
Learning continuous piecewise non-linear activation
functions for deep neural networks

1st Xinchen Gao
UESTC

Chengdu, China

gxc0327@gmail.com

2nd Yawei Li†
ETH Zurich

Zurich, Switzerland

yawei.li@vision.ee.ethz.ch

3rd Wen Li∗
UESTC

Chengdu, China

liwenbnu@gmail.com

4th Lixin Duan
UESTC

Chengdu, China

lxduan@gmail.com

5th Luc Van Gool
ETH Zurich

Zurich, Switzerland

vangool@vision.ee.ethz.ch

6th Luca Benini
ETH Zurich

Zurich, Switzerland

lbenini@iis.ee.ethz.ch

7th Michele Magno
ETH Zurich

Zurich, Switzerland

michele.magno@pbl.ee.ethz.ch

Abstract—Activation functions provide the non-linearity to
deep neural networks, which are crucial for the optimization
and performance improvement. In this paper, we propose a
learnable continuous piece-wise nonlinear activation function
(or CPN in short), which improves the widely used ReLU
from three directions, i.e., finer pieces, non-linear terms and
learnable parameterization. CPN is a continuous activation
function with multiple pieces and incorporates non-linear terms
in every interval. We give a general formulation of CPN and
provide different implementations according to three key factors:
whether the activation space is divided uniformly or not, whether
the non-linear terms exist or not, and whether the activation
function is continuous or not. We demonstrate the effectiveness
of our method on image classification and single image super-
resolution tasks by simply changing the activation function. For
example, CPN improves 4.78% / 4.52% top-1 accuracy over
ReLU on MobileNetV2 0.25 / MobileNetV2 0.35 for ImageNet
classification and achieves better PSNR on several benchmarks
for super-resolution. Our implementation is available at https:
//github.com/xc-G/CPN.

Index Terms—Deep neural networks, piecewise activation func-
tions, non-linear terms

I. INTRODUCTION

Advances in deep neural networks have triggered vigor-

ous development in many fields, especially computer vision.

During the past decade, many excellent works on model

design have emerged for computer vision [1]–[8]. When we

concentrate on the details of model architecture, non-linear

activation functions are important functional building blocks

for deep neural networks. They provide generality to deep

neural networks by introducing the capability of modeling

non-linearity between inputs and outputs of the network. The

rectified linear unit (ReLU) [9], one of the most popular

†Equal contribution, *corresponding author.

non-linear activation functions, is simple and effective. ReLU

can be regarded as two linear units with different slopes and

intercepts. ReLU helps to solve the gradient vanishing problem

in deep neural networks with Tanh or Sigmoid activation

functions by avoiding the saturation area.

Recently, some works [10]–[13] generalize ReLU to piece-

wise activation functions. For example, MTLU [10] uniformly

divides the activation space into multiple pieces and param-

eterizes the slope and intercept of the linear unit in each

section independently. Yet, since each small section of MTLU

is learned independently from the others, the function is

not continuous. In addition, MTLU only introduces linear

terms into each section, which restricts the expressiveness

of the deep neural networks. Piecewise activation functions

like SELU [14], ELU [15], and Hard-swish [5] introduce

differentiable non-linear terms such as σ(x), x2. However,

these functions either tend to have too few pieces, or no

learnable parameters, which limits their non-linear capacity.

Thus, in this paper, we try to solve the aforementioned

problems and further improve the nonlinear capacity of deep

neural networks. We propose a learnable continuous piece-

wise non-linear (CPN) activation function to comprehensively

optimize ReLU from three aspects: finer pieces, non-linear

terms and learnable parameterization. Concretely, the acti-

vation space of CPN is divided into multiple sections. In

each section, based on previous piecewise activation functions

only with linear units, we incorporate a non-linear term to

construct a hybrid unit in every interval. Both linear and non-

linear terms are associated with learnable parameters. The

introduced non-linear terms further improve the expressiveness

of the networks. In addition, we enforce continuity constraints

on the proposed piecewise non-linear activation functions for

1835

2023 IEEE International Conference on Multimedia and Expo (ICME)

1945-788X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICME55011.2023.00315

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 M

ul
tim

ed
ia

 a
nd

 E
xp

o
(I

C
M

E)
 |

97
8-

1-
66

54
-6

89
1-

6/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

M
E5

50
11

.2
02

3.
00

31
5

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 23,2025 at 14:14:10 UTC from IEEE Xplore. Restrictions apply.

better optimization. Beyond that, a generalized formulation of

CPN is proposed. Previous piecewise activation functions like

MTLU and Hard-swish can be considered as special cases

of the generalized formulation. For the implementation, we

explore different versions of CPN according to three key

factors: continuity, uniform division of activation space, and

the existence of the non-linear terms.

We evaluate the proposed CPN for image classification and

single image super-resolution tasks. For image classification,

by replacing the original ReLU in MobileNetV2 0.25 / Mo-

bileNetV2 0.35 with CPN, the top-1 accuracy is improved by

4.78% / 4.52%. For the super-resolution task, the evaluation

metric PSNR is improved on several standard benchmarks,

which demonstrates the effectiveness of our method.

In summary, our major contributions are as follows:

1) We propose a continuous piecewise non-linear activation

function to further improve the non-linear capacity.

2) The proposed CPN can be regarded as the generalized

version of existing piecewise activation functions.

3) The results on different vision tasks demonstrate the

effectiveness of our proposed method.

II. RELATED WORK

Non-linear activation functions are important building

blocks of deep neural networks. Without them, deep neural

networks can only capture linear relationships between the

input and output. Sigmoid function and Tanh are first applied

to multilayer perceptrons. The simple and effective ReLU is

proposed to solve the gradient vanishing problem of Sigmoid

and Tanh and becomes the most popular activation function.

Recently, there are plenty of works to improve ReLU

from different perspectives. Leaky ReLU [16] uses a fixed

nonzero slope for the negative input, and PReLU [17] pa-

rameterizes this slope to adaptively learn the parameters of

the rectified units. MTLU [10], PWLU [11], Maxout [12] and

DyReLU [13] generalize the two-piece ReLU to activation

functions with multiple pieces. MTLU learns the slope and

intercept of the linear unit in each section independently [10].

PWLU enforces a continuity constraint between different

pieces of the activation function [11]. Besides learning the

shape parameters such as the boundary points, slopes, and

mapping value of the division points, a statistical realignment

strategy is also proposed for PWLU to align the effective re-

gion with the input data. Maxout calculates multiple learnable

linear mappings for every input value and takes the maximum

as the activated value [12]. DyReLU [13] is the dynamic

version of Maxout. It utilizes a hypernet to adaptively learn

dynamic parameters for the multiple linear units. However,

these piecewise activation functions only involve linear units

within every single interval. In this paper, we propose to

introduce non-linear terms for every interval.

Some works [5], [14], [15], [18] introduce differential non-

linear terms to activation functions. For example, the second

piece of the three-piece Hardswish is a non-linear term x ×
(x+3)/6. However, these functions either have too few pieces,

or have no learnable parameters.

DyReLU [13] and xUnit [19] are dynamic functions whose

coefficients are calculated over inputs. Squeeze-and-Excitation

units also strengthen networks from the same perspective [20].

Yet, these methods resort to additional convolution neural

networks to achieve the dynamic mechanism, which introduces

much more parameters into the network compared with the

proposed method.

Aiming at solving the problems mentioned above, we

propose our continuous learnable piecewise non-linear acti-

vation function. We comprehensively optimize ReLU from

the aspects of more pieces, non-linear terms, and learnable

parameterization.

III. METHODOLOGY

In this paper, we propose a learnable continuous piecewise

non-linear activation function (CPN) that introduces non-linear

terms in each small section under continuity constraint. We can

formulate the CPN as follows:

CPN(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1∗x+ b1 ∗ f(x) + c1, x ≤ x1,

a2∗x+ b2 ∗ f(x) + c2, x1 < x ≤ x2,

...

ak∗x+ bk ∗ f(x) + ck, xk−1 < x.

(1)

where {ai, bi, ci}i=1,2,...,k are learnable parameters, f(x)
is the non-linear term such as Sigmoid function. The

activation space (−∞,+∞) are divided into k sections

(−∞, x1], (x1, x2], (x2, x3], ..., (xk−1,+∞) by k − 1 end-

points x1, x2, ..., xk−1. Interestingly, activation functions like

ReLU and Hard-Swish can be regarded as special cases of

CPN. The proposed CPN has three key factors determining

the shape of activation:

• Whether the activation space is divided uniformly or not,

that is, whether x2 − x1 = ... = xk−1 − xk−2 = d.

• Whether the non-linear terms exit or not, that is, whether

{bi = 0}i=1,...,k.

• Whether the activation function is continuous or not, that

is, whether CPN(x−i) = CPN(x+
i).

Based on these three key factors, we get different versions of

CPN, and we will introduce them in turn.

A. CPNm

When we divide the activation space uniformly, remove the

non-linear terms and get rid of the continuity constraint, the

CPN degenerates to the MTLU which we also call CPNm.

Therefore, the formulation of MTLU (CPNm) is:

CPNm(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1∗x+ c1, x ≤ x1,

a2∗x+ c2, x1 < x ≤ x2,

...

ak∗x+ ck, xk−1 < x.

(2)

In MTLU, the activation space is divided uniformly. Specif-

ically, we usually divide the interval [−1, 1] into k inter-

vals by k − 1 endpoints points x1, ..., xk−1. We additionally

define x0 = −1, xk = 1, so the k intervals’ range are

(x0, x1], (x1, x2], ..., (xk−1, xk], respectively. In each interval,

1836

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 23,2025 at 14:14:10 UTC from IEEE Xplore. Restrictions apply.

���� ���

���� ���
��	� �	�

��
� �
�

���� ���

���� ���

��
� �
�

���� ���

�

�

��

��

��

�	

�

��

��
�
 ��

�

�

�� �� �	

�����

�����
�	���

�
���

�

�

(a)
�� �� �
�� �� �� ���
�	

(b) (c)
�� �� �
�� �� �� ���
�	

Fig. 1. The sketch of MTLU, CPNmc and CPNnl. (a) MTLU of k = 8. In MTLU, the linear unit of each small interval is learned independently, so the
shape of MTLU is usually not continuous. (b) CPNmc of k = 8. In CPNmc, we learn the mapping values of endpoints of all intervals, so the shape is
continuous. (c) CPNnl of k = 4. In CPNnl, we learn the coefficients of k functions and take the maximum as the activated value, so the shape is continuous.
However, the activation space is not divided uniformly.

MTLU constructs a linear unit with the learnable parameters

of slope ai and intercept ci. Therefore, the shape of MTLU is

usually not continuous. Note that for the inputs less than or

equal to x0, they share the same parameters with the section

(x0, x1]. Similarly, the inputs greater than xk share the same

parameters with the section (xk−1, xk]. It is worth noting that

the MTLU (CPNm) is channel-wise. Thus, for the feature map

of C channels, the number of parameters of MTLU is C∗k∗2.

We present an example of MTLU (CPNm) of 8 pieces in Fig. 1

(a).

B. CPNmc

When we impose continuity constraint on MTLU (CPNm),

we can obtain a continuous version of MTLU termed CPNmc.

In MTLU, since the linear unit of each section is learned inde-

pendently, the resulting shape of the MTLU is not continuous,

that is MTLU(x−i) �= MTLU(x+
i). The formulation of CPNmc

is the same as MTLU. However, in CPNmc, we force the

function to be continuous at the endpoints of all intervals, i.e.
CPN(x−i) = CPN(x+

i).
For simplicity, we adopt a similar implementation to

PWLU. Specifically, instead of learning the slope and

intercept of each small interval independently, we pa-

rameterize the mapping value of the endpoints of each

small interval in CPNmc. Specifically, for the k intervals

(x0, x1], (x1, x2], ..., (xk−1, xk], where we fix x0 = −1, xk =
1 like MTLU, we learn the mapping value of the right endpoint

of each small interval. That is, we fix y0 = 0, and define k
learnable parameters {yi}i=1,2,...,k. Then we force the CPNmc

to pass by the k+1 coordinates [(x0, y0), (x1, y1), ..., (xk, yk)],
which determine the shape of the linear unit of each interval.

For each small interval, the slope and intercept can be calcu-

lated by:

ai =yi − yi−1/xi − xi−1,

ci =yi − xi(yi − yi−1)/(xi − xi−1).
(3)

For the inputs out of the range of [−1, 1], we adopt a similar

strategy to MTLU. In addition, CPNmc is applied channel-

wise like MTLU. Thus, for the feature map of C channels,

the number of parameters of MTLU is C ∗ k ∗ 1, only half

of MTLU. When we train CPNmc with back-propagation

algorithm, the gradient of CPNmc(x) with respect to yi can

be calculated by Eqn. 4 simply according to the forward pass.

∂CPNmc(x)/∂yi = (x− xi−1)/(xi − xi−1). (4)

Since the slope and intercept of the linear unit within

each small interval are determined by the mapping values of

endpoints, the shape of CPNmc is surely continuous. In Fig. 1

(b), we show the sketch of CPNmc.

C. CPNnl

Further, when we introduce the non-linear term for each

small interval and remove the constraint on the uniform

division of activation space, we obtain the piecewise non-linear

activation function denoted by CPNnl.

For the non-linear term f(x) introduced in CPNnl, we resort

to the Sigmoid linear unit (SiLU), a simple and effective non-

linear activation function, which is formulated as:

f(x) = SiLU(x) = x ∗ σ(x). (5)

Where σ is the Sigmoid function.

During training, to implement the continuous CPNnl simply,

we adopt a similar strategy to ReLU. ReLU can be viewed

as calculating two linear mappings for each input value and

taking the maximum one as the activated value, which can be

written as:

ReLU(x) = max(w1x+ b1, w2x+ b2),

s.t.(w1,b1) = (0, 0), (w2, b2) = (1, 0).
(6)

Therefore, based on ReLU, we resort to k functions to calcu-

late k mapping values for each input value and the maximum

is taken as the activated value. We formulate CPNnl as:

CPNnl(x) = max{p1(x), p2(x), ..., pk(x)},
pi(x) = ai∗x+ bi ∗ x ∗ σ(x) + ci, (i = 1, ..., k).

(7)

where k is the number of functions, {ai, bi, ci}i=1,..,k are

learnable coefficients. Since the intersections of the k acti-

vation functions are not evenly distributed, the lengths of the

1837

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 23,2025 at 14:14:10 UTC from IEEE Xplore. Restrictions apply.

intervals are not equal. During inference, there are two ways

to implement the CPNnl. One is to adopt the same imple-

mentation as the training phase, and the other is to compute

the intersection points of the k functions in advance, then

use the Eqn. 1 to do forward-propagation. Specifically, after

training, we can obtain the division points of the activation

space d1, ..., dm. Then specific activation function u(x) of

each interval can be determined. Therefore, we can compute

the activated values by the specific activation function directly

instead of repeating k calculations in each interval.

Similar to the previous two activation functions, CPNnl is

also applied channel-wise. Thus, for the feature map of C
channels, the number of parameters of MTLU is C ∗k ∗3. We

plot the skecth of CPNnl in Fig. 1 (c).

IV. EXPERIMENTAL RESULTS

We verify the effectiveness of our proposed CPN for the

image classification task and transfer to the single image super-

resolution task on several standard datasets.

A. Datasets and evaluation metrics

Image classification. We conduct image classification experi-

ments on the ImageNet1K dataset, which is the most popular

dataset in the field of computer vision. ImageNet1K contains

a total of 1,000 categories, consisting of about 1.28M training

images, and 50,000 validation images. The evaluation metrics

for image classification we use are Top-1 accuracy and Top-5

accuracy on the validation dataset.

Single image super-resolution. For the super-resolution task,

we follow the routine, taking 800 training images from

DIV2K [21] as the training set. Then we evaluate our methods

on the DIV2k validation set containing 100 images, Set5 [22],

Set14 [23], B100 [24], and Urban100 [25], [26]. As for the

evaluation metric, We evaluate the results with peak signal-to-

noise ratio (PSNR).

B. Experimental setup

We implement all experiments using PyTorch 1.7.1 on

Nvidia Geforce RTX 2080Ti GPUs.

Implementation details. As mentioned in Sec. III, the hyper-

parameter k represents the number of pieces (or the number

of functions) in our CPN. In our experiments, we set k to 20

for MTLU and CPNmc, 4 for CPNnl, respectively. Therefore,

for a feature map of C channels, the numbers of parameters

of MTLU, CPNmc and CPNnl are 40 ∗C, 20 ∗C and 12 ∗C,

respectively. Compared to a standard 3 × 3 convolution with

the number of parameters of 9∗C2, the number of parameters

of our proposed CPN is quite little.

Image classification. We train the models for 150 epochs with

the batch size set to 512. The initial learning rate is set to 0.1,

the SGD optimizer with a momentum of 0.9 is used and the

cosine learning rate scheduler is used to decay the learning

rate to 0.

Single image super-resolution. We train models from scratch

for ×2 SR, and for ×3 and ×4 SR, we train models from

corresponding pretrained ×2 model models. As for training

TABLE I
IMAGE CLASSIFICATION ACCURACY ON THE IMAGENET VALIDATION SET

OF MODELS WITH DIFFERENT ACTIVATION FUNCTIONS. THE BEST

RESULTS ARE BOLDED.

model activation top1-acc top5-acc

MobileNetV2 0.25

ReLU 52.75% 76.43%
MTLU 55.13% 77.69%
CPNmc 55.52% 78.43%
CPNnl 57.53% 80.10%

MobileNetV2 0.35
ReLU 59.15% 81.84%
MTLU 60.73% 82.26%
CPNmc 61.30% 83.19%
CPNnl 63.67% 84.81%

TABLE II
SUPER-RESOLUTION RESULTS FOR ×2,×3,×4 SCALES ON DIV2K, SET5,
SET14, B100 AND URBAN100 BENCHMARKS. PSNR (IN DB) IS USED AS

THE EVALUATION METRIC, AND THE BEST RESULTS ARE BOLDED.

scale activation training strategy DIV2K Set5 Set14 B100 Urban100

×2
ReLU from scratch 34.54 37.92 33.50 32.14 31.88
MTLU from scratch 34.56 37.95 33.54 32.15 31.93
CPNnl from scratch 34.58 38.00 33.51 32.15 31.94

×3
ReLU from x2 30.90 34.32 30.28 29.08 28.09
MTLU from x2 30.90 34.35 30.29 29.08 28.10
CPNnl from x2 30.95 34.40 30.31 29.10 28.14

×4
ReLU from x2 28.94 32.15 28.58 27.56 26.02
MTLU from x2 28.94 32.05 28.55 27.57 26.01
CPNnl from x2 28.98 32.11 28.59 27.58 26.07

details, the models are trained for 300 epochs with a batch

size of 16, using Adam optimizer with β = (0.9, 0.999). We

set the initial learning rate to 1×10−4 and utilize the MultiStep

scheduler to decay the learning rate to half every 200 epochs.

C. Experiment results

Image classification. For image classification, we take the

lightweight MobileNetV2 0.25 (0.35) with the width mul-

tiplier of 0.25 (0.35) as the baseline model. Similarly, we

compare our proposed CPN with other activation functions by

replacing the original ReLU6 activation function. We denote

the models by MobileNetV2 “w” “af” (“w” is the width mul-

tiplier and “af” is the specific activation function). The results

shown in Tabel I demonstrate that our CPN gains significant

performance improvement over ReLU and MTLU. Our Mo-

bileNetV2 0.25 CPNmc/CPNnl achieve 55.52%/57.53% Top-

1 accuracy on ImageNet, being 2.77%/4.78% higher than

MobileNetV2 0.25 ReLU and 0.39%/2.40% higher than Mo-

bileNetV2 0.25 MTLU, respectively. When the width mul-

tiplier is set to 0.35, our CPNnl improves Top-1 accuracy

on the ImageNet by 4.52% and 2.94% over ReLU and

MTLU, respectively. When compared to DyReLU on Mo-

bileNetV2 0.35, the improvement achieved by CPN nl is

1.56% higher than that of DyReLU-A, and the number of

parameters is less in our method. We visualize the Top-

1 ImageNet validation accuracy curve and the training loss

curve during training phase in Fig. 2. It obvious that our

proposed CPN leads to a higher validation accuracy and

a lower training loss than other activation functions during

1838

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 23,2025 at 14:14:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The comparison of Top-1 validation accuracy and training loss between our proposed CPN and other activation functions on MobileNetV2 0.25 and
MobileNetV2 0.35. The red line is our CPNnl and the blue line is our CPNmc.

����������� ����������
 ����������� �����������

�����������������������������������
������������

Fig. 3. Some examples of learned CPNnl in MobileNetV2 0.25. We present
CPNnl f g h for the h-th channel of the g-th layer in the f -th block.

TABLE III
THE COMPARISONS OF DIFFERENT TRAINING STRATEGY FOR ×2

SUPER-RESOLUTION TASK.

activation training strategy DIV2K Set5 Set14 B100 Urban100

ReLU from scratch 34.54 37.92 33.50 32.14 31.88

MTLU
from scratch 34.56 37.95 33.54 32.15 31.93

finetune 34.64 37.90 33.56 32.18 32.05

CPNnl
from scratch 34.58 38.00 33.51 32.15 31.94

finetune 34.64 37.98 33.56 32.18 32.06

training. In Fig. 3, we present some examples of the CPNnl in

MobileNetV2 0.25 CPNnl. All the activation functions show

non-linearity.

Single image super-resolution. The EDSR baseline single-

scale model with 64 feature maps in each layer and 16 basic

blocks is taken as our baseline model. All the models are

denoted by CPN “af” (“af” is the specific activation function).

We construct different models by replacing the original ReLU

with our CPN and other activation functions for comparison.

The ×2, ×3 and ×4 SR results are shown in Tab. II. It is

obvious that our method outperforms the original ReLU and

MTLU specially designed for super-resolution. Specifically,

we surpass ReLU by 0.04 to 0.05dB on DIV2K, about 0.08dB

on Set5, 0.01dB on Set14, 0.01 to 0.02dB on B100 and 0.05

to 0.06dB on Urban100, respectively.

D. Ablation Study

Training strategy. Considering that we only replace the

activation functions in the model instead of changing the

model architecture. We also adopt a finetuning strategy in

TABLE IV
THE COMPARISON OF DIFFERENT IMPLEMENTATIONS FOR ×2

SUPER-RESOLUTION.

training strategy activation DIV2K Set5 Set14 B100 Urban100

from scratch
CPNnl−1 34.56 37.96 33.48 32.14 31.91
CPNnl−2 34.54 37.92 33.47 32.13 31.91

CPNnl 34.58 38.00 33.51 32.15 31.94

finetune
CPNnl−1 34.63 37.96 33.56 32.17 32.03
CPNnl−2 34.60 37.95 33.55 32.16 32.03

CPNnl 34.64 37.98 33.56 32.18 32.06

TABLE V
COMPARISON OF DIFFERENT VALUES OF k FOR ×2 SUPER-RESOLUTION.

k DIV2K Set5 Set14 B100 Urban100 average

2 34.57 37.96 33.49 32.15 31.98 34.03
4 34.58 38.00 33.51 32.15 31.94 34.04
8 34.59 37.99 33.50 32.16 31.99 34.05

which we only train the learnable parameters of introduced

activation functions and freeze other model parameters from

the pretrained baseline model. The experiments on ×2 SR

demonstrate the superiority of the finetuning strategy. The

results are shown in Tab. III. Specifically, when trained with

the fineutuning strategy from pretrained baseline model, both

MTLU and our proposed CPNnl outperform the corresponding

models and baseline model that are trained from scratch

significantly.

Implementations. We adopt different implementations of

CPN introducing the non-linear term. Instead of the simple

implementation introduced in Sec. III-C, we also provide an-

other two versions of CPNnl, termed CPNnl−1 and CPNnl−2,

respectively. For CPNnl−1, we adopt a similar implementa-

tion to MTLU, parameterizing the coefficients of each small

interval. For CPNnl−2, we learn the mapping value of the

endpoints of intervals and force the activation function to pass

the points, then the calculation of coefficients is converted to

the simple equation-solving problem. We compare different

ways of implementation for ×2 super-resolution. The result

is shown in Tab. IV, demonstrating the effectiveness of our

adopted implementation.

Value of k. k in Formulation 1 determines the number of

pieces in CPN. We compare different values of k of CPNnl,

1839

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 23,2025 at 14:14:10 UTC from IEEE Xplore. Restrictions apply.

in which k is the number of functions. The results in Tab. V

demonstrate that with the increase of the number of pieces,

the expression capacity of models improves slightly.

V. CONCLUSION

In this paper, we propose a general learnable continuous

piecewise non-linear activation function called CPN. We pro-

vide a general formulation of piecewise activation functions,

introduce the non-linear term to each small interval and impose

a continuity constraint. The extensive experiments on several

benchmarks verify the effectiveness and superiority of our pro-

posed activation function for different vision tasks including

image classification and single-image super-resolution.

ACKNOWLEDGMENT

This work is supported by the Major Project for New

Generation of AI under Grant No. 2018AAA0100400, the

National Natural Science Foundation of China (No. 62176047,

82121003), Shenzhen Fundamental Research Program (No.

JCYJ20220530164812027), Sichuan Science and Technology

Program (No. 2021YFS0374, 2022YFS0600), and the Funda-

mental Research Funds for the Central Universities Grant (No.

ZYGX2021YGLH208).

REFERENCES

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in Proc. CVPR. IEEE, 2016,
pp. 770–778.

[2] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang, “Image
super-resolution using deep convolutional networks,” IEEE TPAMI, vol.
38, no. 2, pp. 295–307, 2015.

[3] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen, “Mobilenetv2: Inverted residuals and linear
bottlenecks,” in Proc. CVPR. IEEE, 2018, pp. 4510–4520.

[4] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung
Mu Lee, “Enhanced deep residual networks for single image super-
resolution,” in Proc. CVPRW. IEEE, 2017, pp. 136–144.

[5] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen,
Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang,
Vijay Vasudevan, et al., “Searching for mobilenetv3,” in Proc. ICCV.
IEEE, 2019, pp. 1314–1324.

[6] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo, “Swin transformer: Hierarchical vision
transformer using shifted windows,” in Proc. ICCV. IEEE, 2021, pp.
10012–10022.

[7] Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc Van Gool,
“Localvit: Bringing locality to vision transformers,” arXiv preprint
arXiv:2104.05707, 2021.

[8] Yawei Li, Yuchen Fan, Xiaoyu Xiang, Denis Demandolx, Rakesh
Ranjan, Radu Timofte, Luc Van Gool, “Efficient and Explicit Modelling
of Image Hierarchies for Image Restoration,” in Proc. CVPR. IEEE,
2023.

[9] Vinod Nair and Geoffrey E Hinton, “Rectified linear units improve
restricted boltzmann machines,” in ICML, 2010, pp. 807–814

[10] Shuhang Gu, Wen Li, Luc Van Gool, and Radu Timofte, “Fast image
restoration with multi-bin trainable linear units,” in Proc. ICCV. IEEE,
2019, pp. 4190–4199.

[11] Yucong Zhou, Zezhou Zhu, and Zhao Zhong, “Learning specialized
activation functions with the piecewise linear unit,” in Proc. ICCV.
IEEE, 2021, pp. 12095–12104.

[12] Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville,
and Yoshua Bengio, “Maxout networks,” in ICML. PMLR, 2013, pp.
1319–1327.

[13] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan,
and Zicheng Liu, “Dynamic relu,” in Proc. ECCV. Springer, 2020, pp.
351–367.

[14] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp
Hochreiter, “Self-normalizing neural networks,” in NIPS, vol. 30, 2017.

[15] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter, “Fast
and accurate deep network learning by exponential linear units (elus),”
arXiv preprint arXiv:1511.07289, 2015.

[16] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al., “Rectifier
nonlinearities improve neural network acoustic models,” in ICML.
Atlanta, Georgia, USA, 2013, vol. 30, p. 3.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification,” in Proc. ICCV. IEEE, 2015, pp. 1026–1034.

[18] Prajit Ramachandran, Barret Zoph, and Quoc V Le, “Searching for
activation functions,” arXiv preprint arXiv:1710.05941, 2017.

[19] Idan Kligvasser, Tamar Rott Shaham, and Tomer Michaeli, “xunit:
Learning a spatial activation function for efficient image restoration,”
in Proc. CVPR. IEEE, 2018, pp. 2433–2442.

[20] Jie Hu, Li Shen, and Gang Sun, “Squeeze-and-excitation networks,” in
Proc. CVPR. IEEE, 2018, pp. 7132–7141.

[21] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang,
and Lei Zhang, “Ntire 2017 challenge on single image super-resolution:
Methods and results,” in Proc. CVPRW. IEEE, 2017, pp. 114–125.

[22] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line
Alberi-Morel, “Low-complexity single-image super-resolution based on
nonnegative neighbor embedding,” 2012.

[23] Roman Zeyde, Michael Elad, and Matan Protter, “On single image
scale-up using sparse-representations,” in Proc. Curves and Surfaces.
Springer, 2010, pp. 711–730.

[24] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik, “A
database of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecological statistics,”
in Proc. ICCV. IEEE, 2001, vol. 2, pp. 416–423.

[25] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja, “Single image
super-resolution from transformed self-exemplars,” in Proc. CVPR.
IEEE, 2015, pp. 5197–5206.

[26] Sergey Ioffe and Christian Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” in ICML.
PMLR, 2015, pp. 448–456.

1840

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 23,2025 at 14:14:10 UTC from IEEE Xplore. Restrictions apply.

