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Abstract. Reference-based image super-resolution (RefSR) aims to
exploit auxiliary reference (Ref) images to super-resolve low-resolution
(LR) images. Recently, RefSR has been attracting great attention as
it provides an alternative way to surpass single image SR. However,
addressing the RefSR problem has two critical challenges: (i) It is difficult
to match the correspondence between LR and Ref images when they are
significantly different; (ii) How to transfer the relevant texture from Ref
images to compensate the details for LR images is very challenging. To
address these issues of RefSR, this paper proposes a deformable attention
Transformer, namely DATSR, with multiple scales, each of which consists
of a texture feature encoder (TFE) module, a reference-based deformable
attention (RDA) module and a residual feature aggregation (RFA) mod-
ule. Specifically, TFE first extracts image transformation (e.g., bright-
ness) insensitive features for LR and Ref images, RDA then can exploit
multiple relevant textures to compensate more information for LR fea-
tures, and RFA lastly aggregates LR features and relevant textures to
get a more visually pleasant result. Extensive experiments demonstrate
that our DATSR achieves state-of-the-art performance on benchmark
datasets quantitatively and qualitatively.

Keywords: Reference-based image super-resolution - Correspondence
matching - Texture transfer - Deformable attention transformer

1 Introduction

Single image super-resolution (SISR), which aims at recovering a high-resolution
(HR) image from a low-resolution (LR) input, is an active research topic due
to its high practical values [9,13-16,18,20,21,41,46,49,51]. However, SISR is a
highly ill-posed problem since there exist multiple HR images that can degrade to
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Fig. 1. Comparison with the state-of-the-art RefSR method C?-Matching [12]. When
the brightness of LR and Ref image is different, our method performs better than C-
Matching [12] in transferring relevant textures from the Ref image to the SR image,
which is closer to the ground-truth image.

the same LR image [8,38]. While real LR images usually have no corresponding
HR ground-truth (GT) images, one can easily find a high-quality image as a
reference (Ref) image with high-frequency details from various sources, such as
photo albums, video frames, and web image search, which has similar semantic
information (such as content and texture) to the LR image. Such an alternative
SISR method is referred to as reference-based super-resolution (RefSR), which
aims to transfer HR textures from the Ref images to super-resolved images and
has shown promising results over SISR. Although various RefSR methods [12,
27,45,47] have been recently proposed, two challenges remain unsolved for SR
performance improvement.

First, it is difficult to match the correspondence between the LR and Refimages
especially when their distributions are different. For example, the brightness of
the Ref images is different from that of the LR images. Existing methods [48,56]
mostly match the correspondence by estimating the pixel or patch similarity of tex-
ture features between LR and Ref images. However, such similarity metric is sen-
sitive to image transformations, such as brightness and color of images. Recently,
the state-of-the-art (SOTA) method C?-Matching [12] trains a feature extractor,
which demonstrates strong robustness to scale and rotation. However, it neglects
to explore the effects of brightness, contrast, and color of images. As a result, this
method may transfer inaccurate textures from the Ref image, when the Ref images
have different brightness from the LR image, as shown in Fig. 1. Based on the obser-
vation and analyses, we can see that the quality of correspondence is affected by
the similarity metric and the distribution gap between the LR and Ref images.

On the other hand, some methods [34,57] adopt optical flow or deformable
convolutions [3,4,42,59] to align spatial features between the Ref and LR images.
However, these methods may find an inaccurate correspondence when the
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distance between the LR and Ref images is relatively large. With the inaccurate
correspondence, their performance would deteriorate seriously since the irrel-
evant texture cannot provide meaningful details. Therefore, how to accurately
match the correspondence between the Ref and LR images is a challenging prob-
lem as it affects the quality of super-resolved results.

Second, it is also challenging to transfer textures of the high-quality Ref
images to restore the HR images. One representative work CrossNet [57] esti-
mates the flow from the Ref image to the LR image and then warp the features
based on the optical flow. However, the optical flow may be inaccurate, since
the Ref and LR images could be significantly different. In addition, most exist-
ing methods [27,48,56] search the most similar textures and the corresponding
position, and then swap the texture features from the Ref image. As a result,
these methods may transfer irrelevant textures to the output and have poor SR
performance, when the original estimated flow or position is inaccurate. Hence,
it is important and necessary to explore a new architecture to adaptively transfer
texture and mitigate the impact of inaccurate correspondence in the Ref image.

To address the above two challenges, we propose a novel deformable attention
Transformer, namely DATSR, for reference-based image super-resolution. DATSR
is built on the U-Net and consists of three basic modules, including texture fea-
ture encoders, deformable attention, and residual feature aggregation. Specifically,
we first use texture feature encoders to extract multi-scale features with different
image transformations. Then, we propose a reference-based deformable attention
to discover the multiple relevant correspondences and adaptively transfer the tex-
tures. Last, we fuse features and reconstruct the SR images using residual feature
aggregation. We conduct extensive comparisons with recent representative SOTA
methods on benchmark datasets. The quantitative and visual results demonstrate
that our DATSR achieves the SOTA performance.

The main contributions are summarized as follows:

— We propose a novel reference-based image super-resolution with deformable
attention transformer (DATSR), which is end-to-end trainable by incorpo-
rating Transformer into RefSR. Compared with existing RefSR methods, our
DATSR performs more robust correspondence matching and texture transfer
and subsequently achieves SOTA performance quantitatively and visually.

— We design a new reference-based deformable attention module for correspon-
dence matching and texture transfer. Different from existing transformer-
based methods, our transformer is built on U-Net with multi-scale features
and alleviates the resolution gap between Ref and LR images. Moreover, our
transformer relieves the correspondence mismatching issue and the impact of
distribution gap between LR and Ref images.

— We conduct extensive experiments on benchmark datasets to demonstrate
that our DATSR achieves SOTA performance and is also robust to different
image transformations (e.g., brightness, contrast and hue). Moreover, we find
that our DATSR trained with a single Ref image outperforms existing Multi-
RefSR methods trained with multiple Ref images. In addition, our DATSR
still shows good performance even in some extreme cases, when the Ref images
have no texture information.
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2 Related Work

We will briefly introduce two related super-resolution paradigms, including single
image super-resolution and reference-based image super-resolution.

Single Image Super-Resolution (SISR). The goal of SISR is to recover
high-resolution (HR) images from the low-resolution (LR) images. Recent years
have witnessed significant achievements of using deep neural networks to solve
SISR [6,55]. SRCNN [6] is the pioneer work of exploiting deep convolutional
networks to map LR image into HR image. To further improve SR performance,
researchers resort to employing deeper neural networks with attention mecha-
nisms and residual blocks [5,19-23,31,33,36,50,54,55]. However, it is difficult
for traditional SISR methods to produce realistic images when the HR textures
are highly degraded. To relieve this, some SR methods [11,17,40,43,44,53,58]
adopt generative adversarial networks (GANSs) to further improve the perceptual
quality of the super-resolved outputs.

Reference-Based Image Super-Resolution (RefSR). Different from SISR,
RefSR has auxiliary HR images and aims to super-resolves images by transfer-
ring HR details of Ref images. Such auxiliary information can be extracted from
the reference images which are similar to HR ground-truth images. CrossNet [57]
estimates the optical flow (OF) between Ref and LR images and then performs
the cross-scale warping and concatenation. Instead of estimating OF, SRNTT
[56] calculates the similarity between the LR and Ref images and transfer the
texture from the Ref images. Similarly, SSEN [34] proposes a similarity search
and extraction network and it is aware of the best matching position and the
relevancy of the best match. To improve the performance, TTSR [48] proposes
a hard and soft attention for texture transfer and synthesis. Instead of using
the features of a classifier, E2ENT? [45] transfers texture features by using a
SR task-specific features. To improve the efficiency of matching, MASA [27]
proposes a coarse-to-fine correspondence matching module and a spatial adap-
tation module to map the distribution of the Ref features to that of the LR
features. Recently, a strong RefSR method C?-Matching [12] first proposes a
contrastive correspondence network to learn correspondence, and then adopts
a teacher-student correlation distillation to improve LR-HR matching, and last
uses a residual feature aggregation to synthesize HR images.

It should be noted that RefSR can be extended to the case of multiple refer-
ence images, called Multi-RefSR, which aims to transfer the texture features
from multiple Ref images to the SR image. Recently, a content independent
multi-reference super-resolution model CIMR-SR [47] is proposed to transfer
the HR textures from multiple reference images. To improve the performance,
AMRSR [32] proposes an attention-based multi-reference super-resolution net-
work to match the most similar textures from multiple reference images. Differ-
ent from RefSR, Multi-RefSR can exploit more training information as it has
multiple Ref images. In this paper, we mainly study RefSR and train the model
with single Ref image. Nevertheless, we still compare our model with the above
Multi-RefSR methods to further demonstrate the effectiveness of our DATSR.



Reference-Based Image SR with Deformable Attention Transformer 329

SR image

———————————————————————————————— @--> _
Fy F,
ITFE
RDA RFA RDA
Refimage vy v,
4 - OEE =) shared i
RDA RFA RDA RFA
Va v,
7] Attention features A, shared a, @  Addition
®  Upsampling
o8] Queries o] Keys --= Skip connection
RDA | MRFA —> Feed-forward of generator
o] values ﬂﬂ@ LR features v == Feed-forward of Encoder

Fig. 2. The architecture of our DATSR network. At each scale, our model consists of
texture feature encoders (TFE), a reference-based deformable attention (RDA) module
and a residual feature aggregation module (RFA).

3 Proposed Method

Due to the the intrinsic complexity of RefSR, we divide the problem into two
main sub-tasks: correspondence matching and texture transfer. To address these,
we propose a multi-scale reference-based image SR with deformable Transformer,
as shown in Fig. 2. Specifically, we first use TFE to extract multi-scale texture
features of Ref and LR images, then propose RDA to match the correspondences
and transfer the textures from Ref images to LR images, and last use RFA to
aggregate features and generate SR images.

3.1 Texture Feature Encoders

In the RefSR task, it is important to discover robust correspondence between
LR and Ref images. However, there are some underlying gaps between LR and
Ref images, i.e., the resolution gap and the distribution gap (e.g., brightness,
contrast and hue). To address this, we propose texture feature encoders to extract
robust features of LR and Ref images. For the resolution gap, we propose to use
pre-upsampling in the LR image and extract multi-scale features of LR and Ref
images. Specifically, given an LR image X r and a reference image Xgcy, we
upsample the LR image to the resolution of the Ref image, denoted as X g.
Then, we calculate multi-scale features of the LR and Ref images, i.e.,

Q= E/(Xrr1), Ki= Ef(Xges), Vi= EP(Xges), (1)

where E}, El’“ and E} are feature encoders at the {-th scale. In our architecture,
we use three scales in the texture feature encoders. With the help of the multi-
scale features in U-Net, we are able to alleviate the resolution gap between the
Ref and LR images since they contain the complementary scale information.



330 J. Cao et al.

For the distribution gap, we augment images with different image trans-
formations (e.g., brightness, contrast and hue) in the training to improve the
robustness of our model. In addition to data augmentation, we use contrastive
learning to train the encoder be less sensitive to different image transformations,
inspired by [12]. To estimate the stable correspondence between X gt and X ge s
the feature encoders E; and EF are the same, and the feature encoder EJ is pre-
trained and fixed in the training. In contrast, TTSR [48] directly uses a learnable
feature encoder, resulting in limited performance since the textures are changing
during training and the correspondence matching is unstable. For C>-Matching
[12], it neglects to improve the robustness to brightness, contrast and hue. To
address these, we propose to learn robust multi-scale features Q;, K;, V;, which
can be regraded as Query, Key, and Value, and can be used in our attention
mechanism conditioned on the LR features.

3.2 Reference-Based Deformable Attention

Existing attention-based RefSR methods (e.g., [48]) tend to suffer from limited
performance when the most relevant features between LR and Ref images are
inaccurate, i.e., the learned LR features may not well match the Ref features.
To address this, we propose a new reference-based attention mechanism, called
RefAttention, as shown in Fig. 3. Formally, given Query Q;, Key K;, Value V},
and LR features Fj, the attention feature A; is defined as follows:

A; = RefAttention(Q;, K;, Vi, F)) = T (0 (Q/K)) . Vi, F). (2)

Different from existing attention mechanism [39], our attention is conditioned
on the LR features and designed for the RefSR task. In Fig. 3, we denoted by
A; and F; in the downscaling process, and A, and F} in the upscaling process.
o(+) is a correspondence matching function to calculate the relevance between
the Ref and LR images. Based on the relevance, we propose a texture transfer
function 7(+) to transfer the textures from the Ref to the LR image.

Correspondence Matching. The first important sub-task in RefSR is to
match correspondences between LR and Ref images. Most existing methods
[48,56] are sensitive to different image transformations (e.g., brightness, con-
trast and hue) and may match inaccurate correspondences. To relieve this
issue, we propose a correspondence matching module in our RefAttention, as
shown in Fig.3. Specifically, we estimate the relevance between Xpr; and
Xpey by calculating similarity between Q; € REXH Wi and K; € RO H2xW2,
First, we unfold Q; and K into patches Q'; = [q1, ..., qm,w, |ERCT W1 and
K') = [ki,...,ku,w,|]ERC*H2W2_ Then, for the given query q; in Q’, the top
K relevant positions in K’ can be calculated by normalized inner product,

P, = [0 (Q)K{)], = TopK, (@ - k; ). (3)

where q; = q;/||q:|| and Ej = k;/||k;|| are normalized features, and TopK(-) is
a function and returns top K relevant positions P;= {p%, ..., pE } Here, P; is
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Fig. 3. The architecture of RDA. Fig. 4. The architecture of RFA.

the i-th element of P, and the position p} is the most relevant position in the
Ref image to the i-th position in LR. When K > 1, it helps discover multiple
correspondences, motivated by KNN [24]. For fair comparisons with other RefSR
methods, we set K = 1 and exploit the most relevant position in the experiments.

Similarity-Aware Texture Transfer. The second important sub-task in
RefSR is to transfer textures from Ref images to LR images based on the matched
correspondence. Most existing RefSR methods [48,56] directly swap the most rel-
evant texture from Ref image. However, it may degrade the performance when
the most relevant texture is inaccurate. To address this, we propose to improve
the deformable convolution (DCN) [4,59] to transfer the texture around every
position p¥ of Ref images. Specifically, let Ap¥ be the spatial difference between
the position p; and the k-th relevant position pf, i.e., ApéC = pf — p;. Then, we
calculate a feature at the position p using modified DCN, i.e.,

K
Ay(pi) = Zk:l st Zj w;Vi(pi + Apf + pj + Apj) my, (4)

where p; € {(—1,1),(—1,0),...,(1,1)}, s¥ is the cooperative weight to aggregate

the K textures from the Ref image, i.e., s¥ = exp(q; - k i) /2 ep, €xp(4i - k-),
wj is the convolution kernel weight, Apj is the j-th learnable offset of APy, and
m; is the j-th learnable mask of M;, which can be calculated as follows,

(5)

A’Pl :r-Tanh(C ([Fl, w(Vi,P))),
= Sigmoid (Conv([F}; w(Vi, P1)])),

where w is a warping function, [;] is a concatenation operation, Conv is convolu-
tional layers. Sigmoid and Tanh are activation functions, r is the max magnitude
which is set as 10 in default, and F; is the feature of upsampled LR images at
the [-th scale. With the help of the mask, we can adaptively transfer textures
even if LR and Ref images are significantly different. When the Ref image has
irrelevant texture or no information, our model is able to guild whether to trans-
fer the textures in Ref images. In this sense, it can relieve the correspondence
mismatching issue. In this paper, we mainly compare with RefSR methods with
single Ref image. Thus, we transfer one relevant textures from the Ref image for
fair comparison. With the help of our architecture, the proposed RDA module
is able to improve the RefSR performance by transferring textures at each scale
in both downscaling and upscaling, which is different from C2-Matching [12].
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3.3 Residual Feature Aggregation

To aggregate the multi-scale LR features at different layers and the transferred
texture features, we propose a residual feature aggregation module (RFA) to per-
form feature fusion and extraction. As shown in Fig.4, RFA consists of CNNs
and Swin Transformer layers (STL) [25] which gain much attention in many
tasks [2,19,26]. Specifically, we first use a convolution layer to fuse the LR fea-
ture Fj and attention features Ay, i.e., F/, ; = Conv(Fj, A;), where Conv is
convolutional layers. Then, we use Swin Transformer and a residual connection
to extract deeper features of the LR and transferred features,

Fy,, = STL(F},) + F, (6)

where the details of STL are put in the supplementary materials. At the end of
RFA, we use another convolutional layer to extract the features of STL, Fj 1 =
Conv (F} +1)- Based on the aggregated features Fy, at the last scale, we synthesize
SR images with a skip connection as

Xsr=Fr+ Xrpry- (7)

3.4 Loss Function

In the training, we aim to i) preserve the spatial structure and semantic infor-
mation of LR images; ii) discover more texture information of Ref images; iii)
synthesize realistic SR images with high quality. To this end, we use a recon-
struction loss, a perceptual loss and an adversarial loss, which is the same as
[12,48]. The overall loss with the hype-parameters A; and A, is written as:

L="Lrec+ Alﬁper + Ao Lgdy- (8)

Reconstruction Loss. In order to make the SR image Xgr to be close to the
HR ground-truth image X g g, we adopt the following reconstruction loss

ﬁrec = ||XHR_XSR||1a (9)
where || - ||; is the ¢;-norm.

Perceptual Loss. To enhance the visual quality of SR images, the perceptual
loss is widely used in SR models [12,56]. The perceptual loss is defined as:

per = V Z ||¢’L XHR) ¢i(XSR)HF7 (10)

where |||z is the Frobenius norm, and V and C are the volume and channel
number of the feature maps, respectively. The function ¢; is the i-th intermediate
layer in VGG19 [35], and we use the relu5_1 layer of VGG19 in the experiment.

Adversarial Loss. To improve the visual quality of SR images, many SR meth-
ods [17,44] introduce GANs [1,7] which have achieved good performance for SR.
Specifically, we use WGAN [1] loss as follows,

Lodv=Exsp~Psp[D(Xsr)| — Ex gr~rar [D(XHR)], (11)

where D(-) is a discriminator, Pgp is the distribution of the generated SR images,
and Pyg is the distribution of the real data.
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4 Experiments

Datasets. In the experiment, we consider the RefSR dataset, i.e., CUFED5
[56], which consists of a training set and a testing set. The CUFED5 training set
contains 11,871 training pairs, and each pair has an original HR image and a cor-
responding Ref image at the size of 160 x 160. The CUFEDS? testing set has 126
input images and each image has 4 reference images with different similarity lev-
els. For fair comparisons, all models are trained on the training set of CUFEDS5.
To evaluate the generalization ability, we test our model on the CUFEDS5 test-
ing set, Urban100 [10], Mangal09 [30], Sun80 [37] and WR-SR [12]. The Sun80
and WR-SR datasets contain 80 natural images, and each paired with one or
more reference images. For the Urban100 dataset, we concatenate the LR and
random sampled HR images as the reference images. For the Mangal09 dataset,
we randomly sample HR images as the reference images since there are no the
reference images. All experiments are conducted for 4x SR.

Evaluation Metrics. Existing RefSR methods [12,48,48] mainly use PSNR and
SSIM to compare the performance. Here, PSNR and SSIM are calculated on the
Y channel of YCbCr color space. In general, larger PSNR and SSIM correspond
to better performance of the RefSR method. In addition, we compare the model
size (i.e., the number of trainable parameters) of different models.

Implementation Details. The input LR images are generated by bicubicly
downsampling the HR images with scale factor 4. For the encoders and discrim-
inator, we adopt the same architectures as [12]. We use a pre-trained relul 1,
relu2_1 and relu3_1 of VGG19 to extract multi-scale features. we augment the
training data with randomly horizontal and vertical flipping or different random
rotations of 90°, 180° and 270°. Besides, we also augment the training data by
randomly changing different brightness, contrast and hue of an image by using
ColorJitter in pytorch. In the training, we set the batch size as 9, i.e., each batch
has 9 LR, HR and Ref patches. The size of LR images is 40 x 40, and the size
of HR and Ref images is 160 x 160. Following the training of [12], we set the
hype-parameters A\; and Ay as 1 x 1074 and 1 x 1076, respectively. We set the
learning rate of the SR model and discriminator as 1 x 10~%. For the Adam
optimizer, we set f; = 0.9 and 2 = 0.999. We provide more detailed network
architectures and training details in the supplementary material.

4.1 Comparison with State-of-the-Art Methods

We compare with the SISR methods (SRCNN [6], EDSR [22], RCAN [55],
SwinIR [19], SRGAN [17], ENet [33], ESRGAN [44], and RankSR-GAN [53]) and
RefSR methods (CrossNet [57], SRNTT [56], SSEN [34], TTSR [48], E2ENT2
[45], and MASA [27]). For fair comparisons, the above models are trained on
CUFEDS training set, and tested on CUFEDS testing set, Urban100, Mangal09,
Sun80 and WR-SR. In this experiment, we train our model on two cases only
with reconstruction loss (denoted as ‘-rec’), and with all loss functions.
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Table 1. Quantitative comparisons (PSNR and SSIM) of SR models trained with only
reconstruction loss (with the suffix ‘-rec’). We group methods by SISR and RefSR. We
mark the best results in bold.

SR paradigms | Methods CUFEDS5 [56] | Urban100 [10] | Mangal09 [30] | Sun80 [37] WR-SR [12]
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM

SISR SRCNN 6] 25.33 | 0.745 1 24.41 |0.738 |27.12 1 0.850 |28.26 |0.781 |27.27 |0.767
EDSR [22] 25.93 1 0.777 125.51 |0.783 [28.93 0.891 |28.52 |0.792 |28.07 |0.793
ENet [33] 24.24 10.695 23.63 |0.711 |25.25 0.802 |26.24 |0.702 |25.47 |0.699
RCAN [55] 26.06 | 0.769 | 25.42 |0.768 |29.38 0.895 |29.86 |0.810 |28.25 |0.799
SwinIR [19] 26.62 | 0.790 1 26.26 |0.797 |30.05 0.910 |30.11 |0.817 |28.06 |0.797

RefSR CrossNet [57] 25.48 0.764 | 25.11 |0.764 |[23.36 |0.741 |28.52 |0.793 |- -
SRNTT-rec [56] 26.24 1 0.784 1 25.50 |0.783 |28.95 0.885 |28.54 |0.793 |27.59 |0.780
TTSR-rec [48] 27.09 0.804 | 25.87 |0.784 |30.09 0.907 |30.02 |0.814 |27.97 |0.792
SSEN-rec [34] 26.78 0791 |- - - - - - - -
E2ENTZ rec [45] 24.24 |0.724 28.50 | 0.789
MASA-rec [27] 27.54 1 0.814 26.09 |0.786 |30.24 1 0.909 |30.15 |0.815 |28.19 |0.796
C*-Matching-rec [12] |28.24 |0.841 |26.03 |0.785 |30.47 |0.911 |30.18 |0.817 |28.32 |0.801
DATSR-rec (Ours) | 28.72 |0.856 | 26.52 | 0.798 | 30.49 | 0.912 |30.20 | 0.818  28.34 | 0.805

Table 2. Quantitative comparisons (PSNR and SSIM) of SR models trained with all
losses. We mark the best results in bold.

SR paradigms | Methods CUFEDS5 [56] | Urban100 [10] | Manga109 [30] | Sun80 [37] WR-SR [12]
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR|SSIM | PSNR | SSIM

SISR SRGAN [17] 24.40 0.702 | 24.07 |0.729 |25.12 |0.802 |26.76 |0.725 |26.21 | 0.728
ESRGAN [44] 21.90 | 0.633 20.91 |0.620 |23.53 |0.797 |24.18 |0.651 |26.07 | 0.726
RankSRGAN ([53] 22.31 | 0.635 |21.47 |0.624 |25.04 |0.803 |25.60 |0.667 |26.15 | 0.719

RefSR SRNTT [56] 25.61 |0.764 25.09 |0.774 |27.54 |0.862 |27.59 |0.756 |26.53 | 0.745
TTSR [48] 25.53 |0.765 24.62 |0.747 |28.70 |0.886 |28.59 |0.774 |26.83 |0.762
SSEN [34] 25.35 | 0.742
E2ENT? [45] 24.01 |0.705 | — - - - 28.13 | 0.765 | — -
MASA [27] 24.92 0.729 |23.78 |0.712 |27.26 |0.847 |27.12 |0.708 |25.74 | 0.717
C?-Matching [12] 27.16 | 0.805 |25.52 |0.764 |29.73 |0.893 |29.75 |0.799 |27.80 | 0.780
DATSR (Ours) 27.95 | 0.835 | 25.92 | 0.775 | 29.75 | 0.893 | 29.77 | 0.800 | 27.87 | 0.787

Quantitative Comparison. We provide quantitative comparisons of SR mod-
els trained with only reconstruction loss and all losses in Tables 1 and 2, respec-
tively. In Table 1, our model has the best PSNR and SSIM on all testing sets
and significantly outperforms all SISR and RefSR models. It implies that our
Transformer achieves the state-of-the-arts and good generalization performance.
For the SISR setting, our method performs better than the state-of-the-art SISR,
method [19]. Tt is difficult for these SISR methods to synthesize since the high-
frequency information is degraded. In contrast, our model is able to adaptively
discover the useful information from a reference image on the Urbanl00 and
Mangal(09 datasets even if it is a random image. For the RefSR setting, our
proposed DATSR significantly outperforms all methods with the help of the
cooperative transfer with deformable convolution module.

In Table2, our DATSR also achieves the much higher PSNR/SSIM values
than other RefSR methods with a large margin. Our DATSR trained with adver-
sarial loss reduces PSNR and SSIM but increases the visual quality. Still, it has
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the best performance over all compared methods. The above quantitative com-
parison results on different SR paradigms demonstrate the superiority of our
Transformer over state-of-the-art SISR and RefSR methods.

e
d R [
Input LR image i SRNTT-rec TTSR-rec

= IIIE

Input LR image __SwinR__ SRNTT-rec_ TTSRrec

Input LR i |mage SRNTT-rec TTSR-rec

|mage Ours-rec

Fig. 5. Qualitative comparisons of SISR and RefSR models trained with the recon-
struction loss.
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Fig. 6. Qualitative comparisons of SISR and RefSR models trained with all loss.

Qualitative Comparison. The visual results of our method are shown in Figs. 5
and 6. In these figures, our model also achieves the best performance on visual
quality when trained with the reconstruction loss and all loss. These results
demonstrate that our proposed method is able to transfer more accurate tex-
tures from the Ref images to generate SR images with higher quality. When
trained with the reconstruction loss, our medel can synthesize SR images with
sharp structure. Moreover, our method is able to search and transfer meaning-
ful texture in a local regions even if the Ref image is not globally relevant to
the input image. When trained with the adversarial loss, our model is able to
restore the realistic details in the output images which are very close to the
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HR ground-truth images with the help of the given Ref images. In contrast,
it is hard for ESRGAN and RankSRGAN to generate realistic images without
the Ref images since the degradation is severely destroyed and high frequency
details of images are lost. For RefSR methods, our model is able to synthesize
more realistic texture from the Ref images than SRNTT [56], TTSR [48], MASA
[27], and C2-Matching [12]. For example, in the top of Fig. 6, our model is able to
recover the “window” with sharper edge and higher quality than C2-Matching,
but other methods fail to restore it even if they have a Ref image.

28.75 —& - C2-Matching | | - - C2-Matching | | —& - C2-Matching
- —#- Ours - —% - Ours - _—l- Ours
o 28.501 R 1 S 1 a—
= . . \'\l
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______ -
- [ ——— .
28.001 ~. 1 T~ 1 "~
~ ~ '\. \.
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Brightness degree Contrast degree Hue degree

Fig. 7. Robustness to different image transformations. Our DATSR is more robust
than C2-Matching [12] under different image transformations.
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Fig. 8. Investigation on different types of reference images.

4.2 Further Analyses

Robustness to Image Transformations. We analyze the robustness of our
model to different kinds of image transformations. Specifically, we use ColorJitter
to augment the CUFED?S testing set by randomly change the brightness, contrast
and hue of Ref images into three group: small, medium and large. The detailed
settings are put in the supplementary materials. In Fig.7, our model is more
robust than C?-Matching [12] under different image transformations. Note that
the medium and large transformations are not included during training but our
model still has superior performance.

Effect on Type and Number of Ref Images. We test our model on different
Ref images, such as extreme images (i.e., may have only one color or noise
without any information) and random images from different testing sets. In
Fig. 8, our method has robust performance and high visual quality even if the
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Ref images have no useful texture information. In addition, our model has better
performance when increasing #Ref images in Fig. 9. Table 3 shows the results
of four similarity levels (“L1” to “L4”) where L1 is the most relevant level. Our
method achieves the best performance across all similarity levels.

Comparisons with Multi-RefSR Methods. We compare our model with
multi-RefSR methods, i.e., CIMR-SR [47] and AMRSR [32]. Note that these
multi-RefSR methods are trained with a collection of reference images. In
Table4, our model trained with single reference image performs better than
CIMR-~SR and AMRSR with many reference images, which further demonstrate
the superiority of our proposed DATSR.

29.00 0.860
= PSNR 100
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Fig. 9. Effect on #Ref images. Fig. 10. User study.

Table 3. Performance in terms of different similarity levels on CUFEDS5 test set.

Similarity levels L1 L2 L3 L4 Average
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
CrossNet [57] 25.48 |0.764 |25.48 |0.764 |25.47 0.763 |25.46 | 0.763 |25.47 |0.764
SRNTT-rec [56] 26.15 | 0.781 |26.04 |0.776 |25.98 |0.775 |25.95 |0.774 |26.03 |0.777
TTSR-rec [48] 26.99 1 0.800 |26.74 |0.791 26.64 0.788 |26.58 |0.787 |26.74 |0.792
C?-Matching-rec [12] | 28.11 |0.839 |27.26 |0.811 |27.07 1 0.804 | 26.85 |0.796 |27.32 | 0.813
DATSR-rec (Ours) |28.50 | 0.850 |27.47 | 0.820|27.22|0.811 | 26.96 0.803 | 27.54 | 0.821

4.3 More Evaluation Results

Perceptual Metric. We further use the perceptual metric LPIPS [52] to eval-
uate the visual quality of the generated SR images on the CUFED5 and WR-SR
testing sets. Recently, this metric is also widely used in many methods [28,29].
In general, smaller LPIPS corresponds to the better performance for RefSR. As
shown in Table5, our model achieves smaller LPIPS than C?-Matching. Thus,
our model generates SR images with better quality than C?-Matching.

User Study. To further evaluate the visual quality of the SR images, we conduct
the user study to compare our proposed method with previous state-of-the-art
methods, including SRNTT [56], TTSR [48], MASA [27] and C?-Matching [12]
on the WR-SR testing set. The user study contains 20 users, and each user
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is given multiple pairs of SR images where one is our result. Then, each user
chooses one image with better visual quality. The final percentage is the average
user preference of all images. In Fig. 10, over 80% of the users prefer that our
results have better quality than existing RefSR methods.

4.4 Discussion on Model Size

To further demonstrate the effectiveness of our model, we also show the compari-
son of model size (i.e., the number of trainable parameters) with the state-of-the-
art model (i.e., C2-Matching [12]) in Table 6. Our model has a total number of
18.0M parameters and achieves PSNR and SSIM of 28.72 and 0.856, respectively.
The results demonstrate that our proposed model outperforms C?-Matching
with a large margin, although our model size is higher than this method. The
part of our model size comes from the Swin Transformer in the RFA module.
More discussions of other RefSR models are put in the supplementary materials.

Table 4. Comparisons with Multi-RefSR on the  Table 5. Comparisons of
CUFEDS testing set. LPIPS [52] with C*-Matching.

Methods | CIMR-SR [47] AMRSR [32] DATSR-rec Methods CUFED5|[WR-SR
w/ rec. loss 26.35/0.780 |28.32/0.839 |28.72/0.856  C2-Matching [12][0.164  |0.219
w/ all losses|26.16/0.781 |27.49/0.815 |27.95/0.835  DATSR (Ours) |0.140 |0.211

Table 6. Comparisons of model size and  Table 7. Ablation study on the

performance with C*-Matching. RDA and RFA modules.
Methods Params| PSNR|SSIM Methods PSNR SSIM
TTSR-rec [48] 6.4M  127.09 10.804 RDA (w/ feature warping)|28.25 |0.844

RFA (w/ ResNet blocks) |28.50 0.850

2 .
C*“-Matching-rec [12]|8.9M |28.24 |0.841 DATSR.zo0 28.72|0.856

DATSR-rec (Ours) |18.0M |28.72|0.856

4.5 Ablation Study

We first investigate the effectiveness of RDA and RFA in Table 7. Specifically,
we replace the texture transfer method in RDA with a feature warping based on
the most relevant correspondence, and replace RFA with several convolutional
neural networks (CNNs). The model with feature warping or CNNs is worse
than original model with RDA or RFA. Therefore, RDA is able to discover more
relevant features especially when the correspondence is not inaccurate.

For RFA, our model has better performance than the directly using simple
CNNs. Nevertheless, with the help of RDA, training with CNNs still outperforms
C?-Matching with large margin. Therefore, it verifies that the effectiveness of
RFA and it is able to aggregate the features at different scales. More discussions
on ablation studies are put in the supplementary materials.
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5 Conclusion

In this work, we propose a novel reference-based image super-resolution with
deformable attention Transformer, called DATSR. Specifically, we use texture
feature encoders module to extract multi-scale features and alleviate the reso-
lution and transformation gap between LR and Ref images. Then, we propose
reference-based deformable attention module to discover relevant textures, adap-
tively transfer the textures, and relieve the correspondence mismatching issue.
Last, we propose a residual feature aggregation module to fuse features and
generate SR images. Extensive experiments verify that DATSR achieves the
state-of-the-arts performance as it is robust to different brightness, contrast,
and color between LR and Ref images, and still shows good robustness even in
some extreme cases, when the Ref images have no useful texture information.
Moreover, DATSR, trained with a single Ref image has better performance than
existing Multi-RefSR methods trained with multiple Ref images.
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