. Fig. 3 and Fig. 4 depict more detailed results of
the experiment for all the LR frames in View 3. It’s clear
that our method leads to higher PSNR results under all the
circumstances.

Fig. 5 and Fig. 6 show the details of the refined images. Both
SROW and the proposed method refine the image with high-
frequency content, compared with interpolation. However,
SROW results in blurring artifacts while our method generates
better results.

VI. CONCLUSION

In this paper, we propose a novel SR algorithm that uses
both spatially and temporally adjacent images to refine a LR

TABLE I
THE PSNR AND SSIM RESULTS FOR FRAME 65 OF BOTH Ballet AND

Breakdancers

Ballet Breakdancers

Method PSNR/SSIM PSNR/SSIM
Interpolated 37.0565/0.9862 | 36.9435/0.9863
SRSAD: 1 HR view | 37.0629/0.9862 | 36.9471/0.9863
SRSAD: 2 HR views | 37.0685/0.9862 | 36.9502/0.9863
SROW: 2 HR views | 37.2055/0.9890 | 37.0121/0.9844
SROW: 4 HR views | 37.2324/0.9891 | 37.1409/0.9886
Proposed 37.5793/0.9893 | 37.3436/0.9888

image of a MR video. The core idea of this approach is to take
advantage of the high-frequency information usually ignored
by other methods in the spatiotemporal frames. In order to
merge the computed high-frequency information efficiently,
the global weight based on correlation of the whole images
and the local weight based on mean square error of blocks are
introduced. The frequency decomposition and integration are
carried out in DCT domain. The experimental results show
that both the subjective and objective SR performance are
improved by our SR method.
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