2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

3D Appearance Super-Resolution with Deep Learning

Yawei Li!, Vagia Tsiminaki?

, Radu Timofte!, Marc Pollefeys??

, and Luc van Gool'

1Computer Vision Lab, ETH Zurich, Switzerland
{yawei.li, radu.timofte, vangool}@vision.ee.ethz.ch
2Computer Vision and Geometry Group, ETH Zurich, Switzerland, *Microsoft, USA

{vagia.tsiminaki, marc.pollefeys}@inf.ethz.ch

Abstract

We tackle the problem of retrieving high-resolution (HR)
texture maps of objects that are captured from multiple
view points. In the multi-view case, model-based super-
resolution (SR) methods have been recently proved to re-
cover high quality texture maps. On the other hand, the
advent of deep learning-based methods has already a sig-
nificant impact on the problem of video and image SR. Yet,
a deep learning-based approach to super-resolve the ap-
pearance of 3D objects is still missing. The main limita-
tion of exploiting the power of deep learning techniques
in the multi-view case is the lack of data. We introduce
a 3D appearance SR (3DASR) dataset based on the exist-
ing ETH3D [42], SyB3R [31], MiddleBury, and our Col-
lection of 3D scenes from TUM [2]], Fountain [5]] and
Relief [53]. We provide the high- and low-resolution tex-
ture maps, the 3D geometric model, images and projection
matrices. We exploit the power of 2D learning-based SR
methods and design networks suitable for the 3D multi-view
case. We incorporate the geometric information by intro-
ducing normal maps and further improve the learning pro-
cess. Experimental results demonstrate that our proposed
networks successfully incorporate the 3D geometric infor-
mation and super-resolve the texture maps.

1. Introduction

Retrieving efficiently the appearance information of ob-
jects through multi-camera observations is of a great impor-
tance for the final goal of creating realistic 3D content. To
increase the realism of the reconstructed 3D object a de-
tailed appearance needs to be added on top of geometry.
This high quality 3D content is used in applications such as
movie production, video games and digital culture heritage
preservation. Yet, even with highly accurate 3D geomet-
ric reconstruction, simply re-projecting the images onto the
geometry does not guarantee detailed appearance coverage.

To regain details from the low-resolution (LR) images,

LR Images

Super-Resolved Texture Map

» Neur: 11 \lu\\ ork

LR Texture Mz 1p-

S A
LR Normal Map '{

Figure 1: We introduce the 3DASR, a 3D appearance SR
dataset and a deep learning-based approach to super-resolve
the appearance of 3D objects.

model-based super-resolution (SR) techniques have been
introduced in the multi-view case [22, 21, 45]. These meth-
ods introduce a single coherent texture space to define a
common texture map and they model the captured image
as a downgraded version of this high-resolution (HR) tex-
ture map. Through image formation model they exploit the
visual redundancy of the overlapping views [22, 21] and of
video frames [45]. Although these model-based SR tech-
niques recover successfully high quality texture maps, they
are computationally demanding.

On the other hand, 2D example-based SR methods have
be shown to outperform the model-based methods. The ba-
sic assumption of example-based SR is the recurrence of
similar patches in different parts of an image or in different
images [18]. In particular, recent deep learning-based tech-
niques have been proposed to learn the mapping between
the LR and HR images. Different networks are trained on
large image datasets that contain pairs of HR and LR im-
ages. Super-resolving LR images is then realized with a
feed forward step. Yet, a deep learning-based approach to
super-resolve the appearance of 3D objects is still missing.

In this paper, our goal is to introduce deep learning tech-
niques into the problem of appearance SR in the multi-view
case. To exploit the capacity of 2D deep learning tech-
niques, we first provide a 3D appearance dataset. Similar to

978-1-7281-3293-8/19/$31.00 ©2019 IEEE 9663

DOI 10.1109/CVPR.2019.00990

com uter
psoaety

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 14,2024 at 16:11:02 UTC from IEEE Xplore. Restrictions apply.

the model-based SR methods, we introduce a common tex-
ture space and define a single coherent texture map. This
texture map is first mapped onto the geometry. Then the
textured surface is projected into the image space. We ex-
press the concatenation of these two mappings through the
image formation model (Fig. 2). Through this image gener-
ation process and using captured images of multiple scaling
factors we can then recover the corresponding texture maps.
We provide a dataset that contains ground truth HR texture
maps together with LR texture maps of down-scaling factor
x2, x3, and x4. The dataset covers both synthetic scenes
SyB3R [31] and real scenes ETH3D [42], MiddleBury, and
our Collection of 3D scenes from TUM [21], Fountain [51]
and Relief [53]. We then leverage the capacity of 2D
learning-based methods [36] and design two architectures
suitable for the 3D multi-view case. Similar to [27] we in-
troduce normal maps to capture the local structure of the 3D
model and incorporate the 3D geometric information into
the 2D SR network. To our knowledge, our work is the first
that introduces deep learning approaches for the appearance
SR in the multi-view case. Using our provided dataset,
we evaluate different texture map SR methods including
interpolation-based, model-based, and learning-based. In
summary, the contributions of our paper are:

1. a 3D texture dataset that contains pairs of HR and LR
textures of 3D objects. With this dataset we facili-
tate the integration of deep learning techniques into the
problem of appearance SR in the multi-view case and
we open up a promising novel research direction. We
refer to the dataset as 3DASR.

2. the first appearance SR framework that elegantly com-
bines the power of 2D deep learning-based techniques
with the 3D geometric information in the multi-view
setting.

The rest of the paper is organized as follows. Sec. 2 intro-
duces related works of this paper. Sec. 3 describes how the
texture maps are retrieved. Sec. 4 explains the generation
process of the dataset. Sec. 5 explores the introduction of
normal information into neural networks to super-resolve
LR texture maps. Sec. 6 shows the evaluation results of dif-
ferent methods. Sec. 7 concludes the paper.

2. Related Works
2.1. 2D image super-resolution

2D image SR has been extensively studied and it can
be classified into three categories, i.e. interpolation-based,
model-based, and example-based [40, 17,48, 18]. Although
a comprehensive review of these methods is beyond the
scope of this paper, we present the underlying concepts of
each of them. Interpolation-based methods [2, 3] increase

the resolution by computing pixel values using the neigh-
bouring information. But leveraging only the local informa-
tion within the image cannot guarantee the recovery of high-
frequency details. Model-based approaches describe the LR
image as downgraded version of the HR image and express
analytically the forward degradation system. Solving for
the inverse problem prior knowledge over the unknown HR
image such as smoothness and non-local similarity [8, 34]
is imposed. Treating the problem as a stochastic process,
maximum likelihood [17] or maximum a posterior [19] ap-
proach is followed. Although these methods successfully
recover high-frequency details, they require elegant opti-
mization techniques. Most of the times they correspond
to iterative approaches that are computationally heavy and
time-consuming. Learning-based methods shift this compu-
tational burden to the learning phase and using the trained
network they super-resolve the image through a feed for-
ward step. Due to the availability of large datasets, care-
fully designed network architectures can learn the mapping
from LR to HR image and achieve state-of-the-art perfor-
mance [14, 44, 28, 36, 33, 50]. Our work, introduces deep
learning-based approach in the multi-view case to retrieve
the fine texture of 3D objects.

2.2. Texture retrieval

Adding a high quality texture layer onto the 3D geome-
try plays an essential role in the final realism. This is a chal-
lenging step since in the multi-view case there are additional
sources of variation that we need to account for, namely oc-
clusions, calibration and reconstruction inaccuracies. Sev-
eral methods have been proposed in the literature [23] to
efficiently exploit all the available color information and to
address the aforementioned challenges.

Single view selection. To cope with different geomet-
ric inaccuracies, several methods use only one view to as-
sign texture to each face. Lempitsky and Ivanon [29] com-
pensate for seams between the boundaries of each face by
solving a discrete labeling problem. Gal et al. [20] incorpo-
rate in their optimization the effect of foreshortening, image
resolution, and blur by modifying the weighting function.
Waechter et al. [46] add an additional smoothness term to
penalize inconsistencies between adjacent faces. By choos-
ing a single view, these methods disregard the multiple color
information that exists in the multi-view setting.

Multi-view selection. To leverage the multiple color in-
formation over views, several methods blend the images for
each face. Debevec et al. [12] reproject and blend view con-
tributions according to visibility and viewpoint-to-surface
angle. To capture view dependent shading effects Buehler et
al. [9] model and approximate the plenoptic function for
the scene object. Some hybrid approaches [3, 10] select a
single view per face and blend in frequency space views
close to texture patch borders. To correct geometric inaccu-

9664

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 14,2024 at 16:11:02 UTC from IEEE Xplore. Restrictions apply.

racies, in [52] camera poses are jointly optimized with the
photometric consistency. Following the success of patch-
based synthesis methods, Bi et al. propose a single view-
independent texture mapping method that account for geo-
metric misalignment [7]. Generally these methods do not
exploit efficiently viewpoint visual redundancy.

Multi-view texture SR methods. To retrieve fine ap-
pearance details, a handful of texture SR methods have
leveraged the SR principle in the multi-view case and com-
pute texture maps with a resolution higher than the input
images [25, 39]. Goldliicke et al. introduce an image forma-
tion model to super-resolve texture maps [22] and to refine
the geometry and camera calibration [21]. Tsiminaki et al.
[45] further improve SR texture quality by exploiting ad-
ditional temporal redundancy and by uniformly correcting
calibration and geometry errors with optical flow. These
methods are however computationally expensive.

We alleviate the limitations of these model-based SR by
introducing the deep learning-based approaches that have
been proven to outperform in the 2D case.

2.3. Super-resolution benchmark

In order to be able to use deep learning-based techniques
for super-resolving the texture of 3D objects, datasets need
to be available. For 2D image SR there are several bench-
marking datasets Set5 [6], Setl4 [49], Urbanl00 [24],
BSD100 [38] and works [47, 26]. ImageNet [13] has been
also used as training dataset in several example based ap-
proaches [14, 15]. More recently, DIV2K dataset was intro-
duced to provide higher quality images [1].

Such data are however not available in the multi-view
case. We propose in this work a methodology to compute
textures of several resolution and we provide a 3D texture
dataset, 3DASR, that contains pairs of HR and LR textures
of 3D objects.

3. Texture Retrieval
3.1. Image formation model

The image formation model simulates the generation of
the image from the unknown texture map. In Fig. 2, we can
distinguish two steps i.e., texture mapping and projection to
image space.

Texture mapping The texture mapping function p as-
signs each entity of the texture map (texel) to a 3D point
of the geometry. In order to be able to define the texture
map and the mapping, we first need to parameterize the ge-
ometry in a common space. We assume that the 3D model
M 1is a known triangulated mesh and thus we can define
any UV parameterization. In [4] advanced algorithms that
result in space-optimized texture maps are discussed. In
this work we use a fixed UV parameterization, described in

Appearance map 7' Projected image H;

3D geometry model M

Projection P;

Figure 2: Image formation model.

Subsec. 4.1. Through this mapping function p, a texel x is
mapped to a point p(x) of the 3D mesh model M.

Projection to image space We assume that we know the
camera poses and the intrinsic camera parameters. The tex-
tured 3D object is then projected into the image space given
the known projection matrices. Let m; be the camera pro-
jection matrix at the view point ¢ and H; the corresponding
image of resolution h x w. The geometric point p(z) is pro-
jected to the pixel location (7; o u1)(x) in the image plane.
Let 7" and H" be the vectorized version of the texture
map and the projected image. The image is then expressed
as a linear combination of the texture map H"* = P,Th®
where P is a matrix of dimension h - w X h - w. To estimate
this projection operator several issues need to be addressed.
First, two geometric points of the surface might be projected
into the same location due the convexity of the geometry
and then only the visible color value needs to be selected.
Second, this projection step can lead to non-integer loca-
tions [35]. Third, the distribution of the projected points
in the image space is non-uniform, which means that the
points may be sparse for some areas. To combine the con-
tributions of all the projected the projected points falling
into the neighborhood of a pixel ¢ we introduce the Gaus-
sian function as the weighting function. This function takes
the location proximity into account, encouraging pixels near
the center of ¢ while penalizing those far way from ¢. By
combining the contributions of of all projected points falling
into the neighborhood of a pixel with this Gaussian function
we solve for the sparse areas in the image space that can
originate due to high curvature regions of the surface.

3.2. Texture retrieval: the inverse process

We retrieve the texture maps by inverting the image for-
mation model. We examine several scaling factors includ-
ing the ground truth high resolution and down-scaling factor
x2, x3, x4. Given the projection matrices with the multi-
view images we compute the corresponding texture maps.

4. The Dataset: 3DASR

The 3DASR dataset we provide is based on four existing
subsets; one synthetic subset SyB3R [31] and three real sub-
sets EHT3D [42], MiddleBury [43], and Collection of Bird,
Beethoven and Bunny from the multi-view dataset of TUM
[21], Fountain [51] and Relief [53]. We follow a generic

9665

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 14,2024 at 16:11:02 UTC from IEEE Xplore. Restrictions apply.

Fu.se Compute Slm.pllfy Surface
Point N I Point " ce
Cloud ormals Cloud econstruction

Triangulation in MeshLab

Export to '

. Export to
PLY : Iglpm('lt in v uv . OBJ
File . ender nwrapping File

Parameterization in Blender

Figure 3: Conversion from point clouds to mesh models and unified parameterization.

pipeline to preprocess all subsets. We compute the trian-
gulated 3D mesh with texture coordinates and vertex nor-
mals. We use the images provided by the original dataset as
the HR images and we downscale them using scale factors
X2, x3, x4 to compute the corresponding LR images. The
projection matrices for the corresponding LR images are de-
rived by RQ matrix decomposition of the original projection
matrix and then scaling down the intrinsic parameters.

4.1. The real subsets

ETH3D, Collection, and MiddleBury correspond to real
scenes. Regarding ETH3D, we use the training set of the
HR multi-view subset that contains 13 scenes. Every scene
is provided with multi-view images captured by DSLR cam-
eras, the camera intrinsic and extrinsic parameters, and the
ground truth point clouds captured by laser scanners. Col-
lection is a collection of 6 3D scenes. We use the TempleR-
ing and DinoRing of MiddleBury.

Mesh: triangulation and UV mapping. We first com-
pute the triangulated mesh and then unwrap it to define the
texture map. Through the UV unwrapping we assign to each
vertex a UV coordinate.

For MiddleBury, we use the Multi-View Stereo (MVS)
pipeline [4 1] to reconstruct the meshes. For Bird, Beethoven
and Bunny we use the same meshes as in the paper [45] and
for Fountain Relief the meshes are refined in the work of
Maier et al. [37]. To ensure low appearance distortion, we
use conformal parameterization similar to [22, 45]. We
compute a conformal atlas by selecting the algorithm of
LSCM [30] that is implemented in Blender.

For ETH3D subset, the provided 3D model is just a point
cloud. Therefore, both of the processing steps are needed.
Fig. 3 shows the workflow. Note that triangulation is im-
plemented in MeshLab while parameterization is done in
Blender. First of all, for most of the scenes, there are multi-
ple point clouds and each of them captures the scene geom-
etry from different viewpoints. Thus, these point clouds are
fused to create a fully-fledged scene geometry followed by
the computation of normals. The merged point cloud con-
tains tens of millions of points which may become a com-
putation bottleneck for the post-processing. Thus, the point
cloud is simplified using Poisson disk sampling [1] which
reduces the number of points while maintains the geometric
details of the scene. Then the mesh is reconstructed us-
ing ball pivoting algorithm [5]. The reconstruction result
is exported to a PLY file which is imported into Blender.

i -
i Process I o G
: unit - | |Python SC.I‘lpt o Script
| I'| | GPU Option | |“ || Generator
i [l:[’ Script |
: :]
0 -
i Scene | =
' &= kdition : Blender || Cycles
| ; N Flow
’ Direction/' — =
— e e 5
Del Small Obj
Blender | (Set Scene Resolution Rendered
Scene [| Add Tight Images

Figure 4: SyB3R image rendering pipeline.

Blender’s UV unwrapping procedure is used for UV param-
eterization. At last, the triangulated mesh with UV texture
coordinates is exported to an OBJ file.

Images and projection matrices. We consider the pro-
vided images by the original dataset as the HR images and
we derive the LR images by down-sampling the HR. The
intrinsic and extrinsic parameters are given for ETH3D and
MiddleBury. Thus computing the projection matrices is
straightforward. For the Collection subset, we use RQ de-
composition to compute intrinsic and extrinsic parameters.
For all of the three subsets, the projection matrices corre-
sponding to the LR images are derived by down-scaling the
intrinsic parameters with x2, x3, and x4 scaling factors.

4.2. The synthetic subset: SyB3R

SyB3R is a synthetic dataset containing four scenes.
Each scene contains an accurate geometry mesh model
with optimal UV parameterization. The image rendering
pipeline is shown in Fig. 4. To speed up the rendering, we
add GPU option to the Python script. We edit the synthetic
scene by keeping the major object, setting image resolu-
tions, adding lights and cameras. The generated script and
altered scene are passed to Blender and Cycles, resulting in
the rendered images. The original mesh model of SyB3R
contains several separated objects whose texture maps may
overlap with each other in the texture space. To address this
problem, we only keep the major part of the scene, i.e., the
body of Toad, the skull of Skull, and the single rock of Ge-
ological Sample. We do not use Lego Bulldozer because it
consists of many small pieces without meaningful texture.

9666

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 14,2024 at 16:11:02 UTC from IEEE Xplore. Restrictions apply.

Figure 5: Rendered images of SyB3R.

Camera and light. To capture every surface of the object,
14 cameras are uniformly aligned on the sphere surround-
ing the object. The focal length of the cameras is 25 mm.
The size of the sensor is 32 x 18 mm. To ensure uniform
background across the rendered images, 6 lights are added
in the scene lighting from the 6 directions of the object.

Rendering images The resolution of HR images is
3888 x 2592 while the resolution of the LR images is calcu-
lated by dividing the HR width and height with respective
scaling factors. Knowing the focal length, image resolution,
principal point, rotation matrix and translation vector, the
3 X 4 camera projection matrix is computed. As stated by
the authors [31], the rendering time can be multiple hours
per image due to the high computational load of the image
synthesis process. Thus, we use GPU to render the images.
Examples of rendered images are shown in Fig. 5.

4.3. Texture maps

After generating these data, we can now use the texture
retrieval algorithm and compute the texture maps of 4 dif-
ferent resolutions. Fig. 6 shows the texture maps of the 24
different scenes.

5. Learning-Based Methods

Our 3DASR dataset contains pairs of HR and LR texture
maps which resemble two dimensional images. This allows
us to make use of state-of-the-art 2D deep learning-based
image SR methods. Such an integration is however not
without its own source of difficulties. Being in the multi-
view setting, the geometric information needs also to be
encoded. The texture domain has its own characteristics
compare to natural images. It is thus important to adapt the
2D SR deep learning-based method to this new domain. We
incorporate the 3D geometric information through the nor-
mals and we show how to guide the learning process.

5.1. Normal information

Normal coordinates can be normalized and stored as
pixel colors in normal maps (Fig. 8) which have the same
support as the texture maps. These normal maps capture the
local structure of the surface. We thus use them into the net-
work to introduce the 3D geometric information. We store
them as PNG images with 4 channels. The first 3 channels
store the normalized normal coordinates and the fourth al-
pha channel is a mask that shows the support of the texture
map, namely, where texel information is available.

5.2. Network architecture

The next essential step is to incorporate the normal maps
and adjust the neural network to the multi-view setting.
There are two main approaches. The first is to use them di-
rectly as input information by concatenating them with the
texture maps. The second approach is to interpret them as
high-level features and concatenate them with feature maps
computed at specific layers of the network. We follow the
second approach due to the following two considerations.
First, the normal maps encode 3D geometric information
and can indeed be seen as high-level feature maps. Second,
in the case where the normal maps were used as input, the
whole network should be trained from scratch. Given the
small size of our 3DASR dataset this would lead to over-
fitting. Thus, by introducing them at higher layers we train
only the few last layers of the network, fine-tune the lower
ones and avoid this way over-fitting.

In order to examine the importance of the geometric in-
formation in the performance of the training, we compute
the normals in both spaces of the low and high resolution
texture maps. We call them LR and HR normal maps ac-
cordingly. We use EDSR [36] as a case study network to
show the adaption of the network. We thus provide two dif-
ference versions, one where the LR normal maps are added
before the upsampling layer and a second where the HR
normal maps are added after the upsampling layer.

5.3. Implementation details

The architecture of the two adapted networks is shown in
Fig. 7a and Fig. 7b, which we name as NLR and NHR, rep-
resenting the utilization of LR and HR normal maps. In
Fig. 7a, LR normal maps are concatenated with the fea-
ture maps after the 30th ResBlock. The following two Res-
Blocks and the upsampling layer learn representation from
the combined feature map. In Fig. 7b, upsampling layer is
moved before the two fine-tuning ResBlocks and the HR
normal maps are added directly after the upsampling layer.
Four additional convolutional layers follow the two Res-
Blocks. The number of feature maps after the concatenation
becomes 260 which is the sum of the original 256 channels
and the additional 4 channels of the normal map.

We name the layers from the starting convolutional layer
to the 30th ResBlock as the body part of the network. The
remaining layers are referred to as the tail part. The pa-
rameters of the body part are loaded from pretrained EDSR
model and fine-tuned to adapt to the texture domain while
those of the tail part are randomly initialized and trained
from scratch. Thus, a larger learning rate 10~ is used to
train the tail parameters while a smaller one 10~° is used
to fine-tune the body parameters. We also directly fine-tune
the EDSR model without any architecture modification. An
in-between learning rate 2.5 x 107> is used. To train the
CNN, the mask is used to identify the active areas of the

9667

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 14,2024 at 16:11:02 UTC from IEEE Xplore. Restrictions apply.

Figure 6: The 24 texture maps fro
from Collection, 3 from SyB3R, and 2 from MiddleBury.

idd0 -

Conv ResBlock Concat Upsample Data Flow — —

; d A |
= I8 T
!H/—/: t ‘ SR texture
30 ResBlocks
(a) NLR

Figure 7: Network structure of (a) NLR and (b) NHR based on the the EDSR [

m our dataset. From left to right row-wise there are 13 textures

&
'\/ 4
1r
30 ResBlocks | L‘ L
(b) NHR

]. The change in the dimension of the blocks

indicates the resolution change of the feature maps. In (a) normal maps are computed in the input low resolution space and
are concatenated with the feature map before the upscaling layer. In (b) normal maps are computed in the high resolution

space and concatenated after the upscaling layer.

L"_‘J

(a) Relief

(b) courtyard

Figure 8: Normal maps capture the local structure of the
surface.

texture maps. We crop the texture maps into patches of size
48 x 48 and feed them into the network for training by ex-
cluding these ones that have black areas larger than a pre-
defined threshold 50. During inference the CNN is applied
on the whole LR texture map.

The provided dataset contains 4 subsets and 24 texture
maps in total. Cross-validation is used to get the evaluation
result on the whole dataset. That is, we divide the 24 tex-
ture map into 2 splits, one for training and one for testing.
The texture maps of the 4 subsets are equally distributed to
the two splits, thus each with 12 texture maps. In addition,

we also try cross-validation within the subset. That is, the
training and testing texture maps are from the same subset.
The 4 subsets are captured under different conditions and
they may have different characteristics. In the case of cross
validation within the subset, the training and testing data
are from the same subset and they have the same character-
istics. In the case of cross-validation on the whole dataset,
there are more training data but with different characteris-
tics. A comparison of these two cases can indicate whether
subset characteristics or large training set is more impor-
tant in our problem setting. The networks are trained for 50
epochs for subset cross-validation and 100 epochs for all of
the other experiments.

6. Results

Using our 3DASR dataset, we compare three main cat-
egories; interpolation-based, model-based and learning-
based methods for super-resolving the appearance of 3D
objects. The interpolation-based methods include nearest,
bilinear, bicubic, and Lanczos [16] interpolation. We use
the method of Tsiminaki et al. [45] as a representative of the
model-based category, denoted as HRST. Using the EDSR

9668

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 14,2024 at 16:11:02 UTC from IEEE Xplore. Restrictions apply.

Table 1: The PSNR results of different methods for scaling factor X2, x3, and x4.

Method ETH3D Collection MiddleBury SyB3R Average
etho X2 X3 x4 X2 X3 x4 X2 X3 x4 X2 x3 x4 X2 X3 x4
Nearest 19.06 | 16.71 | 14.68 24.22 19.7 16.92 10.08 7.93 7.08 30.84 | 27.88 | 25.82 || 21.07 | 18.12 16.0

Bilinear 20.61 | 18.24 | 16.32 262 | 2148 | 18.84 11.87 | 8.88 7.77 31.75 | 28.83 | 269 22.67 19.6 17.56
Bicubic 2021 | 17.96 | 1588 || 25.67 | 21.12 | 18.29 11.32 | 8.81 7.73 31.77 | 28.78 | 26.73 || 22.28 | 19.34 | 17.16
Lanczos 20.01 | 17.74 | 15.69 || 25.42 | 20.86 | 18.07 11.14 | 8.81 7.81 31.71 28.7 | 26.63 || 22.09 | 19.15 17.0

HRST 16.18 - 16.12 || 32.29 - 29.63 22.13 - 20.88 279 - 26.34 || 22.17 - 21.17
HRST-CNN — — — 32.24 — 29.9 22.76 = 21.55 = — - - - =
EDSR 16.75 | 14.08 | 12.03 21.77 17.2 14.24 8.49 7.13 6.61 29.31 | 26.18 | 23.81 18.89 | 15.79 | 13.61

EDSR-FT 21.13 | 19.75 | 18.44 || 28.25 | 25.53 | 24.19 12.73 | 11.21 9.9 3278 | 299 | 2831 23.66 | 21.75 | 204
NLR-Sub 21.21 | 20.11 19.2 28.08 | 25.0 | 23.27 14.68 | 12.37 | 11.11 32.18 | 28.84 | 26.64 || 23.75 | 21.78 | 20.47

NLR 2131 | 2027 | 19.18 || 2838 | 25.85 | 24.84 || 13.67 | 12.92 | 12.29 || 32.57 | 29.57 | 27.67 || 23.85 | 22.22 | 21.08
NHR 25.19 | 23.95 | 22.7 || 30.25 | 2841 | 2627 || 17.16 | 17.21 | 15.63 || 30.57 | 27.42 | 24.39 || 26.46 | 24.94 | 2322
Groud Truth Bilinear EDSR-FT

Figure 9: The visual results of pipes, terrace, and Skull for scaling factor x2.

network as a base model, we introduce several modifica-
tions of it. There are in total 6 different cases. EDSR: We
use the pretrained network EDSR and directly test it on our
data. EDSR-FT: We fine-tune the pretrained EDSR on our
3DASR dataset without architecture modification and us-
ing whole set cross-validation. NLR-Sub: We incorporate
LR normal map into EDSR and use subset cross-validation.
NLR: We incorporate LR normal map into EDSR as in
Fig. 7a and use whole set cross-validation. NHR: We in-
corporate HR normal map into EDSR as in Fig. 7b and use
whole set cross-validation. HRST-CNN: We use EDSR as a
post-processing step of the super-resolved texture maps of
HRST. In this scenario, the upsampling layer of EDSR is
replaced with ordinary convolutional layers.

6.1. Objective metrics

We compute PSNR metrics in the active regions of the
texture domains, that is, on the set of texels in the texture
domain that is actually mapped to the 3D model. For the
purpose of benchmarking, these metrics can also be com-
puted in the image domain by reprojecting the texture maps
into the image space. According to the PSNR values of Ta-
ble 1, we can draw the following conlcusions.

Interpolation based methods. Among the interpolation-
based methods, bilinear interpolation achieves better results
than bicubic and Lanczos interpolation, which contradicts
the 2D image interpolation. This can be probably explained
by the fact that the texture and the ordinary image domains
have different characteristics. In the 2D image SR, LR im-
age is modeled as bicubic down-sampled verison of the HR
image, which favors advanced interpoaltion methods. In the
multi-view setting, due to the several sources of variability,
the LR and HR texture maps might be not strictly aligned.

Fine-tuning learning-based methods. The texture do-
main knowledge is different than the image domain. The
fine-tuning of EDSR-FT incorporates the characteristics of
the texture compare to the pretrained EDSR model. Thus,
algorithms need to be adpated to the spesific domain.

LR vs. HR normal maps. We incorporate the 3D ge-
ometric information of the multi-view setting through the
normal maps and we compare to the simple case of fine-
tuned EDSR-FT. According to the PSNR values, the ge-
ometric information imrpoves the quality of the recon-
structed texture maps. We then validate its importance by
comparing the two cases of NLR and NHR. The PSNR val-
ues increase even more when we express this geometric
information with higher precision. NHR case, where HR

9669

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 14,2024 at 16:11:02 UTC from IEEE Xplore. Restrictions apply.

EDSR 21.77dB EDSR-FT 28.25dB NLR 28.38 dB NHR 30.25dB HRST 32.29dB

Figure 10: PSNR (dB) and close-ups of the super-resolved texture map of Bunny for scaling factor x2. While adding
gradually the characteristics of the domain more details are recovered. The NHR achieves the highest PSNR value among
the deep learning-based approaches while it stays still below the model-based HRST. Note that with NHR, texture SR is a

feed forward step, while with HRST is an iterative approach.

normal maps are used outperforms NLR. Thus, HR normal
maps capture more geometric details and improve the per-
formance.

Subset characteristics vs. training data size. NLR-Sub
uses cross-validation on the subset while NLR on the whole
set. In the case of NLR-Sub, the subset characteristics are
respected while in the case of NLR not. The main advan-
tage of NLR is that more data are used for training (12 HR
texture maps). The high PSNR values of the NLR com-
pared to NLR-Sub indicates that the training data size is
more important than subset characteristics to this task. Fur-
thermore, the PSNR gap between NLR and NLR-Sub on
ETH3D is larger than that on MiddleBury and Collection.
This is because ETH3D is a relatively larger dataset than
MiddleBury and Collection. Thus, even if subset cross-
validation is used, NLR-Sub does not diverge a lot from
NLR on ETH3D dataset. Therefore, we conclude that al-
though each subset may have its own characteristics, train-
ing data size stands out as a major factor.

Model based vs. learning based methods. The model-
based method HRST formulates the texture retrieval prob-
lem as an optimization problem. It is a two-stage itera-
tive algorithm and its computational cost increases even
more with an increase of geometric complexity. This ex-
plains the unstable behaviour of HRST method across the
datasets. HRST outperforms NHR on MiddleBury and Col-
lection whereas on ETH3D and SyB3R not. In most of
the cases, HRST-CNN enhances the super-resolved texture
maps. It is important to note that even in the cases where
the model-based method outperforms the deep learning-
based approach, the PSNR values are relatively close. More
importantly, the deep learning-based approach is a feed-
forward step that can be executed in seconds while the
model-based is a heavy iterative process.

6.2. Visual results

The visual results are shown in Fig. 9 and Fig. 10. Di-
rectly upsampling the LR texture maps creates blurring im-
ages. EDSR leads to some white texels along the bound-
aries between the black region and the texture region. While
we introduce gradually the characteristics of the domain
through the EDSR-FT, NLR, and NHR methods, we suc-
cessfully recover more visual details.

7. Conclusion

We provided 3DASR, a 3D appearance SR dataset ' that
captures both synthetic and real scenes with a large vari-
ety of texture characteristics. It is based on four datasets,
ETH3D, Collection, MiddleBury, and SyB3R. The dataset
contains ground truth HR texture maps and LR texture maps
of scaling factors x2, x3, and x4. The 3D mesh, multi-
view images, projection matrices, and normal maps are also
provided. We introduced a deep learning-based SR frame-
work in the multi-view setting. We showed that 2D deep
learning-based SR techniques can successfully be adapted
to the new texture domain by introducing the geometric
information via normal maps and achieve relatively simi-
lar performance to the model-based methods. This work
opens up a novel direction of deep learning-based texture
SR methods for the multi-view setting. A necessary next
step is to enlarge our dataset either through common aug-
mentation techniques or by following our proposed texture
retrieval pipeline to introduce new datasets. The fact that the
performance of our deep learning-based SR framework is in
some cases (MiddleBury and Collection) below the model-
based one indicates that there is still space for more elab-
orate methods that unify the concepts of model-based SR
techniques and the 2D deep learning-based approaches.

IThe dataset, the evaluation codes, and the baseline models is available
athttps://github.com/ofsoundof/3D_Appearance_SR.

9670

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 14,2024 at 16:11:02 UTC from IEEE Xplore. Restrictions apply.

References

(1]

(2]

(3]

(4]

[5

—

[6

—_

(7]

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

E. Agustsson and R. Timofte. NTIRE 2017 challenge on
single image super-resolution: Dataset and study. In Proc.
CVPRW, July 2017. 3

J. Allebach and P. W. Wong. Edge-directed interpolation. In
Proc. ICIP, volume 3, pages 707-710, 1996. 2

C. Allene, J.-P. Pons, and R. Keriven. Seamless image-based

texture atlases using multi-band blending. In Proc. ICPR,
pages 1-4, 2008. 2

L. Balmelli, G. Taubin, and F. Bernardini. Space-optimized
texture maps. In Computer Graphics Forum, volume 21,
pages 411-420, 2002. 3

F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and
G. Taubin. The ball-pivoting algorithm for surface recon-
struction. IEEE TVCG, 5(4):349-359, 1999. 4

M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-
Morel. Low-complexity single-image super-resolution based
on nonnegative neighbor embedding. In Proc. BMVC, 2012.
3

S. Bi, N. K. Kalantari, and R. Ramamoorthi. Patch-based
optimization for image-based texture mapping. ACM Trans.
Graph., 36(4), 2017. 3

A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm
for image denoising. In Proc. CVPR, volume 2, pages 60—65.
IEEE, 2005. 2

C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Co-
hen. Unstructured lumigraph rendering. In Proc. SIG-
GRAPH, pages 425-432,2001. 2

Z.Chen, J. Zhou, Y. Chen, and G. Wang. 3d texture mapping
in multi-view reconstruction. In Proc. ISVC, pages 359-371,
2012. 2

M. Corsini, P. Cignoni, and R. Scopigno. Efficient and flexi-
ble sampling with blue noise properties of triangular meshes.
IEEE TVCG, 18(6):914-924, 2012. 4

P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and ren-
dering architecture from photographs: A hybrid geometry-
and image-based approach. In Proc. SSIGGRAPH, pages 11—
20, 1996. 2

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
Proc. CVPR, pages 248-255, 2009. 3

C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep
convolutional network for image super-resolution. In Proc.
ECCV, pages 184-199, 2014. 2, 3

C. Dong, C. C. Loy, K. He, and X. Tang. Image super-
resolution using deep convolutional networks. I[EEE PAMI,
38(2):295-307, 2016. 3

C. E. Duchon. Lanczos filtering in one and two dimensions.
Journal of Applied Meteorology, 18(8):1016-1022, 1979. 6
S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar. Fast and
robust multiframe super resolution. /EEE TIP, 13(10):1327—
1344, 2004. 2

W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-
based super-resolution. IEEE Computer Graphics and Ap-
plications, 22(2):56-65, 2002. 1, 2

9671

[19]

(20]

[21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

(29]

[30]

(31]

[32]

(33]

(34]

(35]

(36]

[37]

Z.Fu, Y. Li, Y. Li, L. Ding, and K. Long. Frequency domain
based super-resolution method for mixed-resolution multi-
view images. JSEE, 27(6):1303-1314, 2016. 2

R. Gal, Y. Wexler, E. Ofek, H. Hoppe, and D. Cohen-Or.
Seamless montage for texturing models. Computer Graphics
Forum, 29(2):479-486, 2010. 2

B. Goldliicke, M. Aubry, K. Kolev, and D. Cremers. A
super-resolution framework for high-accuracy multiview re-
construction. IJCV, 106(2):172-191, 2014. 1,2, 3

B. Goldliicke and D. Cremers. Superresolution texture maps
for multiview reconstruction. In Proc. ICCV, pages 1677—
1684, 2009. 1, 3, 4

P. S. Heckbert. Survey of texture mapping. I[EEE Computer
Graphics and Applications, 6(11):56-67, 1986. 2

J.-B. Huang, A. Singh, and N. Ahuja. Single image super-
resolution from transformed self-exemplars. In Proc. CVPR,
pages 5197-5206, 2015. 3

R. Koch, M. Pollefeys, and L. Van Gool. Multi viewpoint
stereo from uncalibrated video sequences. In Proc. ECCV,
pages 55-71, 1998. 3

T. Kohler, M. Bitz, F. Naderi, A. Kaup, A. K. Maier, and
C. Riess. Benchmarking super-resolution algorithms on real
data. arXiv preprint arXiv:1709.04881, 2017. 3

Z. Lahner, D. Cremers, and T. Tung. Deepwrinkles: Accu-
rate and realistic clothing modeling. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
667-684, 2018. 2

C. Ledig, L. Theis, F. Huszdr, J. Caballero, A. Cunningham,
A. Acosta, A. P. Aitken, A. Tejani, J. Totz, Z. Wang, et al.
Photo-realistic single image super-resolution using a genera-
tive adversarial network. In Proc. CVPR, volume 2, page 4,
2017. 2

V. Lempitsky and D. Ivanov. Seamless mosaicing of image-
based texture maps. In Proc. CVPR, pages 1-6, 2007. 2

B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares
conformal maps for automatic texture atlas generation. ACM
Trans. Graph., 21(3):362-371, 2002. 4

A. Ley, R. Hénsch, and O. Hellwich. Syb3r: A realistic syn-
thetic benchmark for 3d reconstruction from images. In Proc.
ECCV, pages 236-251, 2016. 1,2, 3,5

X. Li and M. T. Orchard. New edge-directed interpolation.
IEEE TIP, 10(10):1521-1527, 2001. 2

Y. Li, E. Eirikur Agustsson, S. Gu, R. Timofte, and
L. Van Gool. Carn: Convolutional anchored regression net-
work for fast and accurate single image super-resolution. In
Proc. ECCVW, volume 4, 2018. 2

Y. Li, X. Li, and Z. Fu. Modified non-local means for super-
resolution of hybrid videos. CVIU, 168:64-78, 2018. 2

Y. Li, X. Li, Z. Fu, and W. Zhong. Multiview video super-
resolution via information extraction and merging. In Proc.
ACM MM, pages 446450, 2016. 3

B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. Enhanced
deep residual networks for single image super-resolution. In
Proc. CVPRW, volume 1, page 4, 2017. 2,5, 6

R. Maier, K. Kim, D. Cremers, J. Kautz, and M. Niefner.
Intrinsic3D: High-quality 3D reconstruction by joint appear-
ance and geometry optimization with spatially-varying light-
ing. In Proc. ICCV, volume 4, 2017. 4

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 14,2024 at 16:11:02 UTC from IEEE Xplore. Restrictions apply.

[38] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In Proc. ICCV, volume 2, pages 416—423, July
2001. 3

[39] K. Nakamura, H. Saito, and S. Ozawa. Generation of 3d
model with super resolved texture from image sequence. In
Proc. IEEE SMC, volume 2, pages 1406-1411, 2000. 3

[40] S. C. Park, M. K. Park, and M. G. Kang. Super-resolution
image reconstruction: a technical overview. IEEE Signal
Processing Magazine, 20(3):21-36, 2003. 2

[41] J. L. Schonberger, E. Zheng, M. Pollefeys, and J.-M. Frahm.
Pixelwise view selection for unstructured multi-view stereo.
In Proc. ECCV, 2016. 4

[42] T. Schops, J. L. Schonberger, S. Galliani, T. Sattler,
K. Schindler, M. Pollefeys, and A. Geiger. A multi-view
stereo benchmark with high-resolution images and multi-
camera videos. In Proc. CVPR, volume 3, 2017. 1,2, 3

[43] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and
R. Szeliski. A comparison and evaluation of multi-view
stereo reconstruction algorithms. In Proc. CVPR, volume 1,
pages 519-528, 2006. 3

[44] R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted
anchored neighborhood regression for fast super-resolution.
In Proc. ACCV, pages 111-126. Springer, 2014. 2

[45] V. Tsiminaki, J.-S. Franco, and E. Boyer. High resolution 3D
shape texture from multiple videos. In Proc. CVPR, pages
1502-1509, 2014. 1, 3,4, 6

[46] M. Waechter, N. Moehrle, and M. Goesele. Let there be
color! large-scale texturing of 3d reconstructions. In Proc.
ECCV, pages 836-850, 2014. 2

[47] C.-Y. Yang, C. Ma, and M.-H. Yang. Single-image super-
resolution: A benchmark. In Proc. ECCV, pages 372-386,
2014. 3

[48] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Im-
age super-resolution via sparse representation. /EEE TIP,
19(11):2861-2873, 2010. 2

[49] R.Zeyde, M. Elad, and M. Protter. On single image scale-up
using sparse-representations. In Proc. Curves and Surfaces,
pages 711-730, 2010. 3

[50] Y.Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu. Image
super-resolution using very deep residual channel attention
networks. In Proc. ECCV, pages 286-301, 2018. 2

[51] Q.Zhou and V. Koltun. Color map optimization for 3d recon-
struction with consumer depth cameras. ACM Trans. Graph.,
33(4):155:1-155:10,2014. 1,2, 3

[52] Q.-Y. Zhou and V. Koltun. Color map optimization for 3d
reconstruction with consumer depth cameras. ACM Trans.
Graph., 33(4):155,2014. 3

[53] M. Zollhdfer, A. Dai, M. Innmann, C. Wu, M. Stamminger,
C. Theobalt, and M. Nie3ner. Shading-based Refinement on
Volumetric Signed Distance Functions. ACM Trans. Graph.,
34(4):96,2015. 1,2,3

9672

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 14,2024 at 16:11:02 UTC from IEEE Xplore. Restrictions apply.

