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ARTICLE INFO ABSTRACT

Hybrid videos that contain periodic low-resolution (LR) frames and high-resolution (HR) guide frames are lar-
gely used for the consideration of bandwidth efficiency and the tradeoff between spatial and temporal resolution.
Super-resolution (SR) algorithms are necessary to refine the LR frames, in which non-local means (NLM) is a
promising algorithm. NLM replaces every pixel with a weighted average of its neighbors based on non-local self-
similarity between pixels. However, the fixed decaying factor of NLM cannot satisfy regions of distinct char-
acteristics in LR frames. The fixed neighborhood or the so-called searching window fails to balance the re-
quirements of low computation and advanced video quality. In this paper, we propose novel criteria to choose
the parameters adaptively. The decaying factor is defined by patch difference of a pixel and guarantees NLM to
find relevant pixels. Two methods, namely a predefined method inspired by motion estimation and an exhaustive
method by searching progressively enlarged neighborhood are proposed to determine the neighborhood size.
Bilateral adjacent HR guide frames are used to handle the occlusion problem. We also analyze the defined patch
difference on pixel-, frame-, and sequence-level and reveal its influence on the algorithm. The experimental
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results verify the validity of the proposed method.

1. Introduction

Recently, hybrid video or the so-called reversed-complexity video
coding (Brandi et al., 2008) and inconsistent scalable video streaming
(Mahfoodh et al., 2015), which is a low-resolution (LR) video with periodic
high-resolution (HR) frames, has been studied out of different considera-
tions, applied under distinct scenarios, and enhanced by several super-re-
solution (SR) algorithms. On the one hand, from the perspective of video
compression, the use of hybrid video (see Fig. 1) can not only reduce video’s
data size and improve the efficiency of bandwidth usage but also reduce
encoding complexity. Multi-view mixed-resolution video originates from the
same purpose (Garcia et al., 2012; Jin et al., 2015; Li et al., 2016a; 2016c;
Richter et al., 2015). Mukherjee et al. adopted this concept and proposed a
resolution reduction based coding mode in existing codecs where compu-
tational complexity was transferred from encoder side to the decoder side
(Mukherjee et al., 2007). Brandi et al. directly proposed the use of hybrid
video for the purpose of data-size reduction (Brandi et al., 2008).

On the other hand, the tradeoff between spatial and temporal re-
solution also leads to the incorporation of hybrid video (Ben-Ezra and
Nayar, 2003; Tai et al., 2010). In order for a pixel to be detected, an
image sensor needs a minimum exposure time to accumulate sufficient
irradiance. Providing that the sensor size is constant, the footprint of
every pixel on the sensor will be reduced with the increase of image
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spatial resolution, which means exposure time should be prolonged to
accumulate the same amount of irradiance on a reduced pixel footprint.
Hybrid cameras can simultaneously capture periodic HR snapshots with
low rate and LR frames with high frame rate. Commercial cameras such
as Canon EOS 500D and Sony HDR-SR11 support this application
(Ancuti et al., 2010; Basavaraja et al., 2010).

To enhance the LR frames of a hybrid video, Brandi et al. proposed a
motion estimation based SR method where HF components in the HR
frames were used to recover those in the LR frames (Brandi et al.,
2008). Song et al. further used hierarchical motion estimation to obtain
as accurate motion vectors as possible and employed example-based SR
when motion estimation failed (Song et al., 2011). Mahfoodh et al.
utilized quad tree structure based motion estimation and incorporated
their algorithm in VP9 spatial SVC (Mahfoodh et al., 2015; Mukherjee
et al.,, 2013). All of the aforementioned algorithms recovered an LR
patch using only one HR patch derived from motion estimation, which
limited the algorithms’ performance. Thus, Hung et al. developed ex-
ample-based SR, by searching and combining multiple HR patches in
codebooks derived from key frames, to super-resolve an LR patch
(Hung et al., 2012). Bevilacqua et al. recovered an LR patch by taking
sparse combinations of patches found in the adjacent HR frames
(Bevilacqua et al., 2013).
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LR frame

HR Frame

Fig. 1. Illustration of hybrid video.

1.1. Related work

The existing SR algorithms can be classified into three categories,
namely interpolation-based, reconstruction-based, and example-based.

Basic interpolation-based methods such as bilinear or bicubic in-
terpolation are based on the smoothness assumption of natural images.
But they tend to blur the derived images especially at edges. Advanced
approaches belong to a class of visually oriented interpolation techni-
ques, including edge directed, content adaptive, and wavelet-based
methods (Allebach and Wong, 1996; Li and Orchard, 2001; Wang and
Ward, 2007; Zhang and Wu, 2006). However, the video sequences re-
fined by interpolation suffer from perceived loss of detail in texture
regions because they are unable to estimate HF information.

Reconstruction-based methods use subpixel shifts among several LR
images of the same scene taken from multiple viewpoints. By estimating
these shifts, pixels are rearranged into an HR grid and combined to
complete an HR image (Bose and Ahuja, 2006; Farsiu et al., 2004;
Takeda et al., 2007). Iterative back projection (IBP) recovers a final HR
image by projecting the reconstruction error between the LR and in-
termediate HR images back to the HR image iteratively (Gan et al.,
2013; Zhang et al., 2016). Maximum a posteriori probability (MAP)
methods utilize Bayesian statistical properties of images and adopt prior
information such as total variation, Tikhonov regularization (Fu et al.,
2016a), and non-local prior (Zhang et al., 2012) to stabilize the solu-
tion. However, due to the limited information available, reconstruction-
based methods hit a bottleneck in improving the recovered image
quality.

Example-based algorithms use known HR images to build a data-
base which consists of pairs of LF information and HF information in a
training phase (Freeman et al., 2001; Timofte et al., 2016; Wang et al.,
2016; Yin et al., 2015). Then the established database guides the
learning phase to search a matching HR block for every block in the LR
image. Under the paradigm of learning, some other algorithms adopt
classical image processing techniques such as convolutional neural
networks (CNN) (Kim et al, 2016), sparse representation
(Polatkan et al., 2015), and neighborhood embedding (Chang et al.,
2004) to address SR problems. These algorithms achieve state-of-the-art
performances. For video SR, motion estimation plays a key role in
making up for the motion between consecutive video frames (Brandi
et al., 2008; Hung et al., 2012; Song et al., 2011). Thus, Liu and Sun
proposed a Bayesian framework for video SR simultaneously estimating
motion, blur kernel and noise level (Liu and Sun, 2014). However, the
iterative procedure caused heavy computational burden. Therefore,
Liao et al. solved the problem by employing a non-iterative method
based on deep draft-ensemble learning (Liao et al., 2015). Kappeler
et al. used explicit adaptive motion compensation as a preprocessing for
video frames before they were fed into CNN framework (Kappeler et al.,
2016). Other exampled-based video SR can be found in
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Dai et al. (2017); Huang et al. (2017); Shi et al. (2016).

Apart from the concept of learning, non-local self-similarity is an-
other important concept for addressing image processing problems. The
basic idea originates from the observation that similar image patches
usually reproduce within the range of a natural image (Buades et al.,
2005), its derivatives (Gilboa and Osher, 2008; Zhang et al., 2010), or
even its sparse coding coefficients (Dong et al., 2013). Buades et al. first
proposed a non-local means (NLM) filter used as an image denoising
filter (Buades et al., 2005). Inspired by this idea, Kostadin et al. as-
signed image patches into three-dimensional (3D) groups according to
the non-local self-similarity between them and devised a block-
matching and 3D (BM3D) filter (Dabov et al., 2007). Some researchers
also incorporated non-locality into a variational framework and pro-
posed non-local total variation which was widely applied in image in-
painting  (Gilboa and Osher, 2008), motion estimation
(Werlberger et al., 2010), and image SR (Dong et al., 2013; Ren et al.,
2017).

Protter et al. first generalized NLM to SR from the viewpoint of error
energy minimization (Protter et al., 2009). Basavaraja et al. combined
the work in Brandi et al. (2008) and Protter et al. (2009) to compute the
HF part of a pixel using NLM (Basavaraja et al., 2010). Lengyel et al.
incorporated illuminance and gradient information into the similarity
comparison and reduced the averaging pixels by thresholding
(Lengyel et al., 2014).

1.2. Motivation and contribution

The classical NLM algorithm has two major steps. First, it compares
the similarity between a pixel and its neighbors and assigns weights to
these neighbors. The weight is some inverse function of the Euclidean
distance between the patches surrounding two pixels. In the second
step, NLM replaces every pixel with a weighted average of its neigh-
bors. To adapt to SR tasks, the algorithm is altered in the second step
where it only computes the HF part of a pixel by a weighted average of
its neighbors’ HF parts. Then the derived HF part is added to the in-
terpolated LR frames to complete the SR processing.

In this paper, we focus on two major parameters of NLM for video
SR including the decaying factor used to compute the weights and the
size of the neighborhood (searching window) within which NLM sear-
ches to find similar pixels to the target pixel. However, the fixed de-
caying factor of NLM cannot satisfy regions of distinct characteristics in
an LR frame. And the fixed searching window fails to balance the re-
quirements of low computational complexity and high quality of super-
resolved images. Thus, we propose a novel criterion to select the de-
caying factor adaptively. We also propose two methods to adaptively
determine the size of searching window, namely the predefined
searching window (Li et al., 2016b) and the exhaustive searching
window (Li et al., 2016d). The predefined method is a preprocessing
implemented before NLM which is inspired by motion estimation but
more efficient to carry out than motion estimation. The exhaustive
method is incorporated during the process of NLM and determines the
window size by searching progressively enlarged window iteratively
until local difference drops below a termination standard.

The following of the paper is organized as follows. Section 2 dis-
cusses hybrid videos and basic NLM algorithm. We also define patch
difference, local difference, and global difference in this section.
Section 3 explains the proposed algorithm. Section 4 analyzes the de-
fined path difference on three levels, namely pixel-, frame-, and se-
quence-level and reveals its influence on NLM. Section 5 shows the
experimental results. Section 6 concludes the paper.

2. Preliminary discussion and basic model
2.1. Hybrid video

In the image and video acquisition process, an image is usually
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degraded by several processes such as blurring, decimation, and noise
corruption, i.e.,

Y=DBX +n (@)

where X is the ground-truth image of the actual scene, Y is the degraded
image, B stands for blurring, D stands for decimation, and n is usually
independent Gaussian noise.

For the hybrid video shown in Fig. 1, the basic LR frames and
periodic HR frames follow distinct degradation models. The periodic
HR frames are the ground-truth images of the actual scene. Thus, no
degradation process is included. From the perspective of bandwidth
usage, the main consideration is to reduce the data size of an HR video
without introducing much degradation. Thus, it’s usually assumed that
LR frames only undergo blurring, and decimation but no noise cor-
ruption, leaving the LF components available and reliable. In this sce-
nario, the main SR task is to recover the missing HF components of the
LR frames.

2.2. Separation of HF and LF components

Before applying SR algorithms, the first step is to separate the HF
and LF components of a hybrid video. Since the interpolated images of
LR frames can act as reliable LF components, one only needs to recover
the missing HF components, which also avoids the flickering or jerki-
ness effects in some applications where LF components are not available
such as virtual view synthesis (Fu et al., 2016b; Zhao et al., 2011) and
frame rate up-conversion (Choi et al., 2000; Wang et al., 2010). Inspired
by example-based SR method (Freeman et al., 2001), Brandi et al. first
proposed the method of separating HF and LF components
(Brandi et al., 2008).

In this paper, the periodic HR frames and LR frames of a hybrid
video are denoted by

{Fclk = Tz, z € N} (2a)

{fffin=Tz+r,zeN,r=1,2,.,T -1} (2b)

where Fy is an HR frame, f,, an LR frame, and T the period of HR frames.
In the sequel discussion, we will continue to use upper case F to denote
all the intermediate results of HR guide frames and lower case f to
denote those of LR frames. The superscript of F and f discriminates HF
and LF components. The HR frames are blurred, decimated, and in-
terpolated to generate their LF parts, namely,

F} = UDBF, 3)

where B, D, and U are the blurring, decimation, and interpolation op-
eration, F is the LF part of Fy.. Then F is subtracted from F,, resulting
in the HF detail of Fi, namely,

Ff = F, - FL. C)]

The LR frames are also scaled to the same resolution as the HR frames,
namely,

=L

f n = Uf;l (5)

=L . . . .

Fl and f,' contain the basic structure information and are used to

compute the weights in NLM algorithm. Ff is used to recover the
.. . ~L

missing details of f, .

2.3. Framework of NLM for SR

In the image restoration tasks, in order to recover a pixel, additional
information from relevant pixels is necessary. Thus, SR algorithms need
a relevant pixel or patch selection process which is based on patch si-
milarity. Since there is motion between consecutive frames of a video,
motion estimation is the first technique that comes into mind to play a
role in similarity comparison. However, motion estimation and com-
pensation recovers an image patch by patch and only selects one target
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patch with the minimum Euclidean distance to the anchor patch. Thus,
the performance of the algorithm (Brandi et al., 2008) is limited.

As a result, NLM arises as a new similarity comparer. Contrary to
motion estimation and compensation, NLM relies on pixel-wise com-
putation and recovers a pixel by a weighted average of its similar
neighbors. In fact, NLM can also be regarded as an implicit motion
estimator (Protter et al., 2009).

NLM exploits the redundancy of a video to recover a pixel. The HF
part of an LR pixel is calculated by the weighted average of its HR
neighbors’ HF parts, namely,

Z(iJ)EQxy C"x,y(i’ .j)'FIfI(L ])

7)oy = —
Z(iJ)EQXy C’-’x,y(l’ .])

(6)

where Q,, is the neighborhood (searching window of size .#" X ./") of
the LR pixel (x, y) in the HR frame, (i, j) is a pixel in £2,,. The weight
assigned to pixel (i, j) reflects the similarity between (i, j) and (x, y) and
is computed as

¢ ~L 2
~lIRE,f, = RGFOG 1,

207

Cox,y(i’j) = €Xp

@)

where o is a fixed decaying factor, Rl-i- is an operator that extracts a
patch of size S X S centered at (i, j), and G, is a two-dimensional
Gaussian kernel with 0 mean, variance o2, and size S X S. The differ-
ence between the two extracted patches is multiplied pixel-wise by the
Gaussian kernel. The kernel penalizes pixels off the center based on
pixel coordinates, i.e.,

exp(_(x —’+ @ —j)Z)'

207

1
Go (X, ¥, 1, ) =
(6, ¥, 1, ) Py

s

®

At last, the HF detail an (x, y) and LF structure fnL (x, y) are added to
form the recovered pixel value ]‘,; (x, ¥), namely,

= ~H =L

LG y)=F, .y +f, ).

The framework of NLM for SR is shown in Fig. 2.
Here we make several definitions for the convenience of the sequel

discussion. The patch difference between pixel (x, y) and (i, j) is defined

by the Euclidean distance between the patches surrounding them

©)

.o =L 2
Evy (i, ) = IR, F, = RiGF)Gy |- (10)
The local difference of the LR pixel (x, y) is defined as the minimum
patch difference within its neighborhood, i.e.,
E(x,y) = min {E.,(, )}

y W)E%{ ey (G 1)} an
The global difference of an LR frame is defined as the maximum local
difference across the whole image, i.e.,
E, = max{E (x, .

global (x,y){ ( y)} (1 2)
The defined patch difference, local difference, and global difference
measure the features of an image at different levels. To super-resolve an
LR pixel, the focus is on its most similar neighbors with small patch
differences because NLM needs to assign larger weights to those pixels.
The Euclidean distance between an LR pixel and its most similar
neighbors becomes vital because it can indicate the quality of a re-
covered pixel. Thus, local difference arise as a descriptor to measure
how similar an LR pixel is to its neighbors. Although the local differ-
ences in an image vary within a large range, we observe that the
maximum local difference is related to the motion behavior of a video.
The larger the maximum local difference, the larger the motion of a
video. Thus, global difference is defined as the maximum local differ-
ence to measure this behavior.
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HF/LF
Separation

Interpolate

= Fig. 2. Framework of NLM for SR.

Weight

Recovered image X

3. The proposed algorithm
3.1. Bilateral video super-resolution

NLM searches in the neighborhood of a center pixel to find similar
pixels it. The method can be considered as a coarse and implicit motion
estimator.

Generally, a single frame in a video sequence can be divided into
background and foreground objects. The background is usually stable
or moves slowly and it is enough to super-resolve the background pixels
in an LR frame using a forward or backward HR frame. However, the
foreground object may move fast so that an object around the boundary
moves in or out of the current scene. Thus, if only one HR frame is used
to refine an LR frame, mismatches between pixels will occur and the
effectiveness of NLM will be adversely affected. Fig. 3 clearly shows this
problem. The pixels of the moving dancers in Frame 9 have no corre-
spondences in Frame 6. Thus, it is impossible to refine these pixels using
only Frame 6. This problem can be solved by including both Frame 6
and Frame 12 into the SR algorithm.

Therefore, we use bilateral adjacent frames to ease the motion
problem. For every LR frame, its bilateral adjacent HR frames are

{Fslb € @} 13

where ® = {|n/T| x T, [n/T]| x T}, | - | is the round-down operator, and
I-1 the round-up operator.
The above discussion leads to the conclusion that the bilateral SR

algorithm using both forward and backward frames outperforms the
normal method using only one frame. Of course, using more spatial and
temporal adjacent frames will improve the SR results further. However,
the computation cost should be considered in that case.

Bilateral SR is somewhat similar to motion-compensated frame rate
up-conversion (MC-FRC) (Choi et al., 2000; Wang et al., 2010) in that
both techniques use information in the adjacent frames to recover a
middle frame. However, they differ mainly in two aspects. Firstly, bi-
lateral SR refines an LR frame using HF information while MC-FRC aims
at generating a non-existent frame. Secondly, compared with MC-FRC,
bilateral SR doesn’t rely on explicit motion estimation.

3.2. Adaptive decaying factor

The decaying factor has a profound influence on the performance of
NLM. However, it is not very easy to select a uniform decaying factor
for all of the pixels in an image. Here we detail the dilemma about the
choosing of decaying factor by comparing the weights of two neighbors
of an LR pixel. One of them is with minimum patch difference, namely
local difference E(x, y) while the other is an arbitrary pixel with patch
difference E, ,(p, q). We compare the two neighbors by the quotient of
their weights, i.e.,

€xp [_Ex,y (@, CI)/ZUZ]

—_ — — 2
= P E (. )/207] = exp(—A/20?)

(14)
where A = E, ,(p, q) — E(x, y) and A is larger than 0. Thus, keeping A

Fig. 3. Parts of (a) Frame 6, (b) Frame 9, and (c) Frame 12 of
Ballroom. Frame 6 and Frame 12 are HR guide frames and
Frame 9 is the frame to be super-resolved. The aim is to re-
cover Frame 9 using the HF information from Frame 6 and
Frame 12.
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Fig. 4. (a) The relationship between 5 and o (b) choosing of adaptive decaying factor.

30 35 40

as a constant, the quotient # is a monotonically increasing function of
the decaying factor o. Fig. 4(a) shows the o — 7 curve. If o is large, n
approaches unit and all the weights tend to be the same, which is an
undesirable behavior because NLM acts as a mean filter in this case.
One the other hand, a very small o leads to a small quotient. As a result,
only the pixel with local difference has a principle weight close to 1
after normalization. This is also undesirable because in this case NLM
becomes so selective that it tends to use only one pixel to recover an LR
pixel. In the meanwhile, if the decaying factor is small, the weights will
be close to 0. In the worst case, all the weights decays to 0.

Due to the different (smooth and fast) motion characteristics of
image regions, local difference changes within a large range, say from
0.1 for background to 50 for moving foreground object. That is, for
slow-moving background between consecutive video frames, small
local difference features the smooth motion. The same is true for
foreground objects. In the following, we discuss two extreme situations
with varying local difference which correspond to the case where the
decaying factor o in (14) is fixed but A changes. Assume the local dif-
ferences scaled by 20> (E/20%) for a background pixel and a moving
object pixel are E' = 0.1 and E{' = 34. Two other neighbors of the two
pixels have the scaled patch differences ES? = 0.2 and Ef? = 36. If a
fixed decaying factor is used, the computed weights of the background
pixel and its neighbor are almost equal (0.90 and 0.82 resp.) although
the scaled patch difference of the latter is twice of the former
(E82/EP' = 2). This multiple relationship between patch differences
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discriminates inaccurate and accurate matches for background pixels
and thus should be kept in the computed weights. On the other hand,
for the moving object pixel, the found neighbor with scaled patch dif-
ference EX? = 36 should be classified as an accurate match since EL? is
comparable with the scaled local difference (E{?/EL! = 1.06). However,
the computed weights discriminates the two pixels.

In the above discussion, when judging whether a neighbor is ac-
curate, the value of scaled local difference is used as a baseline for
comparison. If the comparison baseline in the above two cases are slid
respectively from 0.1 and 34 to a moderate value say 2 by choosing
adaptive decaying factors (see Fig. 4(b)), the desired features of patch
difference in the two extreme cases are kept in the computed weight.
For example, the computed weights corresponding to EZ' and EZ? are
0.368 and 0.135, which distinguish the two neighbors. Thus, the se-
lection criterion for adaptive decaying factor here is to force the com-
parison baseline, i.e., local difference E(x, y), after smoothed by 202, to
decay to a predefined value a, namely,

E(x,y)/20% = a. (15)
Solving the above equation results in
o = JE(x, y)/2a. (16)

This adaptive decaying factor incorporates local difference as ex-
pected. The advantage of this trick is that it meets the requirement of
distinguishing between accurate and inaccurate matches according to
the value of local difference. The added computation is almost insig-
nificant compared with that of the whole algorithm. What’s more, the
estimation of a is more robust than that of o because one needs to use
different o for different videos but a fixed a can already achieve sa-
tisfying performance. In this paper, we tested different values of a and
found that values around 2 work out best. Thus, we use @ = 2 in all the
experiments. Note that the local difference may be zero. This means
that an exactly identical pixel is found in the neighborhood of a pixel. In
this case, one can directly set the weight of the identical pixel to 1 and
all the other weights to 0.

As is said, the fixed decaying factor is not suitable for regions with
different characteristics. This phenomenon becomes especially obvious
when Gaussian kernel is not used in the computing process of the
weights. Thus, Fig. 5 gives an example under this circumstance. For this
explanation, the patch size is 5 X 5 and the size of the searching area in
Fig. 5(a) and (b) is 31 x 31. In Fig. 5(a), o = 50 may be a proper setup
for Patch Two. However, the same parameter setup can cause obvious
over-smoothing for Patch One. Fig. 5(b) and (c) show the weights
computed for Patch One and Patch Two, respectively. For a better il-
lustration, the weights are normalized by their maxima. Each small
square stands for the a neighbor’s weight. The brighter the square, the
larger the weight and vice versa. It is obvious that for Patch Two, the
weights decay rapidly with only a few weights being non-zero values.
However, for Patch One, most of the weights are significant, making the
NLM act like a mean filter. Thus, an efficient and adaptive decaying
factor is necessary.

3.3. Predefined searching window

The size of the searching window ./ of NLM is a fixed parameter
which is not suitable for the background and foreground objects in a
frame undergoing different motions. The background is usually stable
or moves smoothly. So a small searching window is enough for NLM to
find similar pixels to a center pixel. However, the foreground objects
may move fast and out of the range of the searching window. In this
case, one has to enlarge the size of the searching window in order to
recover the details of moving pixels. This treatment certainly increases
the computational complexity. Thus, a fixed window size cannot meet
both of the demands.

We propose two different methods to determine the size of the
adaptive searching window, i.e., the predefined searching window and
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Table 1
Determination of the exhaustive searching window.

Objective: Determine the window size for pixel (x, y).
Initialization: E(x,y) =&+ 1, Z = Zuin
Pseudocode:
While E(x, y) > ¢ and 2 < Zpax
Compute patch difference for newly added pixels.
Compute new local difference E(x, y).
P=P+6.
end
Final window size: # = 2 — 4.
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Fig. 5. (a) Frame 9 of Ballroom sequence with two patches marked by
squares and NLM weight distributions at (b) Patch One and (c) Patch
Two.

the exhaustive searching window. The predefined searching window is
inspired by motion estimation. However, motion estimation involves
complex computation. Thus, we propose to use varying searching
window whose computation is relative simple although at the cost of
accuracy. First of all, the absolute difference between two LF images F-

=L, .
and f,’ is calculated, i.e.,

=L

Ay = IF = f . a7
Then a map is established by comparing A; with its mean

46 y) = 1, Ap(x, y) > my
Y= 0, otherwise (18a)

Fig. 6. (a) Interpolation of the LR Frame 9 of Mobile sequence (b)
reduction rate of local difference in Frame 9.
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Fig. 7. Change of the average local difference with the increase of exhaustive searching
window for selected pixels.
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Fig. 8. Influence of the allowance for local difference.
Table 2

PSNR (dB) comparison between fused image and completely super-resolved image for Pp.

Period T 2 6 10 14 18 22 30
Pp 39.4612 38.1692 37.25 36.7717 36.3042 36.148  35.6285
Fusion of  39.4612 38.1706 37.25 36.7933 36.4187 36.3442 35.8514
Pp &
Inter-
p.
PSNR 0 0.0014 0 0.0216  0.1144 0.1962  0.223
gain
1 M N
mb:M_NZZAb(P’q)
i=1 j=1 (18b)

where M and N are the height and width of the image. One can already
distinguish the background and the foreground using (17) and (18). In
order to discriminate pixels with different motion, an indicator is cal-
culated for every pixel, namely,

A=Y, 4P, 9

(P.9)€0xy (19)

where O,, is a neighborhood of (x, y) of size K X K, (p, q) is a pixel in
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Table 3
Global difference of 13 sequences using predefined window.

Frame 8 9 10 11 12
Ballroom 146 477 2928 2855 98
Foreman 27 41 38 52 34
Mobile 226 241 263 260 188
News 56 55 70 42 35
Hall 18 136 21 27 43
Flower 77 70 79 86 91
Container 45 79 124 70 40
Waterfall 27 39 29 36 24
Coastguard 69 35 65 94 45
Mother-Daughter 22 8 21 10 20
Crowd 123 290 894 1400 522
Exit 94 71 69 73 201
Vassar 40 39 140 60 45

Table 4

Global difference of 13 sequences using exhaustive window.
Frame 8 9 10 11 12
Ballroom 133 477 2928 2855 98
Foreman 27 41 38 52 34
Mobile 165 223 263 260 115
News 56 55 70 42 35
Hall 18 136 21 27 43
Flower 77 67 56 59 75
Container 45 79 124 70 40
Waterfall 27 39 29 36 24
Coastguard 69 35 65 82 45
Mother-Daughter 22 8 21 10 20
Crowd 122 290 894 875 363
Exit 94 71 69 73 201
Vassar 40 39 140 60 45

Table 5

Parameter setup.
Parameter e S K L a o A Prnin Prnax é )
Value 9 5 10 10 2 0.2 1 5 45 1 4

O,,. Then, a window size is assigned to every pixel with respect to the
value of the indicator, namely,

G0 y) =85, m < AKX, y) < g (20)

where s;’s are the adaptive window sizes and n;’s are the thresholds
between two consecutive levels with ny = 0 and n;, = max{.7 (x, y)}.
The thresholds n;’s are uniformly distributed between ny = 0 and n;.
That is,

n=ny+l-An 21)

where An = (n; — ng)/L. In this paper, we use L = 10 levels of thresh-
olds. Finally, the maximum window size among bilateral HR guide
frames is calculated for every pixel

S (x, y) = r;l:g{%(x, » 22)
The purpose of the above computation is the same as that of motion
estimation, i.e., determining the size of the searching window for every
pixel adaptively. But there are differences between them. The above
computation avoids expensive motion estimation while its accuracy is
worse than motion estimation. Thus, it is a tradeoff between compu-
tational complexity and accuracy.

3.4. Exhaustive searching window

The second method for determining the adaptive searching window
is an exhaustive searching method with iterations. To determine the
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Table 6
PSNR (dB) results of 13 test sequences.

Sequence BI TNLM DWSR FWp FWe FHL WHLp WHLe Pp Pe
Ballroom 31.09 35.03 36.5 35.21 35.19 37.23 37.54 37.48 38.7 38.63
Foreman 28.66 33.28 33.92 35.37 35.31 35 34.79 34.79 35.7 35.69
Mobile 20.09 22.26 22.45 24.33 24.51 24.12 22.75 22.96 24.49 24.69
News 25.57 37.24 38.07 39.1 39.08 39.49 38.21 38.24 39.83 39.81
Hall 25.42 36.72 38.4 37.54 37.08 39.37 38.16 37.8 38.97 38.59
Flower 21.11 23.17 23.45 26.87 26.77 25.04 25.65 25.59 27.04 26.94
Container 24.42 32.18 32.34 33.36 33.38 33.53 32.24 32.28 33.48 33.51
Waterfall 28.58 31.57 31.91 32.89 32.84 33.14 31.94 31.94 33.16 33.13
Coastguard 26.24 28.25 28.51 29.92 29.51 29.74 28.89 28.57 30.08 29.68
Mother-Daughter 32.41 42.12 43.52 42.34 42.28 43.93 43.24 43.39 43.42 43.71
Crowd 26.99 31.55 32.69 34.02 34.06 33.84 33.83 33.86 35.33 35.35
Exit 33.57 37.89 39.21 39.91 39.46 39.62 40.56 40.18 41.08 40.83
Vassar 32.73 36.37 37.48 37.56 37.35 38.33 37.72 37.55 38.63 38.5
Table 7

SSIM results of 13 test sequences.

Sequence BI TNLM DWSR FWp FWe FHL WHLp WHLe Pp Pe
Ballroom 0.95 0.971 0.984 0.976 0.975 0.986 0.987 0.986 0.989 0.988
Foreman 0.89 0.932 0.943 0.949 0.947 0.949 0.951 0.949 0.955 0.954
Mobile 0.654 0.84 0.846 0.877 0.879 0.876 0.853 0.857 0.882 0.884
News 0.87 0.978 0.982 0.986 0.986 0.988 0.982 0.982 0.988 0.988
Hall 0.857 0.943 0.957 0.952 0.946 0.963 0.959 0.953 0.963 0.96
Flower 0.732 0.886 0.893 0.936 0.933 0.911 0.927 0.925 0.938 0.936
Container 0.803 0.948 0.952 0.95 0.952 0.955 0.949 0.952 0.953 0.955
Waterfall 0.75 0.879 0.887 0.897 0.897 0.905 0.887 0.887 0.903 0.903
Coastguard 0.672 0.786 0.797 0.823 0.8 0.826 0.804 0.78 0.83 0.81
Mother-Daughter 0.911 0.976 0.981 0.976 0.976 0.981 0.98 0.981 0.98 0.981
Crowd 0.955 0.982 0.99 0.989 0.989 0.991 0.993 0.993 0.994 0.994
Exit 0.963 0.974 0.984 0.98 0.975 0.985 0.987 0.985 0.988 0.986
Vassar 0.946 0.968 0.979 0.972 0.97 0.982 0.981 0.979 0.983 0.982

(d) (e) (f)

Fig. 9. Comparison of Ballroom (a) ground truth, (b) B, (¢c) TNLM, (d) DWSR, (e) FWp, and (f) Pp.

71



Y. Li et al. Computer Vision and Image Understanding 168 (2018) 64-78

(b)

(d) (e) (f)

Fig. 10. Comparison of Foreman (a) ground truth, (b) BI, (¢) TNLM, (d) DWSR, (e) FWp, and (f) Pp.

Fig. 11. Comparison of News (a) ground truth, (b) BI, (c) TNLM, (d) DWSR, (e) FWp, and (f) Pp.
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(f)

Fig. 12. Comparison of Crowd (a) ground truth, (b) BI, (c) TNLM, (d) DWSR, (e) FWp, and (f) Pp.

Table 8
PSNR(dB)/SSIM results of Ballroom.

Table 9
PSNR(dB)/SSIM results of Waterfall.

Frame 8 Frame 9 Frame 10 Frame 11 Frame 12 Frame 8 Frame 9 Frame 10 Frame 11 Frame 12
BI 31.06 31.08 31.09 31.23 31.29 BI 28.51 28.54 28.58 28.56 28.64
/0.9484 /0.9491 /0.9498 /0.9506 /0.9516 /0.7483 /0.7487 /0.7501 /0.7489 /0.7518
TNLM  36.26 35.63 35.03 35.05 35.82 TNLM  34.05 32.79 31.57 31.75 33.33
/0.9752 /0.9732 /0.9707 /0.9691 /0.9705 /0.9346 /0.9105 /0.8793 /0.8831 /0.9207
DWSR 37.81 37.10 36.50 36.63 37.60 DWSR 34.72 33.29 31.91 32.08 33.93
/0.9862 /0.9854 /0.9841 /0.9834 /0.9844 /0.9424 /0.9187 /0.8870 /0.8895 /0.9284
Pp 39.58 39.31 38.70 38.96 39.56 Pp 35.70 34.33 33.16 33.19 34.87
/0.9895 /0.9891 /0.9886 /0.9884 /0.9894 /0.9493 /0.9290 /0.9035 /0.9040 /0.9370
Pe 39.50 39.24 38.63 38.87 39.47 Pe 35.67 34.30 33.13 33.16 34.85
/0.9891 /0.9887 /0.9882 /0.9880 /0.9888 /0.9496 /0.9291 /0.9030 /0.9037 /0.9373

size of a pixel’s searching window, the algorithm begins with the de-
fault size, namely the minimum window size %,;,. By comparing the
local difference with the termination standard ¢, the algorithm judges
whether to enlarge the window size and continue the iteration. If the
local difference is larger than &, then enlarge the window size £ by a
step § and repeat the above process. The iteration stops if the local
difference is no larger than & or # exceeds a maximum window size
Prax - At last, the window size in the last iteration is chosen as the de-
sired one. Note that during the iteration, one need only to compute the
patch difference of the new added pixels, which can save lots of com-
putation. The iteration process is summarized in Table 1.

3.5. Allowance of local difference

In the proposed NLM algorithm, local difference describes how similar a
pixel is to its neighbors. A smaller local difference indicates that appropriate
matches are found for a pixel within its neighborhood. This means that it is
proper to recover the pixel using SR methods. However, the local differ-
ences of some peculiar pixel such as those undergoing fast motion remain
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large even if the adaptive searching window is employed. In this case, it
might be improper to super-resolve these pixels since they are dissimilar to
their neighbors. Instead, interpolation may be a more accurate solution.
Thus, we set an allowance vy for the local difference according to which the
SR and interpolated versions of an LR image are fused. The fusion operation
is defined as

LGy), E(,y) <y

=F
L Ly =1
Ju Gy ﬁ@J%EWW>y

(23)

where f; fnL, and an are the interpolated, super-resolved, and finally fused
versions of an LR image f,. According to the equation, if a pixel’s local
difference is smaller than v, it is recovered by SR method. Otherwise, it is
replaced by an interpolated value. By altering the allowance vy, the SR image
and interpolated image are fused to different degrees.

4. Analysis of patch difference

The patch difference has a huge influence on the performance of
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Fig. 13. (a) PSNR (dB) results for Ballroom sequence (b) and News sequence.

NLM algorithm. Analysis of the patch difference and the concept de-
fined by patch difference can lead to insightful understanding of the
mechanics of the algorithm. Thus, in this section, we analyze patch
difference in three levels, namely pixel-level, frame-level, and se-
quence-level. In this section, unless otherwise stated, the period T of the
HR frames of a hybrid video is 6. That is, every seventh frame from the
first one is HR frame. The magnification factor is 2. In the following of
the analysis, Frame 7 and Frame 13 act as the HR guide frames while
the aim is to super-resolve Frame 8 to Frame 12.

Table 10
PSNR (dB) and SSIM of Foreman for different periods T.

Computer Vision and Image Understanding 168 (2018) 64-78

4.1. Pixel-level analysis

Pixel-level analysis tries to disclose how local difference changes
with the increase of neighborhood size in the exhaustive searching
window method. By enlarging the size of the searching window, the
local difference will definitely reduce for most of the pixels in an image.
The reduction rate of local difference for a pixel (x, y) is defined as

E(x, y) = Een(x, y)

pey) = E(x,y) 24)

where E.u(x, y) is the local difference of (x, y) after using the ex-
haustive searching window, E(x, y) is the formerly defined local dif-
ference of (x, y) without using adaptive searching window.

Fig. 6 shows the reduction rate of local difference for Frame 9 of
Mobile sequence. For the pixels where there is large motion or at the
object edges, the reduction rate is close to 1. This observation demon-
strates the effectiveness of the exhaustive searching window.

Fig. 7 shows the relationship between the average local difference
and the size of the exhaustive searching window for selected pixels with
the reduction rate p > 0.99 and the final window size & = %, = 45. It
is obvious that the average local difference diminishes quickly in the
initial iterations and tends to reduce to a fixed value at the final stage.
In this case, it is no longer helpful to enlarge the searching window
further.

4.2. Frame-level analysis

Frame-level analysis illustrates how the allowance y of local dif-
ference described in Section 3.5 affects the objective performance of
NLM, i.e., the peak signal-to-noise rate (PSNR). The analyzed methods
include traditional NLM without adaptive parameters (TNLM)
(Buades et al, 2005), detail warping based SR (DWSR)
(Basavaraja et al., 2010), the proposed algorithm with adaptive de-
caying factor and predefined window (Pp). We set different y ranging
from 1 to the maximum possible local difference in an image, i.e., the
global difference. Note that an allowance y below 1 is nonsense because
in this case most of the pixels are calculated by interpolation instead of
SR method, which deteriorates the performance. The super-resolved
image can be calculated in advance. After that, we fuse the super-re-
solved image and interpolated image according to (23). Thus, the
analysis is entirely a post-processing and can be implemented effi-
ciently. Fig. 8 shows the PSNR results of images fused by their inter-
polated and super-resolved versions for Frame 10 of Foreman sequence.
When v increases from 1, the PSNR curve of the fused image increases
gradually, reaches its maxima at y = 11, 24, 36 for TNLM, Pp, DWSR
resp., and decays to a value where fusion is not used, i.e., the whole
image recovered by SR. The optimal PSNR gain of fused images over
completely super-resolved images are 0.2399 dB, 0.0801 dB, and
0.0405 dB for TNLM, DWST, and Pp respectively (Fig. 8). The PSNR
gain of fused image is especially small for Pp, making us doubt the
actual effect of the fusion operation. Thus, another example is given in
Table 2 for Pp where Frame 30 of Ballroom sequence is recovered using
different periods T of HR frames. Frame 30 is in the center of two HR

Period T 2 6 10 14 18 22 30
TNLM PSNR 39.0717 34.8038 31.7836 29.3905 27.9885 28.0915 28.6042
SSIM 0.9650 0.9409 0.9093 0.8639 0.8322 0.8305 0.8399
DWSR PSNR 39.7055 35.4031 32.5575 30.1974 28.7774 28.9742 29.5381
SSIM 0.9687 0.9489 0.9259 0.8917 0.8679 0.8684 0.8756
Pp PSNR 39.9956 37.1453 35.0733 34.293 33.6475 33.5894 33.4994
SSIM 0.9707 0.9589 0.9473 0.9357 0.931 0.9276 0.9284
Pe PSNR 40.0139 37.0155 34.8804 34.1517 33.7646 33.633 33.36
SSIM 0.9711 0.9571 0.9437 0.9303 0.9272 0.9246 0.9244
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Table 11
PSNR (dB) and SSIM of News for different periods T.

Computer Vision and Image Understanding 168 (2018) 64-78

Period T 2 6 10 14 18 22 30
TNLM PSNR 39.0975 37.2185 35.8448 34.7526 34.7526 34.1917 34.4666
SSIM 0.9824 0.9783 0.974 0.9697 0.9696 0.9667 0.9665
DWSR PSNR 39.7928 38.0858 36.6127 35.5383 35.3617 34.8917 35.1739
SSIM 0.9852 0.9821 0.9785 0.975 0.9745 0.9724 0.9719
Pp PSNR 41.1628 39.7089 38.8282 37.9538 37.9198 37.4634 37.3906
SSIM 0.9905 0.9881 0.9863 0.9843 0.9842 0.9833 0.9825
Pe PSNR 41.1774 39.6843 38.7906 37.918 37.8954 37.4019 37.3096
SSIM 0.9906 0.9881 0.9862 0.9842 0.9842 0.9831 0.9823
Table 12 very small for all of the five consecutive LR frames, which indicates that
able . . .
PSNR (dB) and SSIM of Flower for magnification factors. the sequence uTldergoes very slow motion. In thl.S scenario, the al.low—
ance of local difference is no longer necessary since the global differ-
Magnification Factor 2 4 8 16 32 ence is so small. Thirdly, the global difference using predefined
searching window is not smaller than that using exhaustive searching
TNLM PSNR 37.2438  31.6217 25519  23.7388  21.8957 window
SSIM 0.9782  0.9418  0.8752  0.8176  0.7504 :
DWSR PSNR 38.0658 31.5028  25.4682 23.7309  21.8866
SSIM 0.9818  0.9407  0.8744 08173  0.75 R . 1 1
Pp PSNR 39.829  33.1009 26.9612 23.8568  21.0897 5. Experimental results
SSIM 0.988 0.9567  0.8963  0.8413  0.7583
Pe PSNR 39.8145 33.1084 27.1596  24.5027  22.4404 In this section, we show the experimental results of the proposed
SSIM 0.988 0.9569  0.9011  0.8614  0.8041 and compared methods. All of these methods have been tested on 13
video sequences with different characteristics including Ballroom,
Foreman, Mobile, News, Hall, Flower, Container, Waterfall, Coastguard,
Table 13 Mother-Daughter, Crowd, Exit, and Vassar. The compared methods in-
PSNR (dB) and SSIM of Container for magnification factors. clude bilinear interpolation (BI), TNLM (Buades et al., 2005), DWSR
. (Basavaraja et al., 2010), DWSR with adaptive decaying factor (FHL),
Magnification Factor 2 4 8 16 32 : . . A .
DWSR with predefined searching window (WHLp), DWSR with ex-
TNLM PSNR 23.1746  18.3968 157006  15.5546  15.5616 haustive searching window (WHLe), TNLM with adaptive decaying
SSIM 0.8862  0.6831  0.4975  0.4885  0.4883 factor and predefined searching window (FWp), TNLM with adaptive
DWSR PSNR 23.4484 183915 15.6566  15.4949 15504 decaying factor and exhaustive searching window (FWe), the proposed
SSIM 0.8931  0.6827  0.4958  0.4876  0.4873 hod with adaptive d ine f d defined hi
Pp PSNR 27.0359  20.3046 17.2625 1664  16.262 method with adaptive decaying factor and predefined searching
SSIM 0.9384 07157 05234  0.496 0.4909 window (Pp), the proposed method with adaptive decaying factor and
Pe PSNR 26.9398  20.2553  17.2408  16.6063  16.2245 exhaustive searching window (Pe). Bilinear interpolation acts as the
SSIM 0.9362  0.7106  0.5203  0.4972  0.4891

guide frames. In Table 2, the PSNR gain increases and the advantage of
fusion operation stands out with the increase of T. This is because in-
accurate matches are more likely to appear for a larger T. As said, the
aim of the fusion operation is using interpolated pixels to alleviate the
drawback of SR methods where it is inaccurate to refine foreground
dancers. Since Ballroom sequence has a stable background that accounts
for most of the regions of the image, the 0.233 dB PSNR gain for period
T is quite reasonable. Thus, we conclude that the fusion operation has a
profound impact only in the case where SR condition deteriorates (e.g.
a large 7).

4.3. Sequence-level analysis

The sequence-level analysis focuses on the global difference defined
by (12) which reveals some important features (e.g. motion feature) of
a video. Analyzing the global difference is helpful for the implementing
of the algorithm. Table 3 shows the global difference of five consecutive
frames for 13 different video sequences using the predefined searching
window. Table 4 shows the corresponding data for exhaustive searching
window. There are three noticeable features of the global difference.
First of all, the frames in the middle (Frame 9, Frame 10, Frame 11)
usually have the largest global difference. The pattern is in consistence
with the results in Table 8 for Ballroom sequence where Frame 10 has
the worst results. This is because the interval between the HR guide
frames and the middle LR frames are larger compared with other
frames. Secondly, the global difference diverges for different sequences.
For example, the global differences of Mother-Daughter sequence are
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baseline for comparison. The parameter setup is listed in Table 5. Using
(21) and the parameters K, L, the thresholds n/s in (20) are
0, 10, 20, ...,100, respectively. The corresponding window sizes s;’s of
each level are 5, 9, 13, ...,45 and they are chosen empirically. Usually,
the window size should not be smaller than the patch size S (5 in this
paper). Thus, the minimum possible window size is set to 5. On the
other hand, as in Fig. 7, the marginal benefit of increasing window size
reduces. The average local difference tends to approach a constant
when the window size is around 45. Thus, we empirically set the
maximum possible window size to 45. Since 10 levels are used in (20),
the step of window size is 4.

Since there was no available hybrid videos, we simulated hybrid
videos from the original full-resolution video sequence as follows. The
LR frames were acquired from the original full resolution frames after
blurring and down-sampling. Lanczos filter acted as a point spread
function (PSF) to simulate the blurring operation B during image ac-
quisition process (Duchon, 1979). The down-sampling/magnification
factor was 2. The full resolution frames corresponding to the HR frames
remained unchanged. PSNR and Structural SIMilarity (SSIM)
(Wang et al.,, 2004) were used to compare and evaluate different
methods.

We implemented different experiments to test the proposed algo-
rithm. In the first experiment, the period T of the HR guide frames was
6. That is, Frame 1, 7, 13, - were HR frames while the others were LR
frames. The PSNR and SSIM results of Frame 10 for all of the 13 se-
quences are shown in Tables 6 and 7, respectively. By comparing the
results of FHL, WHLp, WHLe with those of DWSR, one can find that
each of the proposed adaptive parameters can improve the performance
of DWSR. The separation of HF and LF components is essential for
improving the performance of TNLM. But by only combining the
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Fig. 14. (a) Rate-distortion comparison between different method for Foreman sequence
(b) and Coastguard sequence.

adaptive decaying factor and searching window with TNLM, the algo-
rithms FWp and FWe outperforms DWSR for Foreman, Mobile, News,
Flower, Container, Waterfall, Coastguard, Crowd, and Exit even without
the separation of HF and LF components. The proposed algorithms Pp
and Pe achieves the best results among all of the method. It is inter-
esting that the algorithm with predefined searching window (FWp v.s.
FWe, WHLp, v.s. WHLe, Pp v.s. Pe) works out better than that with
exhaustive searching window for most of the sequences while ex-
haustive searching window stands out only for Mobile, Container, and
Crowd. The reason is that, in order to reach the termination standard ®,
the exhaustive searching continues unless the maximal window size
gets hit. Thus, compared with predefined searching window, exhaustive
searching window tends to be larger, causing the involvement of more
pixels in the averaging process of NLM. These excessive pixels of ex-
haustive searching are unnecessary and sometimes undesired because
the over-averaging or over-smoothing may cause the loss of HF details
to a certain degree. Note that for Mother-Daughter, the algorithm
without adaptive searching window, namely FHL outperforms all of the
other algorithms. Because, from the sequence-level analysis, Mother-
Daughter has the smallest global difference and the motion of the se-
quence is slow. The refined images by different methods are shown in
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Figs. 9-12.

In the second experiment, we tested the algorithm for the whole
sequence. Tables 8 and 9 show the results for 5 consecutive frames of
Ballroom and Waterfall. For both of the sequences, Frame 10 is with the
lowest objective quality. The PSNR results of Ballroom and Waterfall for
a video segment containing 30 frames is shown in Fig. 13. The PSNR
curve shows periodicity for the video segments as expected.

In the third and fourth experiments, we changed the period T of HR
guide frames and the magnification factor. In the third experiment, the
SR algorithms recover Frame 30 which is an LR frame centered between
two HR guide frames, with the aid of the two HR frames. The results of
Foreman and News sequences for different periods T are shown
Tables 10 and 11. With the decrease of T, the results of all algorithms
improve steadily. The data size of the hybrid video before encoding
with period T only accounts for (T + 3)/4T of that of the original vi-
deos. Tables 12 and 13 show the SR results of Flower and Container
sequences in the fourth experiment where LR Frame 10 is super-re-
solved with different magnification factors using HF information from
Frame 7 and Frame 13. As expected, the PSNR and SSIM values of SR
algorithms drop with the enlargement of magnification factor but the
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proposed algorithm still achieves the best performance.

In the final experiment, we analyzed the rate-distortion (RD) per-
formance of the proposed algorithm. Since there were two different
resolutions of hybrid video frames, we encoded HR frames and LR
frames separately using H.264 inter coding scheme. There were two
parameters that could be tuned in the encoding process, i.e., the
quantization parameter (QP) of HR frames and the QP of LR frames.
The set of QPs of LR frames was {22, 27, 32, 37}. We first compared the
RD curves of different SR methods. The QP of HR frame was 0. Fig. 14
shows the comparison results for Foreman and Coastguard sequences.
Compared with bilinear interpolation, all of the three SR methods
achieves larger PSNR values for various bit rates, with TNLM and DWSR
comparable with each other and Pp surpassing their performances.
Then the coding schemes of hybrid video and totally LR video were
compared. All of the LR frame of the two coding scheme were still
encoded using H.264 coding with QP set {22, 27, 32, 37}. The QP set of
HR frames of hybrid video is {0, 10, 20, 30}. Fig. 15 shows the results of
Foreman and Mother-Daughter sequences. Since the LR video is low-pass
filtered and compressed, the PSNR result is upper bounded. By con-
figuring the QPs of HR and LR frames of hybrid video, the SR algorithm
trades off between required bit rates and achieved PSNR.

6. Conclusion

The NLM algorithm has a very promising application in SR tasks.
However, the traditional NLM algorithms suffer from two main draw-
backs, i.e., the fixed decaying factor and searching window. The fixed
decaying parameter is unfit for regions with different characteristics. It
tends to blur the relatively flat regions in the image, resulting in per-
ceived loss of detail. On the other hand, the fixed searching window
leads to mismatches between pixels, causing unbearable degradation of
the video. In this paper, we proposed to use adaptive decaying factor,
predefined searching window and exhaustive searching window to
improve the performance of NLM. For most of the tested sequences,
predefined searching window achieved better results. We defined local
difference and global difference based on patch difference and analyzed
their influences on NLM. The influence of allowance vy of local differ-
ence was analyzed for different algorithms. The experimental results
validated the effectiveness and robustness of the proposed algorithm.
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