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Abstract

Open compound domain adaptation (OCDA) is a do-
main adaptation setting, where target domain is modeled as
a compound of multiple unknown homogeneous domains,
which brings the advantage of improved generalization to
unseen domains. In this work, we propose a principled
meta-learning based approach to OCDA for semantic seg-
mentation, MOCDA, by modeling the unlabeled target do-
main continuously. Our approach consists of four key steps.
First, we cluster target domain into multiple sub-target do-
mains by image styles, extracted in an unsupervised man-
ner. Then, different sub-target domains are split into inde-
pendent branches, for which batch normalization parame-
ters are learnt to treat them independently. A meta-learner
is thereafter deployed to learn to fuse sub-target domain-
specific predictions, conditioned upon the style code. Mean-
while, we learn to online update the model by model-
agnostic meta-learning (MAML) algorithm, thus to further
improve generalization. We validate the benefits of our ap-
proach by extensive experiments on synthetic-to-real knowl-
edge transfer benchmark, where we achieve the state-of-the-
art performance in both compound and open domains.

1. Introduction

Semantic segmentation with minimal supervision is one
of the most sought-after goals of image understanding [23,

]. Unfortunately, the learned understanding in one do-
main does not generalize to the images from other do-
mains [4]. In such cases, domain adaptation aims at trans-
ferring the shared knowledge across different but related
domains [41], i.e., source and target, using the unlabeled
images from the target. When the target domain images
are collected in mixed, continually varying, and even un-
seen conditions, understanding images invites the problem
of open compound domain adaptation [35].
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Figure 1: (a) The traditional unsupervised domain adapta-
tion (UDA) vs. (b,c,d) the proposed meta-based open com-
pound domain adaptation (MOCDA). Unlike the traditional
UDA, MOCDA treats target as a compound of multiple un-
known sub-domains. These sub-domains are discovered
and processed using the cluster and the split module (b).
The fuse module (c) then combines the sub-domain splits
as basis (dash lines). On open domains, MOCDA adapts
through online update during inference (blue arrow) in (d).
Meta-learning serves in the fuse and the update module.

The Open Compound Domain Adaptation (OCDA)
treats the target as a compound of multiple unknown sub-
domains. Such assumption has been shown to be very
promising by Liu et al. [35] for many practical settings of
image classifications. However, the method developed in
[35] does not fully exploit the same assumption for the task
of image segmentation. | In this work, we show that the

1OCDA [35] does not fully exploit the domain information for seg-
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homogeneous sub-domain assumption can be exploited ef-
fectively also for image segmentation. We propose a novel
meta-learning based approach to OCDA (abbreviated as
MOCDA) that consists of four modules: cluster; split; fuse;
and update, as illustrated in Fig. 1.

Similar to OCDA, the proposed MOCDA utilizes two
image sets for training from: a single labeled source do-
main; and a diverse unlabeled target domain, which is
assumed to be a compound of multiple unknown sub-
domains. Such an assumption is suitable for real challeng-
ing situations, where the target domain is a combination of
many factors including diverse weather, cities, and acqui-
sition time [45, ]. The considered learning setup not
only performs domain adaptation to the compound target
domain, but also has generalization potential to unseen open
domains. In this context, the process of domain adapta-
tion happens to exhibit a meta-behaviour [29, ], which
learned dynamically makes the open world semantic seg-
mentation possible. In this work, we show that the meta-
behaviour of OCDA can be learned using (a) a hypernet-
work for dynamic fusion of knowledge, and (b) the online
update. On the one hand, the update process — which is
carried out using the model-agnostic meta-learning strategy
— creates an opportunity for better open set generalization
with only one gradient step. On the other hand, the learned
dynamic fusion allows images to appear from the continu-
ous manifold of the compound target domain.

In essence, the proposed framework serves in following
four steps. (i) From target images, style codes are extracted
and grouped into multiple clusters. (ii) For each cluster,
a set of batch normalization (BN) parameters are learned.
(iii) Corresponding to each cluster, each image can have
different domain-specific predictions. The hypernetwork,
then, learns to fuse these predictions. (iv) Model-agnostic
meta-learning (MAML) [15] is exploited during hypertrain-
ing process, endowing the online update ability of the model
on open domain during inference stage. The key contribu-
tions of this paper can be summarized as follows:

s

5

* We propose a novel framework for semantic segmen-
tation in the OCDA setting. We use meta-learning in
the dynamic fusion and MAML strategy based online
update, to address the limitations of [35].

We propose to model the compound target domain
continuously, taking the sub-target domain as the ba-
sis, which offers the advantage of adapting to target
domain and generalizing to unseen open domains.

We demonstrate the adequacy of image style features,
learned in an unsupervised manner, for our meta-based
method MOCDA.

mentation task due to the inaccessibility of the domain encoder. Refer the
original paper [35] for details.
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* The proposed method provides the state-of-the-art re-
sults in synthetic-to-real knowledge transfer bench-
mark datasets, for both compound and open domains.

2. Related Works

Unsupervised Domain Adaptation and Generalization.
Our work is related to domain adaptation [ ,
, 44] and domain generalization [ ] works.
Unsupervised domain adaptation aims at training a model
on the labeled source domain and transferring the learned
knowledge to the unlabeled target domain. The traditional
unsupervised domain adaptation works [ ] typ-
ically focus on solving adaptation problem from a single
source domain to a single target domain. Even though being
effective in several tasks, the single target domain assump-
tion is still restricted in many practical applications. Re-
cently, multiple-target domain adaptation problem [ ]
has received increasing research interests. The problem in-
vestigates knowledge transfer to multiple unlabeled target
domains. Yet another important aspect not prioritized by
the classical domain adaptation methods is the knowledge
transfer to unseen but related open domains [ , 31].
Cross-Domain Semantic Segmentation. In order to im-
prove the adaptation and the generalization ability of the
semantic segmentation model [7, 63, ], cross-
domain semantic segmentation topic is extensively studied,
both in the domain adaptation setting [68, ]
and in the domain generalization setting [ ].
Most works either assume the target domain as a single do-
main [53, ], or a composition of mul-
tiple known domains [19, ], with an exception of
OCDA [35]. OCDA assumes target domain as a composi-
tion of multiple unknown domains, which is more realistic
in practice. [35] follows a different approach for seman-
tic segmentation compared to the classification task. The
curriculum learning therefore is based on the average class
confidence scores, rather than the neatly learned domain-
focused factors in case of the classification task. Neverthe-
less, the experimental setup of our work is inspired by [35].
Concurrently, [43] develops the image translation based
method for the OCDA problem, which is complementary
to our method. Besides the open domain in [35, 43], our
work further explores the generalization ability of the model
when facing more diverse extended open domains.
Meta-Learning for Domain Adaptation/Generalization.
Meta-learning addresses the problem of learning to learn
and has been successfully applied to various applications in-
cluding image classification [20], image restoration [24], vi-
sual tracking [5], and network compression [32]. The prin-
ciple of meta-learning [54, 21] has also been investigated
for the task domain adaptation [46, ] and generaliza-
tion [ ], with the algorithmic advances [2, ].
Our work can be related to those works in terms of gen-
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eral methodology. Among those works, the ones most re-
lated are [12] and [66]. The similarities are : 1) both of
[12] and our MOCDA study the domain adaptation problem
when there are multiple unknown target domains through
meta-learning. 2) both of [66] and our MOCDA aims at im-
proving the domain generalization performance for seman-
tic segmentation model, with the help of MAML strategy.
However, we have significant differences in the following
aspects: 1) [12] utilizes the meta-learner for clustering the
target domain into different sub-target domains, and the tar-
get domain is modeled as a union of multiple sub-target do-
mains. And [12] does not include the open domain. How-
ever, our meta-hypernetwork is utilized to fuse the knowl-
edge from different clusters, to model the target domain as a
continuous compound target domain. 2) [66] does not study
the domain adaptation problem, and only focus on the do-
main generalization. The MAML strategy in [66] is only
used during training stage on the well labeled source do-
main. By contrast, MOCDA utilizes the MAML strategy in
both of the well labeled source domain and the unlabeled
target domain during the training stage. During inference,
the MAML strategy is exploited for online update.

3. The MOCDA Model

Preliminaries. We consider that the labeled source do-
main S is composed of the source images x;, and the cor-
responding semantic labels ys, ie., S = {(Xs,¥s)|Xs €
RIXWX3 y e REXWA where H,W are height and
width of the image, respectively. In OCDA, the unlabeled
target domain 7 consists of target images x! from mul-
tiple homogeneous sub-target domains, 7° = {xi|x! €
RHEXWx3Y i = 1,... N, where N is number of sub-target
domains. In the context of this work (and also in OCDA),
these sub-target domains are unknown. Therefore, the im-
ages x! from some unknown sub-target domain 7 are sim-
ply denoted as x;, for notation convenience and clarity.

In this section, we propose the MOCDA model for se-
mantic segmentation. The MOCDA model is composed of
four modules: cluster, split, fuse, and update. The Clus-
ter module extracts and clusters the style code from the
target domain images automatically, dividing the target do-
main into multiple sub-target domains. The Split module
adopts the compound-domain specific batch normalization
(CDBN) layer to process different sub-target domain im-
ages using different branches. The Fuse module exploits a
hypernetwork to predict the weights corresponding to each
branch adaptively, conditioned on the style code of the input
image. The final output of the network is the weighted com-
bination of the outputs of different branches. The MAML
method is utilized to train the Fuse module, so as to make
the model be adapted quickly in Update module. Finally,
the Update is carried out online during the inference time
with one-gradient step, which is found to be beneficial
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for open domains. The framework overview is shown in
Fig. 2a. In the following, we provide the details of all four
modules, separately.

3.1. Cluster: Style Code Extraction and Clustering

The aim of the cluster module is to cluster the tar-
get domain 7 into different sub-target domains 7%, k
1,..., K, serving the OCDA’s assumptions of unknown
multiple sub-target domains of the target domain. As shown
in [35, 26], the major differences of the target domain im-
ages due to varying conditions, such as the weather, light-
ing, and inter-dataset, can be effectively reflected by the
style of the images. Our cluster module consists of two
mappings; E.(-) and Ej(-). E.(-) maps the target do-
main 7 to the style code domain C; = {ci|c; € R'} as
E. : T — C;, where [ is the dimension of the style code.
More specifically, the target domain image x; is mapped to
a low-dimension style code ¢; = E.(x:). Then a clustering
algorithm, K-means [36], is adopted to automatically clus-
ter the style code domain C;, partitioning into K clusters
with centroids {c¥}. We use the mapping E;(-) to assign
x; to one of the sub-target domains, represented by the set
K={klk=1,...,K}, as E; : T — K. Here, we adopt
the nearest neighbor strategy for F;(-). More specifically,
each target image is assigned to the nearest cluster, using
the Euclidean distance between style codes of the image and
the centroids, given by,

Ey(x:) := arg min|c, - ct |- )

The key of our cluster module is to find an adequate map-
ping E.(-). In this work, the unsupervised image translation
framework MUNIT [26] is trained to translate between the
source domain S and the target domain 7. During the trans-
lation training process, the style code encoder of MUNIT is
trained to extract the style code from images unsupervis-
edly. The trained style encoder of MUNIT is used as E.(-).
Then, the target domain 7 is clustered into K sub-target
domains 7%, where the number of sub-target domains K is
a hyperparameter. Using the nearest neighbour search, re-
fer Eq. (1), each target image x; is assigned to one of the
sub-target domains 7*. Henceforth, the image x; assigned

image k' cluster is denoted as x%.

3.2. Split: Domain-Specific Batch Normalization

In [6], the domain-specific batch normalization (DSBN)
is shown to be beneficial for the unsupervised domain adap-
tation (UDA), by separating the batch normalization layer
for the source and target domain.

Similar to DSBN for UDA, the aim of our split mod-
ule is to separate the multiple sub-target domain-specific
information from the domain-invariant information. We
propose DSBN for OCDA (abbreviated as CDBN), to con-
duct such separation for source domain S and the multiple
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Figure 2: (a) The overview of MOCDA framework demonstrating four modules; (i) Cluster, (ii) Split, (iii) Fuse, and (iv)
~1
Update. (b) Illustration of compound domain modeling, taking K = 3 for example. The sub-target domain P(f; |x;, 1),

~2 ~3
P(f; |x¢,2) and P(f; |x¢,3) is taken as basis. The cluster/split module models the compound target domain as the union
set of three points, i.e., red, green and blue points. But the fuse module models the compound target domain P(f;|x;) as the

vector H(c;) = [H(c,)™M, H(c,)®, H(c,)®]’, composing the purple half quarter-spherical surface.

(clustered) sub-target domains {7%}. Note that DSBN for
UDA learns only two sets of BN parameters (with possi-
ble extension given more labeled domains). However, the
proposed CDBN learns K + 1 sets of BN parameters for
source domain and multiple unlabeled sub-target domains,
i.e., Bg, Bk, ..., BE, formulated as,

Xs — MUs
BS(Xsaﬂsvo—saﬂs,'Ys) =s K + ﬁs, (2)
k(o k k _k ok _k kxf—ﬂf k
By (xys 1508 B0, 70) = v ok + B¢, (3

t

where £ is the sub-target domain label, £ = 1, ..., K. Our
split module replaces BN layers by CDBN. As shown in
Fig. 2a, our split module includes the multi-branch seman-
tic segmentation network G = {Gg, Gy, ..., Gk} and the
discriminator D. Gy, is formed by selecting the k-th branch
By, of the CDBN layer. Through the adversarial learning,
the discriminator D aligns the prediction distributions of
source domain and that of the sub-target domains, in the
output space. Therefore, the full optimization objective of
the split module includes the semantic segmentation loss
and the adversarial loss, presented below.

Semantic Segmentation Loss. We train the seman-
tic segmentation network GG with a standard cross entropy
loss, using the source domain image x, and the associated
ground truth label y,

HW M

1
Loeg(G) =~ D D0 4™ log(G(x) ™), ()

n=1m=1

where (n, m) represents (pixel, class) indices for M classes.
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Multi-Branch Adversarial Loss. Recall the cluster
module, each target image x; is assigned to a unique sub-
target domain label £, i.e., xf. Here in the split module, the
image x/ is processed using only the corresponding branch
G, i.e., Gg(xF). Our multi-branch adversarial loss is an
extension of the adversarial loss [58], which aligns the pre-
diction distributions of the source domain G4(x,), and the
sub-target domains {G'%(xF)}. The multi-branch adversar-
ial loss Lqq4, and the corresponding discriminator training
loss L4 are formulated as,

Lsaan(G) = — Z?:l H’-’:foPT,C log(D(Gi(x1))™"),(5)
Lsa(D) —Ex.~pg log(D(G(x,)) ™) (©6)
~ Yk Bxgp,, log(D(Gr(xF)) ™),

where Ps and Prr are the underlying data distributions of
S and Ty, respectively. The following full optimization ob-
jective is used for training our split module,

»Csplit (G> = Lseg(G) + Al»csadv (G)v (7)

where )\, is a trades-off parameter. During the training pro-
cess, we alternatively optimize the discriminator D and the
generator G with the objective in the Eq. (6) and the Eq.
(7), respectively.

3.3. Fuse: HyperNetwork for Branches Fusion

The cluster and split module discretizes the target do-
main into a few clusters, providing an initial discrete model-
ing of the target domain. The fuse of the discretized modes
forms continuous manifold, the sample on which reflects
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the continuous change of the target domain and might cor-
respond to an unseen domain. In the fuse module, we learn
to combine the sub-target domain to model the compound
target domain continuously.

Compound Domain Modelling. Here we model the
target domain 7 in the corresponding feature domain F,
which is mapped by F' : T — F. Let P(f;k|xt7kj) be
the feature distribution corresponding to image x; when as-
sumed to be from the k™ cluster. Then the distribution of
the feature f; of the image x;, i.e., P(f;|x;), is expressed
as,

N

k|Xt ft |Xt7 )

®)

~k ~k
where N = [0 31, P(f, |x, k) P(klx,)dfi . P(k|x;)
describes the probability distribution of the sub-target do-
main’s label of image x;. By taking the sub-target do-

K
ft‘Xt ZP ft ,k‘Xt
k=1

ZI

main distributions P(f; |x;, k) as basis, the compound

target domain can be modeled with the vector, i.e.,
{[P(1]x¢), ..., P(k|x¢), ..., P(K|x¢)]'}
HyperNetwork for Branches Fusion. In essence,

the cluster and split module can be seen as modeling
the sub-target domain label distribution as P(k|x;)
1,if Ej(x:) = k and P(k|x;) = 0,if Ej(x¢) # k. It mod-
els the compound target domain as the discretized points
in the vector space, as illustrated in Fig. 2b. In order to
model the compound target domain in the continuous space,
in our fuse module, we adopt the categorical distribution for
P(k|xy), ie.,

K

P(k|x;) = wy, with, Zwk =1w, >0, (9
k=1

where W = [wy, ..., Wy, ..., wx] | is the K-dimensional cat-

egorical vector, whose element wy, represents the probabil-
ity that the target image x; belongs to the sub-target domain
Ti. Then the hypernetwork H(-) is adopted to learn the
P(k|x;), by taking the style code c¢; of the image sample x;
as input, i.e., (w1, ..., W, ...,wx| = H(c;). Substituting
the H(c;) in Eq. (8), the feature distribution P(ﬁ|xt) can
be derived as,

K
ft|Xt NZH )P ft |Xt7 ) (10)
k=1

where H (c;)*) is the k™ element of H (c;). Eq. (10) shows
that the compound target domain is modeled in the contin-
uous vector space, H(c;), taking the sub-target domain dis-

~k
tributions P(f; |x¢, k) as basis, as illustrated in Fig. 2b.
From above, it is shown that H (c;) weights the different
sub-target domain distribution differently to get the com-
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pound target domain distribution. Here we adopt the net-
work G as our mapping F. Following [25], we reweight

each feature sample Ek = Gp(x¢) with H(c;), so that the
feature sample from dominant sub-target domain has higher
weight, whereas the sample from non-dominant sub-target
domain has lower weight. The final prediction can be rep-
resented as,

K
yi = H(c)MGx(xy). (an

k=1

By combining Eq. (11) and Eq. (5), the adversarial loss for
the fuse module £ 7,4, and the corresponding discriminator
training loss £ ¢4 can be formulated as,

Lfain(G, H) = —Ex,~.p; log(D(30) ")
La(D) = —Ex, ~p, log(D(Gs(x,)) ™)
—Ex,py log(D(y,) ™).

12)
13)

The optimization objective of our fuse module is a combi-
nation of Eq. (4) and Eq. (12), which is given by,

Efuse(G7 H) = Lseg(G) + A2'£:fad'u<G(7]¥)7 (14)

where )\, is the hyperparameter to balance between the ad-
versarial loss and the segmentation loss. During the training
process, we alternatively optimize the discriminator D and
the generator GG, the hypernetwork H with the objective in
the Eq. (13) and the Eq. (14), respectively. In our MOCDA
model, the training of the fuse module is combined with the
MAML strategy, which is explained further in Section 3.4
and Algorithm 1.

3.4. Update: MAML based Online Update

In the previous OCDA work [35], the open set is only
treated as a testing set to verify the generalization ability
of the model. In contrast, in our work, the open set is also
used for updating the model online during testing, for better
generalization to the unseen domain, realized by MAML.

MAML. The MAML strategy [15] aims at learning the
optimal model parameters 6*, which eases the adaptation
process for new tasks. In each iteration of MAML, there
are two training loops; inner and outer. Let the data of inner
and outer loops be D;,, and D+, respectively. In each train-
ing iteration, the model parameters 6 are first updated with
the inner loop loss £;,, and data D;,,. The updated model
is then evaluated on the outer loop loss L,,,; and data D,
to test the generalization ability of the updated model. Fur-
thermore, the evaluation performance £,,; is also adopted
during update, to better generalize the model. This nested
training fashion mimics the training and testing phase of the
model. In order to endow adaptation ability, the optimiza-
tion objective of MAML is formulated as,

0" = argmin Loy1(0 — aV L (0, Din), Dout), (15)
0
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where « is the learning rate for updating the model.

MAML for OCDA. In our addressed problem of OCDA
for semantic segmentation, images from the set {x,} of
the unseen open domain O are available only during test-
ing. We adopt the MAML algorithm in our MOCDA during
training to be combined with the fuse module. MAML then
offers us the advantage of quick adaptation to the open set
during testing, by means of online update within one gradi-
ent step.

In the inner loop, we sample data from the target domain
T, ie., Diyn = {x:}. Meanwhile, in order to update the
model without supervision, we use the unsupervised self-
entropy loss[62] L., as the inner loop loss £;, — which
mimics the model update process during testing, given by,

| HW C
Lin=Lent =~ 2 > ¥ " logy: ™. (16)
n=1 c=1
In the outer loop, the data is sampled from both source do-
main S and the target domain 7T, i.e., Doyt = {Xs,ys, Xt }-
In order to evaluate the model’s performance on different
domains and in different way, the outer loop loss L, uses
the optimization objective of the fuse module in Eq. (14)
and the self-entropy loss in Eq. (16), such that,

Eout = Acfus‘p + dcenta (I7)

where § is the hyperparameter to balance between the fuse
module loss and the unsupervised self-entropy loss. The
MAML algorithm used during OCDA training is presented
in Algorithm 1. Similarly, the MAML used during the on-
line update, of OCDA testing, is given in Algorithm 2.

3.5. Training Protocol of MOCDA

In total, our MOCDA model is trained in the multi-stage
way, consisting of three steps: 1) training the MUNIT model
for style code extraction and clustering, ii) training with the
CDBN layer in split module, iii) the CDBN layer is frozen,
adding the hyper-network and the fuse module, and train-
ing the hypernetwork I and fine-tuning the semantic seg-
mentation network G’ with MAML strategy as described in
Algorithm 1. Then during testing stage, our whole model,
except for CDBN layer, is online updated with the MAML
strategy as clarified in Algorithm 2.

4. Experiments

In this section, we demonstrate the benefits of our
MOCDA model under the open compound domain adaptive
semantic segmentation setting. We compare our MOCDA
model with other state-of-the-art (SOTA) methods on both
of the target domain and the open domain. In order to fur-
ther prove the effectiveness of our MOCDA model for open
domain with online update, we introduce more diverse and
challenging extended open domains to test the model per-
formance additionally.
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Algorithm 1 MAML algorithm for OCDA (Training)
Require: Source data S {(xs,ys)}, target data
T = {x:}, segmentation network G, hypernetwork H, dis-
criminator D, the learning rate o of G, H, and the learning
rate ¢ of discriminator D.

1:

Initialize the parameters g and 6p, respectively of
the segmentation network G, hypernetwork H, and the
discriminator D;

2: while not done do

3: Sample D;,, from T > Inner Loop
4: 0Ly + Ocu — aVogy, Lin(Din,0cH);

5: Sample D,,,; from S and T > Outer Loop
6: Ot < Ocr — Ve Lout(Dout, 04 );

7 0p (—QD—CVGDEfd(DoutvaD);

8: end while

Algorithm 2 MAML algorithm for OCDA (Testing)

Require: Data {x,} from the unseen novel domain O, seg-
mentation network G, hypernetwork H.

1:

Use trained parameters 6o of the segmentation net-
work, G and the hypernetwork H, from the training
phase;

F+0

cfori=1,...ndo

Sample the i image x? from {x,};

yh + G(xp);

Ocr + 0o — Vo Lent (Y5, 0cH)

: end for

AN (I A

4.1. Experiments Setup

Following [35], we adopt the synthetic image dataset
GTAS5 [49] or SYNTHIA-SF [53] as the source domain, the
rainy, snowy, and cloudy images in BDD100K[64] as the
target domain, while the overcast images in BDD100K are
utilized as the open domain. Besides, more diverse images
from other real image datasets, Cityscapes[!3], KITTI[!]
and WildDash [65] are introduced as extended open do-
mains. We adopt the the DeepLab-VGG16 model [7, 55]
with the batch normalization layer as the segmentation net-
work. The cluster numbers K is set as 4. The segmentation
network and discriminator structure is the same as [58]. The
hyperparameter A; and A5 in Eq.(14) and Eq.(7) are set as
0.001. The hyperparameter § in Eq.(17) is set as 0.0001.

4.2. GTAS to BDD100K

Comparison with SOTA. In Table 1, we present our
open compound domain adaptation results, in comparison
with other SOTA methods. For fair comparison, all of
the methods adopt the DeepLab-VGG16 model with the
batch normalization layer. Compared with our baseline
method AdaptSegNet[58], our split module achieves 3.1%

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 14,2024 at 15:39:47 UTC from IEEE Xplore. Restrictions apply.



W :
Cluster “4”

Cluster “1” Cluster “2” Cluster “3”

(a) Clustering visualization (b) Example images of different clusters

Figure 3: Visualization of clustering results. (a) is the t-
SNE visualization of the style code extracted by the cluster
module, (b) is example images from different clusters.

Source Compound Open Avg
GTA— Rainy Snowy Cloudy | Overcast C C+0
Source Only[35] | 162 180 209 212 [ 189 191
Source Only * 197 184 205 225 | 197 210
AdaptSegNet[35] | 202 212 238 251 | 221 225
AdaptSegNet[58]* | 21.6  20.5  23.9 271 | 223 244
CBST([71] 213 206 239 247 | 222 226
IBN-Net[42] 206 219 261 255 | 228 235
PyCDA [34] 217 223 259 254 | 233 238
OCDA [35] 220 229 270 279 [ 245 250
Ours (Split) 235 235 278 295 | 254 271
Ours (Fuse) 244 275 301 314 | 277 294
Table 1: Semantic segmentation performance compari-

son with SOTA: GTA— BDD100K with DeepLab-VGG16
backbone. The results are reported on mloU over 19
classes. * means our reproduced result.

and 2.4% gain on the target domain and the open domain,
respectively. Compared with the SOTA method OCDA[35],
our split module performance outperforms by 0.9% on the
target domain and by 1.6% on the open domain. It proves
the effectiveness of our cluster module and the split mod-
ule, for sub-target domain discovery and sub-target domain-
specific information disjointing. The clustering visualiza-
tion is shown in Fig. 3. Then by adopting the meta-learning
with the hypernetwork and the MAML training strategy in
the fuse module, our MOCDA model achieves the state-of-
the-art performance, which improves the split module per-
formance by 2.3% from 25.4% to 27.7%, and by 1.9% from
29.5% to 31.4% on the target domain and the open domain,
respectively. It proves the advantage of our MOCDA model
on fusing the different sub-target domains knowledge, mod-
eling the target domain continuously through the hypernet-
work, and adopting the MAML training strategy. The qual-
itative comparison of the semantic segmentation results on
the target domain is shown in Fig. 4.

Online Update. Another meta-learning paradigm in our
MOCDA model, besides the fuse module, is the MAML
algorithm based online update during testing stage. From
Table 2, it is shown that our MOCDA model without on-
line update outperforms the baseline method AdaptSegNet
[58] on both of the open domain and the extended open do-
main by 5.6% in average. It proves the effectiveness of
our cluster, split and fuse module for open domain gener-
alization. By further using the MAML based online up-
date strategy described in Algorithm 2 during the testing

Source Open Extended Open Avg
GTA— BDD | Cityscapes KITTI WildDash
Source[35] 21.2 - - - -
Source* 22.5 19.3 24.1 16.0 20.5
AdaptSegNet[35] 25.1 - - - -
AdaptSegNet[58] * 27.1 22.0 234 17.5 22.5
w/o Online Update 314 30.4 29.8 20.6 28.1
w/ Online Update 314 31.1 30.9 21.6 28.8
Gain of Online Update - +0.7 +1.1 +1.0 +0.7

Table 2: Open domain semantic segmentation performance
comparison w/ or w/o online update: GTA— BDDI100K
with DeepLab-VGG16 backbone. The results are reported
on mloU over 19 classes. * means our reproduced result.

stage, our MOCDA model performance on all the open do-
mains improves by 0.7% in average, from 28.1% to 28.8%.
Our model w/ or w/o online update has the same perfor-
mance on the open domain, BDD100K overcast image. It
is due to that the BDD100K overcast image is still from the
BDDI100K dataset, and the style gap between the overcast
image and the target domain image is very narrow, whose
visualization is shown in supplementary. The benefit from
our cluster, split and fuse module has been able to handle
the narrow style gap and have good generalization perfor-
mance already. The performance gain, 0.7%, 1.1% and
1.0% on the extended open domains where the style gap
is much larger, Cityscapes, KITTI and WildDash dataset,
proves that the MAML based meta-learning paradigm, in
Algorithm 1 for training and Algorithm 2 for testing, en-
dows the fast adaptation ability to our model to generalize
better on open domains. The qualitative comparison, w/ or
w/o online update, on the open domains are shown in Fig. 4.

Ablation Study. We show the comparison of ablations
and different variants of our model in Table 3. From Table
3, it is shown that all the modules, the cluster/split module
(Lspiit), the fuse module (L q4,) and the MAML training
strategy are helpful to our whole MOCDA model. The clus-
ter and split module has been proven to be helpful in the
comparison with AdaptSegNet[58] and other SOTA meth-
ods. Here we show the effectiveness of our meta-learning
paradigm, the hypernetwork and the MAML training strat-
egy through the ablations and variants methods comparison.
Firstly, in order to prove the validity of our hypernetwork,
we build the baseline methods of the branch fusion in non-
adaptive way; 1), averagely fuse for prediction during the
testing stage of the split module. 2), averagely fuse during
the training and testing stage of the fuse module. 3) use the
style code distance from different clusters to weight differ-
ent branches during the training and testing stage of the fuse
module. It is shown that our hypernetwork based branch
fusion strategy performance, 27.1%, outperforms all other
non-adaptive fusion strategy, 23.1%, 26.1%, 26.6%. It ben-
efits from the advantage of adaptive weights predicted from
the hypernetwork conditioned on the image sample style
code. Secondly, by comparing the performance of train-
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Table 3: Different ablations and variants comparison
for OCDA, tested on BDD100k target domain based on
DeepLab-VGG16 with batch normalization layer backbone.
The results are reported on mIoU over 19 classes. T repre-
sents the average fusion only during testing. ¥ represents
the average fusion of different branches during training and
testing. ¥ represents the style code distance weighted fusion
during training and testing.

ing the fuse module using the L,,; in the Eq. (17) and
purely using the Ly in Eq.(14), it is shown that there
is 0.2% performance gain by adding the unsupervised en-
tropy loss, from 27.1% to 27.3%. By further introduce the
MAML training strategy in Algorithm 1 for the fuse mod-
ule, as done in our MOCDA model, the performance can be
further improved to 27.7%. It proves that the MAML train-
ing strategy is not only helpful to the open domain general-
ization as described above, but also is beneficial to improve
the adaptation performance of the model on the target do-
main. It results from that MAML training strategy mimics
the training and testing procedure with the outer loop and
inner loop and makes the model more domain adaptive.

4.3. SYNTHIA-SF to BDD100K

In this section, SYNTHIA-SF is used as the source do-
main. Following [70], we only take 11 main classes in the
SYNTHIA-SF dataset to measure the semantic segmenta-
tion performance, which are road, sidewalk, building, wall,
fence, pole, light, vegetation, sky, person and car.

Comparison with SOTA. In Table 4, we report the
quantitative comparison results between our MOCDA
model and other SOTA methods for the open compound
domain adaptation setting, from the SYNTHIA-SF to the
BDDI100K. From Table 4, it is shown that our MOCDA
model outperforms MinEnt [62] and AdaptSegNet [58] on
both of the target domain and the open domain. It further
verifies the effectiveness of our MOCDA model for OCDA.

Online Update. In Table 5, the performance of our
MOCDA model for the open domain and the extended open
domain are shown. Our MOCDA model w/o online update
outperforms the AdaptSegNet method by 2.2% in average
on all the open domains. By further utilizing the online up-
date in the open domain, the peformance can be further im-
proved by 1.1% in average, from 30.1% to 31.2%. It further

Source Compound Open Avg
SYNTHIA-SF— | Rainy Snowy Cloudy | Overcast C C+0
Source Only 16.5 18.2 21.4 20.6 19.2 19.8
MinEnt[62] 21.8 22.6 26.2 25.7 239 247
AdaptSegNet[58] | 24.9 26.9 30.7 30.3 28.0 29.0
Ours (Split) 25.2 27.9 324 31.8 29.1 303
Ours (Fuse) 26.6 30.0 33.0 32.6 304 314

Table 4: Semantic segmentation performance comparison
with SOTA: SYNTHIA-SF— BDD100K with DeepLab-
VGG16 backbone. The results are reported on mloU over
11 classes. The best results are denoted in bold.

Source Open Extended Open Av
SYNTHIA-SF— BDD | Cityscapes KITTI WildDash £
Source 20.6 24.7 20.7 17.3 20.8
AdaptSegNet[58] 30.3 35.9 24.7 20.7 27.9
w/o Online Update 32.6 29.9 332 24.5 30.1
w/ Online Update 32.6 322 34.2 25.8 31.2
Gain of Online Update - +2.3 +1.0 +1.3 +1.1

Table 5: Open domain semantic segmentation performance
comparison w/ or w/o online update: SYNTHIA-SF—
BDD100K with DeepLab-VGG16 backbone. The results
are reported on mloU over 11 classes.

8347

(i) Non-Adapted

(iii) Adapted
Figure 4: Qualitative comparison of semantic segmentation
results on the target domain, including the rainy, snowy and
cloudy weather, and on the open domains, KITTI, Wild-
Dash and Cityscapes.

proves the validity of the online update for the open domain.

5. Conclusion

In this paper, we address the problem of open com-
pound domain adaptation, and propose a meta-learning
based model, MOCDA. MOCDA is composed of four mod-
ules, cluster, split, fuse and update module. Meta-learning
serves in fuse and update module for continuously modeling
the compound target domain and online update. The exten-
sive experiments show that our model achieves the state-of-
the-art performance on different benchmarks, proving the
effectiveness of our proposed MOCDA model.
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