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Abstract—Intelligent edge vision tasks encounter the critical
challenge of ensuring power and latency efficiency due to the typ-
ically heavy computational load they impose on edge platforms.
This work leverages one of the first Artificial Intelligence (AI)
in sensor” vision platforms, IMX500 by Sony, to achieve ultra-
fast and ultra-low-power end-to-end edge vision applications. We
evaluate the IMX500 and compare it to other edge platforms,
such as the Google Coral Dev Micro and Sony Spresense,
by exploring gaze estimation as a case study. We propose
TinyTracker, a highly efficient, fully quantized model for 2D gaze
estimation designed to maximize the performance of the edge
vision systems considered in this study. TinyTracker achieves a
41x size reduction (~ 600Kb) compared to iTracker [1] without
significant loss in gaze estimation accuracy (maximum of 0.16 cm
when fully quantized). TinyTracker’s deployment on the Sony
IMX500 vision sensor results in end-to-end latency of around
19ms. The camera takes around 17.9ms to read, process and
transmit the pixels to the accelerator. The inference time of the
network is 0.86ms with an additional 0.24 ms for retrieving the
results from the sensor. The overall energy consumption of the
end-to-end system is 4.9 mJ, including 0.06 mJ for inference. The
end-to-end study shows that IMX500 is 1.7x faster than Coral
Micro (19ms vs 34.4ms) and 7x more power efficient (4.9mJ VS
34.2m)J).
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Fig. 1. End-to-end gaze estimation on edge vision platforms with the
state-of-the-art inference time (0.86 ms) and energy (0.06 mJ )
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I. INTRODUCTION

Deploying vision Al models at the battery-powered extreme
edge poses significant challenges due to the computational
heaviness of vision Al algorithms and the need for accurate

and real-time inference [2]—[4]. This challenge becomes partic-
ularly critical considering the widespread application scenarios
of edge vision Al in healthcare [5], personal assistants [6],
wildlife monitoring [7], and more. In response, researchers
have proposed compression techniques, such as quantization
[8], pruning [9], [10] and hardware design innovations [11].
However, achieving the optimal balance between accuracy and
resource efficiency remains a key research focus in this field.

Emerging platforms like Sony IMX500 [12] embed Al
in sensors, enabling real-time processing at the data source,
reducing latency, enhancing privacy by eliminating data trans-
mission. To leverage the power of this platforms, algorithm
optimization, model compression, quantization are vital [13]-
[19] and redesigning Al models for effective operation within
memory, computational constraints becomes crucial.

In this work, we propose a compressed sub-Mbyte vision
model called Tinytracker, aiming to push the envelope of edge
vision Al regarding power and latency efficiency. TinyTracker
is designed for edge gaze estimation, which raises hard re-
quirements of both energy efficiency and low latency, to work
effectively in virtual reality, medical diagnosis, and assistive
technologies [20].

The main contributions of this paper are: (1) proposing
TinyTracker (Fig. 1) to demonstrate the feasibility of end-
to-end milliseconds gaze estimation latency on novel in-
sensors Al cores; (2) comparing and evaluating state-of-the-art
commercial hardware solutions available for low-power, high-
speed end-to-end computer vision tasks at the edge.

ITI. RELATED WORK
A. Tiny Machine Learning

Due to the growing interest in deep learning on edge
devices, several recent studies have been conducted to bench-
mark deep learning algorithms on single-board computers and
embedded platforms [21]-[23]. For example, Mozhgan et al.
[24] explored a vision-based autonomous drone navigation
system based on GAP8 MCU and achieved 40.6 ms latency
with 34 mJ energy per inference, which shows the state-
of-the-art performance compared to the existing edge vision
solution on tiny drones [25]-[27]. However, to the best of our
knowledge, a comprehensive comparative analysis of end-to-
end (from sensing to processing) edge Al vision platforms
is missing. We address this gap in this work by profiling
three commercial vision hardware solutions in an end-to-end
fashion, from the moment the image is captured to the neural
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network prediction: the Sony IMX500 [12] with a stacked
camera and processor as one chip solution, Sony Spresense
[28] with cable-connected Sony IMX500 image sensor, and
Coral Dev Micro [29] with Himax HM01B0 CMOS sensor.

B. Gaze Estimation Algorithms

Gaze estimation [1], [30]-[34], has traditionally relied on fa-
cial geometry. However, these methods struggle under varying
lighting, head pose, and rapid eye movements. Event cameras
[35] promise high-frequency gaze estimation, but their high
cost and limited availability restrict the wide deployment. Re-
cently, Convolutional Neural Networks (CNNs) [1], [36], [37],
Vision Transformers (ViT) [33], and Capsule Networks [34]
have successfully learned the image-gaze mapping, by training
on large-scale datasets (i.e., GazeCapture [1], ETH-XGaze
[38], etc.), these networks have shown good generalization
capabilities and increased precision.

However, these deep learning solutions have not yet been
optimized for edge devices with resources and real-time
performance constraints. We adress this gap and introduce
TinyTracker, an efficient network capable of accurate gaze
prediction from images with only 2.5 cm error, maintaining
low power (0.06 mJ/Inference), and an inference latency of
0.86 ms, making it ideal for resource-constrained scenarios.

IIT. TINYTRACKER: IN-SENSOR GAZE ESTIMATION

Our proposed model, TinyTracker, based on iTracker [1], is
designed to operate within the constraints of edge devices.
The original model iTracker is a CNN that requires four
inputs: face and eye images and a face grid, all extracted by
a face detection algorithm. However, for edge devices, this
multiple-input design is not feasible, due to its complexity,
lack of support, and higher memory requirements. Conse-
quently, we streamline TinyTracker by eliminating eye and
face grid inputs. To compensate for the lost face location
data, we concatenate the face image coordinates to the input
(grid embedding) and use greyscale images to maintain three-
channels on the input. In essence, TinyTracker incorporates
a MobileNetV3 backbone [39] pre-trained on ImageNet [40],
with an added convolutional layer and two fully connected
layers. It reduces parameter count by 13.8x and Multiply-
Accumulate (MAC) operations by 224.7x compared to the
baseline, as documented in Tab. 1.

TABLE I
MODEL COMPARISON
Name Input res. | Params MAC Size[MB]
iTracker (Baseline) 224x224 6’287k | 2651M 24.6
TinyTracker (Ours) 112x112 455k 11.8 M 0.6

We train the model for up to 20 epochs on GazeCapture [1],
using an NVIDIA RTX 3070. We use the Adam optimizer at a
learning rate of 0.001 and a batch size of 64. The training data
is augmented by adding noise and applying random contrast,
saturation, and hue adjustments. After training the network is
quantized to 8-bit integers while retaining 32 floating-point
precision on the outputs.

IV. HARDWARE PLATFORMS

As mentioned, this work leverages the novel IMX500 to
perform in-sensor gaze estimation. Moreover, we profile two
other edge platforms: the Coral Dev Micro [29], and Sony
Spresense [28] as seen in Fig. 2.

1) Sony Spresense: The Spresense main board features an
ARM Cortex-M4F CPU with 6 cores, running at a maximum
frequency of 156 MHz. It offers 1.5 MB of Static Random-
Access Memory (SRAM) and 8 MB of flash memory. The
board includes a dedicated parallel interface for camera input.

2) Coral Dev Micro: The Coral Dev Micro features an
ARM Cortex-M7, ARM Cortex-M4 and a Coral Edge TPU
ML accelerator which provides 4 TOPS at 2 watts of power
with 128 MiB NAND flash and 64 MB of Synchronous Dy-
namic Random-Access Memory (SDRAM) and a maximum
clock frequency of 500Mhz. The board contains a built-in
color camera and a PDM microphone.

3) Sony IMX500: The Sony IMX500 is an advanced image
sensor designed for edge Al applications. It features a stacked
pixel architecture and a built-in Al processor, which eliminates
the need for external memory or high-performance processors.
The pixel chip captures information across a wide angle with
12.3 effective megapixels, while the logic chip performs high-
speed Al processing.

Fig. 2. Left-to-right: Coral USB, Coral Micro, Sony Spresense, Sony
IMX500.

V. EVALUATION METRICS

A. Hardware performance

To supply a fair benchmarking, we evaluate our model on
images of size 112x112 pixels on the following metrics:

1) Total Latency: [ms] End-to-end time measuring image
capture and inference.

2) Total Energy: [mJ] Energy consumed by hardware
during image capture and inference.

3) Inference Efficiency: [MAC/Cycle] Measures paral-
lelism of a given hardware.

4) Latency: [ms] Time required to calculate inference.

5) Energy (E) per Inference: [mJ] Energy consumed by
hardware during a single inference

6) Power Efficiency (P): [mW/MHz] Power consumption
normalized in terms of clock frequency.

The resolution is chosen to fit within the memory limitations
of all hardware platforms.
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B. Model performance

The model performance we evaluate for both float32 and
int8 models, in terms of the gaze prediction error which
is reported in centimeters, following the same evaluation
procedure as in [1].

VI. RESULTS

A. Hardware Performance

The evaluation results for Spresense [28], IMX500 [12]
and Coral Micro [29] can be found in Fig. 3 and Tab. IL
Additionally, we provide measurements on the Coral USB
accelerator.

TABLE 11
HARDWARE EVALUATION

Platform | Spresense | CoralUSB [ CoralMicro [ IMX500
End-to-End Evaluation
E [m]J]] 234.1 - 34.2 4.9
Latency [ms] | 522.5 - 34.4 19
Inference Evaluation
MAC/Cycle 1 0.20 73.23 8.69 73.23
Latency [ms] | 386.60 0.87 5.43 0.86
P [uW/MHz]| 530.13 4436.40 5553.20 274.58
E [m]] | 31.97 0.97 6.02 0.06

Comparing inference efficiency, both IMX500 and Coral
display parallel processing capabilities, with IMX500 being
more efficient than Coral (73.23 vs 8.69 MAC/Cycle). Spre-
sense trails significantly, achieving only 0.20 MAC/Cycle due
to its reliance on a single core for inference. Coral (USB)
and IMX500 perform almost identically in terms of inference
speed (0.87 ms vs 0.86 ms). However, on the Coral Micro
DevBoard, the inference time increases to 5.43 ms due to ad-
ditional I/O processing. In the end-to-end evaluation, IMX500
dramatically reduces processing time, yielding an end-to-end
latency of a mere 19.0 ms in comparison to Spresense (522.5
ms) and Coral (34.4 ms). This can be attributed to its unique
design, which facilitates direct loading of images into the Al
accelerator hardware.

Concerning energy consumption per inference, IMX500
significantly outperforms, requiring only 0.06 mJ. In con-
trast, Spresense and Coral consume 31.97 mJ and 0.97 mJ
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Fig. 3. Hardware Evaluation’s plots

(USB)/6.02 mJ (Micro) respectively. Despite Coral’s higher
power consumption, its efficiency per inference improves by
shorter inference latency than Spresense. The distinction in
energy consumption becomes more pronounced when consid-
ering the end-to-end. Spresense’s high energy consumption
(234.1 mJ) results from the camera remaining active post-
image capture. Although Coral deactivates the camera, its edge
TPU module still consumes a substantial amount of energy
during idle periods resulting in a total of 34.2 mJ. IMX500,
on the other hand, only activates its dedicated hardware as
needed, thus conserving energy during idle phases resulting
in an energy consumption of 4.9 mJ.

Power efficiency, expressed in pW/MHz, reveals IMX500
leading with a value of 274.58. Spresense and Coral follow
with 530.13 pyW/MHz and 4436.4 (USB)/ 5553.2 (Micro)
wW/MHz respectively.

B. Model Performance

Table III compares TinyTracker to its predecessor, iTracker,
using the checkpoint from the official GitHub repository [41].
We trained the model on 1.2M images and cross-validated
on around 200k (15%) samples. The error rates are similar,
with TinyTracker slightly outperforming it by 0.12 cm on
the original resolution and under-performing by 0.08 cm on
reduced resolution. Quantization affects the model similarly
at both resolutions. Our model comparison for both RGB and
Greyscale with grid embedding (G) inputs reveals that adding
localization information improves prediction precision, in our
case by 0.5 cm, aligning with [1]’s findings, which uses a face
grid for the same purpose.

TABLE III
PRECISION COMPARISON

Res | Model Error [cm] | Error int8 [cm]

b iTracker 2.46 -

I TinyTracker (G) 2.34 2.63
iTracker 2.40 -

3 TinyTracker (G) 2.54 2.62

™ | TinyTracker RGB 2.90 3.07

VII. CONCLUSION

This paper evaluated the first Al in sensor’ platform.
We introduced TinyTracker, an efficient model for 2D gaze
estimation on edge vision systems. TinyTracker achieves a re-
markable 41x size reduction (600KB) while maintaining high
precision. Even when fully quantized, the loss in precision is
only 0.16 cm. On the Sony IMX500 vision sensor, TinyTracker
has an end-to-end latency of 19 ms and consumes 4.9 mJ. The
Sony IMX500 outperforms Sony Spresense by 27.5x in speed
and is 20x more power-efficient than the Coral Edge TPU.
Our findings emphasize the importance of sensor-integrated
Al accelerators and the effectiveness of tiny machine learning
for scalable computer vision designs.
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