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Abstract—Activation functions provide the non-linearity to
deep neural networks, which are crucial for the optimization
and performance improvement. In this paper, we propose a
learnable continuous piece-wise nonlinear activation function
(or CPN in short), which improves the widely used ReLU
from three directions, i.e., finer pieces, non-linear terms and
learnable parameterization. CPN is a continuous activation
function with multiple pieces and incorporates non-linear terms
in every interval. We give a general formulation of CPN and
provide different implementations according to three key factors:
whether the activation space is divided uniformly or not, whether
the non-linear terms exist or not, and whether the activation
function is continuous or not. We demonstrate the effectiveness
of our method on image classification and single image super-
resolution tasks by simply changing the activation function. For
example, CPN improves 4.78% / 4.52% top-1 accuracy over
ReLU on MobileNetV2_0.25 / MobileNetV2_0.35 for ImageNet
classification and achieves better PSNR on several benchmarks
for super-resolution. Our implementation is available at https:
/Igithub.com/xc-G/CPN.

Index Terms—Deep neural networks, piecewise activation func-
tions, non-linear terms

I. INTRODUCTION

Advances in deep neural networks have triggered vigor-
ous development in many fields, especially computer vision.
During the past decade, many excellent works on model
design have emerged for computer vision [1]-[8]. When we
concentrate on the details of model architecture, non-linear
activation functions are important functional building blocks
for deep neural networks. They provide generality to deep
neural networks by introducing the capability of modeling
non-linearity between inputs and outputs of the network. The
rectified linear unit (ReLU) [9], one of the most popular
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non-linear activation functions, is simple and effective. ReLU
can be regarded as two linear units with different slopes and
intercepts. ReLU helps to solve the gradient vanishing problem
in deep neural networks with Tanh or Sigmoid activation
functions by avoiding the saturation area.

Recently, some works [10]-[13] generalize ReLLU to piece-
wise activation functions. For example, MTLU [10] uniformly
divides the activation space into multiple pieces and param-
eterizes the slope and intercept of the linear unit in each
section independently. Yet, since each small section of MTLU
is learned independently from the others, the function is
not continuous. In addition, MTLU only introduces linear
terms into each section, which restricts the expressiveness
of the deep neural networks. Piecewise activation functions
like SELU [14], ELU [15], and Hard-swish [5] introduce
differentiable non-linear terms such as o(z), 2. However,
these functions either tend to have too few pieces, or no
learnable parameters, which limits their non-linear capacity.

Thus, in this paper, we try to solve the aforementioned
problems and further improve the nonlinear capacity of deep
neural networks. We propose a learnable continuous piece-
wise non-linear (CPN) activation function to comprehensively
optimize ReLLU from three aspects: finer pieces, non-linear
terms and learnable parameterization. Concretely, the acti-
vation space of CPN is divided into multiple sections. In
each section, based on previous piecewise activation functions
only with linear units, we incorporate a non-linear term to
construct a hybrid unit in every interval. Both linear and non-
linear terms are associated with learnable parameters. The
introduced non-linear terms further improve the expressiveness
of the networks. In addition, we enforce continuity constraints
on the proposed piecewise non-linear activation functions for
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better optimization. Beyond that, a generalized formulation of
CPN is proposed. Previous piecewise activation functions like
MTLU and Hard-swish can be considered as special cases
of the generalized formulation. For the implementation, we
explore different versions of CPN according to three key
factors: continuity, uniform division of activation space, and
the existence of the non-linear terms.

We evaluate the proposed CPN for image classification and
single image super-resolution tasks. For image classification,
by replacing the original ReLU in MobileNetV2_0.25 / Mo-
bileNetV2_0.35 with CPN, the top-1 accuracy is improved by
4.78% | 4.52%. For the super-resolution task, the evaluation
metric PSNR is improved on several standard benchmarks,
which demonstrates the effectiveness of our method.

In summary, our major contributions are as follows:

1) We propose a continuous piecewise non-linear activation

function to further improve the non-linear capacity.

2) The proposed CPN can be regarded as the generalized

version of existing piecewise activation functions.

3) The results on different vision tasks demonstrate the

effectiveness of our proposed method.

II. RELATED WORK

Non-linear activation functions are important building
blocks of deep neural networks. Without them, deep neural
networks can only capture linear relationships between the
input and output. Sigmoid function and Tanh are first applied
to multilayer perceptrons. The simple and effective ReL.U is
proposed to solve the gradient vanishing problem of Sigmoid
and Tanh and becomes the most popular activation function.

Recently, there are plenty of works to improve ReLU
from different perspectives. Leaky ReLU [16] uses a fixed
nonzero slope for the negative input, and PReLU [17] pa-
rameterizes this slope to adaptively learn the parameters of
the rectified units. MTLU [10], PWLU [11], Maxout [12] and
DyReLU [13] generalize the two-piece ReLU to activation
functions with multiple pieces. MTLU learns the slope and
intercept of the linear unit in each section independently [10].
PWLU enforces a continuity constraint between different
pieces of the activation function [|1]. Besides learning the
shape parameters such as the boundary points, slopes, and
mapping value of the division points, a statistical realignment
strategy is also proposed for PWLU to align the effective re-
gion with the input data. Maxout calculates multiple learnable
linear mappings for every input value and takes the maximum
as the activated value [12]. DyReLU [13] is the dynamic
version of Maxout. It utilizes a hypernet to adaptively learn
dynamic parameters for the multiple linear units. However,
these piecewise activation functions only involve linear units
within every single interval. In this paper, we propose to
introduce non-linear terms for every interval.

Some works [5], [14], [15], [18] introduce differential non-
linear terms to activation functions. For example, the second
piece of the three-piece Hardswish is a non-linear term z x
(z+3)/6. However, these functions either have too few pieces,
or have no learnable parameters.

DyReLU [13] and xUnit [19] are dynamic functions whose
coefficients are calculated over inputs. Squeeze-and-Excitation
units also strengthen networks from the same perspective [20].
Yet, these methods resort to additional convolution neural
networks to achieve the dynamic mechanism, which introduces
much more parameters into the network compared with the
proposed method.

Aiming at solving the problems mentioned above, we
propose our continuous learnable piecewise non-linear acti-
vation function. We comprehensively optimize ReLU from
the aspects of more pieces, non-linear terms, and learnable
parameterization.

III. METHODOLOGY

In this paper, we propose a learnable continuous piecewise
non-linear activation function (CPN) that introduces non-linear
terms in each small section under continuity constraint. We can
formulate the CPN as follows:

ayxx + by x f(z) + 1,z < 21,

* by * , 1 < x <@g,
CPN(z) = agxx + by x f(x) + o, w1 < x < X9 n

ap*x + by * f(x) + g, xp—1 < .

where {a;,bi,c;}iz1.2,.. r are learnable parameters, f(z)
is the non-linear term such as Sigmoid function. The
activation space (—oo,+00) are divided into k sections
(—o0, x1], (z1, 2], (w2, ®3), ..., (Tp—1,+00) by k — 1 end-
points 1, 2, ..., Tp—1. Interestingly, activation functions like
ReLU and Hard-Swish can be regarded as special cases of
CPN. The proposed CPN has three key factors determining
the shape of activation:

o Whether the activation space is divided uniformly or not,

that is, whether o — 21 = ... = zp_1 —xp_o =d.
o Whether the non-linear terms exit or not, that is, whether
{b; = 0}iz1,.. -

o Whether the activation function is continuous or not, that
is, whether CPN(z; ) = CPN(z;").
Based on these three key factors, we get different versions of
CPN, and we will introduce them in turn.

A. CPN,,

When we divide the activation space uniformly, remove the
non-linear terms and get rid of the continuity constraint, the
CPN degenerates to the MTLU which we also call CPN,,.
Therefore, the formulation of MTLU (CPN,,,) is:

a1*x + ¢, ¢ < 29,
ao*xx + 2,11 < x < Tg,
CPN,,(z) ={ 2 ? @)

AR*T + Cly Tl < T.

In MTLU, the activation space is divided uniformly. Specif-
ically, we usually divide the interval [—1,1] into % inter-
vals by k — 1 endpoints points x1, ..., zx—1. We additionally
define o = —1,zp = 1, so the k intervals’ range are
(xo, 1], (21, 22), ..., (Tr—1, zk], respectively. In each interval,
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Fig. 1. The sketch of MTLU, CPN,,,. and CPN,,;. (a) MTLU of k£ = 8. In MTLU, the linear unit of each small interval is learned independently, so the
shape of MTLU is usually not continuous. (b) CPN;,. of & = 8. In CPN,,., we learn the mapping values of endpoints of all intervals, so the shape is
continuous. (¢) CPN,,; of k = 4. In CPN,,;, we learn the coefficients of k& functions and take the maximum as the activated value, so the shape is continuous.

However, the activation space is not divided uniformly.

MTLU constructs a linear unit with the learnable parameters
of slope a; and intercept c;. Therefore, the shape of MTLU is
usually not continuous. Note that for the inputs less than or
equal to z¢, they share the same parameters with the section
(20, x1]. Similarly, the inputs greater than xj, share the same
parameters with the section (2_1,zx]. It is worth noting that
the MTLU (CPN,,,) is channel-wise. Thus, for the feature map
of C channels, the number of parameters of MTLU is C'xk*2.
We present an example of MTLU (CPN,,,) of 8§ pieces in Fig. 1

(a).

B. CPN,,.

When we impose continuity constraint on MTLU (CPN,,,),
we can obtain a continuous version of MTLU termed CPN,,,..
In MTLU, since the linear unit of each section is learned inde-
pendently, the resulting shape of the MTLU is not continuous,
that is MTLU(z; ) # MTLU(x;"). The formulation of CPN,,.
is the same as MTLU. However, in CPN,,., we force the
function to be continuous at the endpoints of all intervals, i.e.
CPN(z; ) = CPN(z}").

For simplicity, we adopt a similar implementation to
PWLU. Specifically, instead of learning the slope and
intercept of each small interval independently, we pa-
rameterize the mapping value of the endpoints of each
small interval in CPN,,.. Specifically, for the k intervals
(xo, 1], (X1, 23], ..., (T—1, xk], Where we fix g = —1, 2 =
1 like MTLU, we learn the mapping value of the right endpoint
of each small interval. That is, we fix yo = 0, and define k
learnable parameters {y; }i=1,2, .. - Then we force the CPN,,,.
to pass by the k+1 coordinates [(zo, yo), (1, Y1), -, (Tk, Yx)]
which determine the shape of the linear unit of each interval.
For each small interval, the slope and intercept can be calcu-
lated by:

@i =Yi — Z/7:71/£L’i -
Ci =Yi — Ii(yi - yi—l)/(ﬂfi - Ii—l)-

Ti—1,

3

For the inputs out of the range of [—1, 1], we adopt a similar
strategy to MTLU. In addition, CPN,,. is applied channel-
wise like MTLU. Thus, for the feature map of C' channels,

18

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded o

the number of parameters of MTLU is C * k * 1, only half
of MTLU. When we train CPN,,. with back-propagation
algorithm, the gradient of CPN,,.(z) with respect to y; can
be calculated by Eqn. 4 simply according to the forward pass.

OCPN, () /Dy, 4)

Since the slope and intercept of the linear unit within
each small interval are determined by the mapping values of
endpoints, the shape of CPN,,,. is surely continuous. In Fig. 1
(b), we show the sketch of CPN,,,..

(@ —mim1)/ (i — 21y,

C. CPN,,

Further, when we introduce the non-linear term for each
small interval and remove the constraint on the uniform
division of activation space, we obtain the piecewise non-linear
activation function denoted by CPN,,;.

For the non-linear term f(z) introduced in CPN,,;, we resort
to the Sigmoid linear unit (SiLU), a simple and effective non-
linear activation function, which is formulated as:

f(x) =SiLU(z) = z x o(x). )

Where o is the Sigmoid function.

During training, to implement the continuous CPN,,; simply,
we adopt a similar strategy to ReLU. ReLU can be viewed
as calculating two linear mappings for each input value and
taking the maximum one as the activated value, which can be
written as:

ReLU(z) = max(wix + b1, wex + ba),
s.t.(w,b1) = (0,0), (w2, b2) = (1,0).
Therefore, based on RelLU, we resort to & functions to calcu-

late k£ mapping values for each input value and the maximum
is taken as the activated value. We formulate CPN,,; as:

CPN,,;(z) = max{p1(x), p2(x), ..., pr(z)},
pi(x) =apxx + b xxxo(x) + ¢, (i =1,..., k).

(6)

0

where k is the number of functions, {a;,b;,¢;}i=1, x are
learnable coefficients. Since the intersections of the k acti-
vation functions are not evenly distributed, the lengths of the
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intervals are not equal. During inference, there are two ways
to implement the CPN,,;. One is to adopt the same imple-
mentation as the training phase, and the other is to compute
the intersection points of the k functions in advance, then
use the Eqn. 1 to do forward-propagation. Specifically, after
training, we can obtain the division points of the activation
space dy,...,d,. Then specific activation function u(z) of
each interval can be determined. Therefore, we can compute
the activated values by the specific activation function directly
instead of repeating k calculations in each interval.

Similar to the previous two activation functions, CPN,,; is
also applied channel-wise. Thus, for the feature map of C
channels, the number of parameters of MTLU is C'* k* 3. We
plot the skecth of CPN,,; in Fig. 1 (c).

IV. EXPERIMENTAL RESULTS

We verify the effectiveness of our proposed CPN for the
image classification task and transfer to the single image super-
resolution task on several standard datasets.

A. Datasets and evaluation metrics

Image classification. We conduct image classification experi-
ments on the ImageNet1K dataset, which is the most popular
dataset in the field of computer vision. ImageNet1K contains
a total of 1,000 categories, consisting of about 1.28M training
images, and 50,000 validation images. The evaluation metrics
for image classification we use are Top-1 accuracy and Top-5
accuracy on the validation dataset.

Single image super-resolution. For the super-resolution task,
we follow the routine, taking 800 training images from
DIV2K [21] as the training set. Then we evaluate our methods
on the DIV2k validation set containing 100 images, Set5 [22],
Setl4 [23], B100 [24], and Urban100 [25], [26]. As for the
evaluation metric, We evaluate the results with peak signal-to-
noise ratio (PSNR).

B. Experimental setup

We implement all experiments using PyTorch 1.7.1 on
Nvidia Geforce RTX 2080Ti GPUs.
Implementation details. As mentioned in Sec. III, the hyper-
parameter k represents the number of pieces (or the number
of functions) in our CPN. In our experiments, we set &k to 20
for MTLU and CPN,,,., 4 for CPN,,;, respectively. Therefore,
for a feature map of C' channels, the numbers of parameters
of MTLU, CPN,,,. and CPN,,; are 40« C, 20« C and 12 % C,
respectively. Compared to a standard 3 x 3 convolution with
the number of parameters of 9% C2, the number of parameters
of our proposed CPN is quite little.
Image classification. We train the models for 150 epochs with
the batch size set to 512. The initial learning rate is set to 0.1,
the SGD optimizer with a momentum of 0.9 is used and the
cosine learning rate scheduler is used to decay the learning
rate to 0.
Single image super-resolution. We train models from scratch
for x2 SR, and for x3 and x4 SR, we train models from
corresponding pretrained X2 model models. As for training

TABLE 1
IMAGE CLASSIFICATION ACCURACY ON THE IMAGENET VALIDATION SET
OF MODELS WITH DIFFERENT ACTIVATION FUNCTIONS. THE BEST
RESULTS ARE BOLDED.

model activation  topl-acc  top5-acc
ReLU 52.75%  76.43%
. MTLU 55.13%  77.69%
MobileNetV2_0.25 CPN,... 55500 78.43%
CPN,,; 57.53%  80.10%
ReLU 59.15%  81.84%
MobileNetV2_0.35 MTLU 60.73%  82.26%
CPNype 61.30%  83.19%
CPN,,; 63.67%  84.81%

TABLE II

SUPER-RESOLUTION RESULTS FOR X2, X3, X4 SCALES ON DIV2K, SETS,
SET14, B100 AND URBAN100 BENCHMARKS. PSNR (IN DB) IS USED AS
THE EVALUATION METRIC, AND THE BEST RESULTS ARE BOLDED.

scale activation training strategy DIV2K ~ Set5  Setl4 B100 Urban100
ReLU from scratch 3454 3792 3350 32.14 31.88
X2 MTLU from scratch 3456 3795 33.54 3215 31.93
CPN,,; from scratch 34.58 38.00 33.51 3215 31.94
ReLU from x2 3090 3432 3028 29.08 28.09
x3 MTLU from x2 30.90 3435 3029 29.08 28.10
CPN,,; from x2 3095 3440 3031 29.10 28.14
ReLU from x2 2894 3215 2858 27.56 26.02
x4 MTLU from x2 2894  32.05 2855 2757 26.01
CPN,,; from x2 2898 3211 28.59 27.58 26.07

details, the models are trained for 300 epochs with a batch
size of 16, using Adam optimizer with § = (0.9,0.999). We
set the initial learning rate to 1 x 10~ and utilize the MultiStep
scheduler to decay the learning rate to half every 200 epochs.

C. Experiment results

Image classification. For image classification, we take the
lightweight MobileNetV2_0.25 (0.35) with the width mul-
tiplier of 0.25 (0.35) as the baseline model. Similarly, we
compare our proposed CPN with other activation functions by
replacing the original ReLUG6 activation function. We denote
the models by MobileNetV2_“w”_“af” (“w” is the width mul-
tiplier and “af” is the specific activation function). The results
shown in Tabel I demonstrate that our CPN gains significant
performance improvement over ReLU and MTLU. Our Mo-
bileNetV2_0.25_CPN,,,./CPN,,; achieve 55.52%/57.53% Top-
1 accuracy on ImageNet, being 2.77%/4.78% higher than
MobileNetV2_0.25_ReLU and 0.39%/2.40% higher than Mo-
bileNetV2_0.25_MTLU, respectively. When the width mul-
tiplier is set to 0.35, our CPN,,; improves Top-1 accuracy
on the ImageNet by 4.52% and 2.94% over ReLU and
MTLU, respectively. When compared to DyReLU on Mo-
bileNetV2_0.35, the improvement achieved by CPN_,; is
1.56% higher than that of DyReLU-A, and the number of
parameters is less in our method. We visualize the Top-
1 ImageNet validation accuracy curve and the training loss
curve during training phase in Fig. 2. It obvious that our
proposed CPN leads to a higher validation accuracy and
a lower training loss than other activation functions during
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Fig. 3. Some examples of learned CPN,,; in MobileNetV2_0.25. We present
CPN,,;_f_g_n for the h-th channel of the g-th layer in the f-th block.

TABLE III
THE COMPARISONS OF DIFFERENT TRAINING STRATEGY FOR X2
SUPER-RESOLUTION TASK.

activation  training strategy ~ DIV2K ~ Set5  Setl4  B100  Urban100
ReLU from scratch 34.54 3792 3350 32.14 31.88
MTLU from scratch 34.56 3795 3354 3215 31.93
finetune 34.64 3790 3356 32.18 32.05
CPN from scratch 34.58 38.00 3351 3215 31.94
nt finetune 34.64 3798 3356 32.18 32.06

training. In Fig. 3, we present some examples of the CPN,,; in
MobileNetV2_0.25_CPN,,;. All the activation functions show
non-linearity.

Single image super-resolution. The EDSR baseline single-
scale model with 64 feature maps in each layer and 16 basic
blocks is taken as our baseline model. All the models are
denoted by CPN_*“af” (“af” is the specific activation function).
We construct different models by replacing the original ReLU
with our CPN and other activation functions for comparison.
The x2, x3 and x4 SR results are shown in Tab. II. It is
obvious that our method outperforms the original ReLLU and
MTLU specially designed for super-resolution. Specifically,
we surpass ReLU by 0.04 to 0.05dB on DIV2K, about 0.08dB
on Set5, 0.01dB on Setl4, 0.01 to 0.02dB on B100 and 0.05
to 0.06dB on Urban100, respectively.

D. Ablation Study

Training strategy. Considering that we only replace the
activation functions in the model instead of changing the
model architecture. We also adopt a finetuning strategy in

TABLE IV
THE COMPARISON OF DIFFERENT IMPLEMENTATIONS FOR X2
SUPER-RESOLUTION.

training strategy  activation  DIV2K ~ Set5  Setl4 BI00  Urbanl00
CPN,,;—1 3456 3796 3348 32.14 31.91
from scratch CPN,,i—o 34.54 37.92 3347 3213 31.91
CPN,, 34.58 38.00 3351 3215 31.94
CPN,,;—1 34.63 3796 3356  32.17 32.03
finetune CPN,,;—2 3460 3795 3355 3216 32.03
CPN,,; 34.64 3798 3356 32.18 32.06

TABLE V

COMPARISON OF DIFFERENT VALUES OF k FOR X2 SUPER-RESOLUTION.

k DIV2K  Set5 Setl4  B100  Urbanl00  average
2 34.57 37.96 3349  32.15 31.98 34.03
4 34.58 38.00 33.51  32.15 31.94 34.04
8 34.59 37.99 3350 32.16 31.99 34.05

which we only train the learnable parameters of introduced
activation functions and freeze other model parameters from
the pretrained baseline model. The experiments on x2 SR
demonstrate the superiority of the finetuning strategy. The
results are shown in Tab. III. Specifically, when trained with
the fineutuning strategy from pretrained baseline model, both
MTLU and our proposed CPN,,; outperform the corresponding
models and baseline model that are trained from scratch
significantly.

Implementations. We adopt different implementations of
CPN introducing the non-linear term. Instead of the simple
implementation introduced in Sec. III-C, we also provide an-
other two versions of CPN,,;, termed CPN,,;_; and CPN,,;_o,
respectively. For CPN,,;_;, we adopt a similar implementa-
tion to MTLU, parameterizing the coefficients of each small
interval. For CPN,,;_», we learn the mapping value of the
endpoints of intervals and force the activation function to pass
the points, then the calculation of coefficients is converted to
the simple equation-solving problem. We compare different
ways of implementation for x2 super-resolution. The result
is shown in Tab. IV, demonstrating the effectiveness of our
adopted implementation.

Value of k. k£ in Formulation 1 determines the number of
pieces in CPN. We compare different values of k of CPN,,;,

1839

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 23,2025 at 14:14:10 UTC from |IEEE Xplore. Restrictions apply.



in which k is the number of functions. The results in Tab. V
demonstrate that with the increase of the number of pieces,
the expression capacity of models improves slightly.

V. CONCLUSION

In this paper, we propose a general learnable continuous
piecewise non-linear activation function called CPN. We pro-
vide a general formulation of piecewise activation functions,
introduce the non-linear term to each small interval and impose
a continuity constraint. The extensive experiments on several
benchmarks verify the effectiveness and superiority of our pro-
posed activation function for different vision tasks including
image classification and single-image super-resolution.
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