q

Check for
updates

Ultra-Efficient On-Device Object
Detection on Al-Integrated Smart Glasses
with TinyissimoYOLO

Julian Moosmann! ®)@®  Pietro Bonazzi!®, Yawei Lil®, Sizhen Bian!
b b b b

Philipp Mayer'®, Luca Benini’2®, and Michele Magno®

! ETH Ziirich, 8092 Ziirich, Switzerland
julian.moosmann@pbl.ee.ethz.ch
2 University of Bologna, 40126 Bologna, Italy

Abstract. Smart glasses are rapidly gaining advanced functions thanks
to cutting-edge computing technologies, especially accelerated hardware
architectures, and tiny Artificial IntelligenceAl algorithms. However,
integrating Al into smart glasses featuring a small form factor and lim-
ited battery capacity remains challenging for a satisfactory user experi-
ence. To this end, this paper proposes the design of a smart glasses plat-
form for always-on on-device object detection with an all-day battery
lifetime. The proposed platform is based on GAP9, a novel multi-core
RISC-V processor from Greenwaves Technologies. Additionally, a family
of sub-million parameter TinyissimoYOLO networks are proposed. They
are benchmarked on established datasets, capable of differentiating up
to 80 classes on MS-COCO. Evaluations on the smart glasses prototype
demonstrate TinyissimoYOLO’s inference latency of only 17 ms and con-
suming 1.59 mJ energy per inference. An end-to-end latency of 56 ms is
achieved which is equivalent to 18 frames per seconds (FPS) with a total
power consumption of 62.9 mW. This ensures continuous system runtime
of up to 9.3h on a 154 mAh battery. These results outperform MCUNet
(TinyNAS+TinyEngine), which runs a simpler task (image classification)
at just 7.3 FPS, while the 18 FPS achieved in this paper even include
image-capturing, network inference, and detection post-processing. The
algorithm’s code is released open with this paper and can be found here:
github.com/ETH-PBL/TinyissimoYOLO.

Keywords: AIoT - edge processing - image processing - neural
networks + object detection - smart glasses - system design + TinyML -
YOLO

1 Introduction

The rapid integration of advanced perception techniques into cutting-edge wear-
able computing devices has ushered in a transformative era, redefining how we
engage with our surroundings and environment [2,33]. Among innovative wear-
ables, smart glasses stand out as the next big thing in wearable computing [45].
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Their multifaceted applications span across a diverse spectrum, offering valu-
able support for professional applications [43], while at the same time enhancing
user experiences in entertainment and education [15], and most importantly,

improving the quality of life for individuals with disabilities [1,25,29].

(a) Smart Glasses with Electronics: The de-
signed smart glasses hardware. The left temple
holds the miniaturized electronics. The right tem-
ple contains the battery, with an energy content
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(b) Miniaturized Smart Glasses Electron-
ics: The proposed smart glasses platform based
on GAP9 from Greenwaves Technologies.

of up to 154 mAh.

Fig.1. The designed smart glasses hardware, which retrofits commercial temples of
smart glasses.

The mass adoption of current Artificial Intelligenceai technology is accen-
tuating the trend in edge intelligence [10,50], targetting computer vision [4,10],
biomedical applications [30,49], natural language processing [53], and many other
spaces [2]. Similar to environmental mapping [28,39] and navigation [7], the
detection and localization of objects [14,22] plays a pivotal role for understand-
ing the visual context in which smart devices such as Artificial Intelligence of
ThingsAloT devices are operating.

Embedded machine learning for semantic scenery understanding [25] in smart
glasses enhances user interaction and brings intelligence right to the user’s fore-
head while protecting user data, minimizing latency and energy. In particular,
running object detection algorithms is a crucial functionality to enable smart
decisions and information about the user’s surroundings [25,34].

Commercially available smart glasses such as the newly released RayBan-
Meta, Vuzix® smart glasses family, are powered by Qualcomm’s Snapdragon
AR1 and XR1 platforms with a power budget of a few hundred milliwatts.
Despite the choice of using a relatively high-performance and powerful System-
on-ChipSoC, this capable processor is mostly used for transmitting the vast
amount of data taken with high-resolution cameras and microphones. However,
image or speech processing is only very partially done on-device'. This makes
the ’smart’ glasses primarily an input device for an Al system working on the
connected mobile phone or in the cloud [25].

! https://about.fb.com/news/2023/09/introducing- ai- powered-assistants-characters-
and-creative-tools/.
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To bridge the gap between the available computational resources and the
demands of AT algorithms, novel energy-efficient and ultra-low-power Microcon-
troller Unit MCUs with cluster cores for parallel processing, as well as dedicated
accelerated hardware are being designed and are now available on the market
[6,16,38]. At the same time, new lightweight, and quantized networks are being
proposed to achieve near state-of-the-art (SOTA) accuracy while having small-
sized memory footprints [4,32] to fit the requirements of MCUs and accelera-
tors. Combining these novel multi-core MCUs with a dedicated system design
for ultra-low-power consumption enables a hardware platform for continuous
AT inference in smart glasses, with privacy protection and all-day long battery
lifetime.

This paper presents the design and implementation of such an energy-efficient
intelligent smart glasses system—see Fig la—equipped with GAP9, an Al-
capable MCU from Greenwaves Technologies, which consumes power in the mil-
liwatts range. We present the first end-to-end image processing pipeline on a
MCU which can process up to 18 frames per seconds (FPS) from image captur-
ing to object localization on a MCU device. Additionally, we propose an open
family of quantized and lightweight TinyissimoYOLO [31,32] networks with less
than 1 MB memory. All the contributions can be summarized as follows:

1. Smart Glasses’ System Architecture: We propose a system architecture
tailored for smart glasses applications with integrated ML acceleration.

2. Sub-Million Parameter YOLO Architectures: We extend the Tinyis-
simoYOLO series to support the latest datasets with up to 80 classes while
having sub-million parameters when detecting more than 20 classes.

3. End-to-end Real-Time Deployment: We demonstrate the practical appli-
cability of our proposed system by deploying the TinyissimoYOLO architec-
tures on the smart glasses platform and by predicting images from the real
world.

4. Power Efficiency and Performance Evaluation: We conduct extensive
experiments to validate the power efficiency and performance of our smart
glasses system. Comparative analyses against commercial edge vision systems
reveal superior energy efficiency and longer battery life for our system.

5. Open-Source Implementation: To facilitate reproducibility and encourage
further research, we release the source code of our optimized TinyissimoYOLO
architecture versions, allowing the community to build upon our work and
extend it to new application domains.

The paper is structured as follows: in Sect. 2, we investigate recent related
works regarding both the SOTA object detection neural networks and their
deployability onto MCU using different frameworks. Then, the extension of the
new TinyissimoYOLO versions are described in Sect. 3. Section 4 introduces the
prototype design of the smart glasses aiming for latency and energy efficiency
during onboard AI execution. The results are presented in Sect.5, including
the detection results and the system evaluation of GAP9 integrated with the
proposed smart glasses system. Finally, we conclude our work in Sect. 6.
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2 Related Work

The following section provides an overview of SOTA object detection algorithms
more specifically for use with edge processors. Additionally, we discuss different
deployment frameworks to deploy networks on edge devices. Lastly, the cur-
rently available smart glasses on the market, as well as research projects, are
summarized and set into perspective while this work is further motivated.

2.1 SOTA Object Detection on Microcontrollers

You Only Look Once (YOLO) [35], is an optimized deep learning algorithm
used to perform real-time object detection on GPU-class devices [17]. It utilizes
a feature extraction Convolutional Neural Networks (CNN) backbone and detec-
tion head to perform localization of the extracted semantic information. Mean-
while, there exist a family of different YOLO versions which differ in backbone,
head structure, network size, inter-network connection, and used layer opera-
tions [3,18,19,21,36,37,46,47]. However, even the smallest “nano” versions of
the YOLO-family exhibit roughly 3 million parameters, making them unsuitable
for MCUs. As such, TinyissimoYOLO [31] and its successor [32] try to bridge
the gap between accuracy and network size [40] while maximizing the available
compute acceleration on the milliwatt edge device. Until now, TinyissimoYOLO
was not able to detect 20 or more classes while fitting seamlessly on a MCU. The
earlier version’s output layer scaled linearly with the number of detection classes,
quickly reaching 2 million parameters and more. Therefore, this work increases
the number of detection classes while maintaining the network size below 1 MB.

Networks such as YOLOX-Nano [11], PP-PicoDet [51] and NanoDet-M?
achieve higher mean-average precision while utilizing specialized network layers
to decrease network parameters. While PP-PicoDet and NanoDet-M incorpo-
rate depth-wise convolutional layers and enhanced ShuffleNet [52] blocks, they
fail to fully exploit the hardware acceleration built into MUCs such as GAP9.
Conversely, YOLOX-Nano encounters memory constraints of MCUs due to its
large input resolution of 640 pixels, which RGB image costs more than 1 MB
of memory solely for the input image. Consequently, simple convolutional layers
with a kernel of 3 x 3 are preferable for current accelerators built into MCUs
class devices [6], which makes TinyissimoYOLO favorable for on-device execu-
tion. Nonetheless, deploying a battery-powered device with a camera resolution
under 300 pixels to distinguish 80 classes of MS-COCO [26] is impractical. There-
fore, we focus our evaluation of the networks on PascalVOC [9] and evaluate a
few on MS-COCO for a fair comparison against similar-sized networks. Lastly,
we compare them to MCUNet, which—similar to us—reports an end-to-end sys-
tem latency deployed on MCU devices. For a comprehensive comparison, refer
to Table1. To the best of the author’s knowledge, the only work that imple-
mented an end-to-end object detection pipeline on a microcontroller is MCUNet
[24]. They claim to have 10 FPS inference execution. When considering the

2 https://github.com/RangiLyu/nanodet.
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additional time needed for capturing an image, MCUNet’s end-to-end latency
achieves 7.3 FPS.

To achieve lower end-to-end latency this work builds on the results published
in the TinyissimoYOLO papers [31,32]. They compared several ARM-Cortex M4
and M7 MCUs from STMicroelectronics, Apollodb from Ambig (an ultra-low-
power MCU using sub-threshold technology), and the MAX78000 MCUs from
Analog Devices. The work exploits a SOTA hardware accelerator for CNN net-
works, and a RISC-V low-power parallel processor with hardware accelerator,
GAP9 from Greenwaves Technologies. It showed that MAX78000 is parallelizing
the compute workload best. Nevertheless, GAP9 achieves the same energy effi-
ciency despite having two-fold less MAC/cycle. Additionally, the papers show
that the increased clocking frequency of GAP9 together with its flexible combina-
tion of cluster cores and neural engine, allows for larger, less restricted networks
while being able to parallelize the overall workload better.

Therefore, this paper leverages the GAP9’s exceptional energy-efficient par-
allel processing capabilities and integrates it with a low-power Bluetooth Low
Energy BLE transceiver chip. This combination forms the backbone of our design
to facilitate robust object detection in smart glasses with seamless connectivity.

2.2 Smart Glasses

Smart glasses—or in-general Augmented Reality AR—focus on a general com-
puting concept [27] to process the user-device interaction while communicating
with cloud or smartphones via Bluetooth and Wi-Fi [20]. Big tech companies
such as Google® or Apple*, further rely on community APPs being developed
and processed on the device, requiring the manufacturer to provide an easy-to-
develop software stack, to abstract the hardware from the software. This requires
an Operating System OS environment to run at reasonably fast speeds, such that
user interactions are ensured to run smoothly. In particular, these requirements
hinder smart on-device sensor data processing, resulting in the data being pro-
cessed in the cloud, while data and user privacy are not absolutely contained
and guaranteed.

In contrast, several research smart glasses projects aim at the counterpart
by running AT algorithms on the device [13,45]. Others investigate the human-
machine interaction with smart glasses [41]. However, many publications focus
on a single smart glasses application scenario and design the system accordingly,
e.g., for visually impaired people [1,29] or smart gadget aid for medical [5,44]
or construction work [8]. Nonetheless, to the best of our knowledge, none of the
proposed research prototypes are integrated into the thin frames of the passive
glasses [42] and will therefore not be non-stigmatizing nor fashionable, in con-
trast to actual smart glasses products such as the RayBan-Stories® or the brand-
new RayBan-Meta®. Therefore, this work introduces electronics that retrofit a

3 https://developers.google.com /glass-enterprise/.

* https://developer.apple.com /visionos/.

5 https://tech.facebook.com/2023/2/the-making-of-ray-ban-stories/.

5 https://about.fb.com/news/2023/09 /new-ray-ban-meta-smart-glasses,/ .
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Table 1. Network Comparison: Overview of similar-sized networks compared to
our TinyissimoYOLO versions and evaluated on PascalVOC and MS-COCO.

Model Image Parameters |[PascalVOC [MS-COCO

Resolution |(M) mAPQ(50- mAPQ(50-
95) 95)

MbV2+4+CMSIS [24] (128 0.87 32%

MCUNet [24] 224 1.2 51%

MCUNetV2-M4 [23][224 1.01 65%

MCUNetV2-H7 [23] [224 2.03 68%

NanoDet-M* 320 0.95 21%

YOLOX-Nano [11] |640 0.91 26%

PP-PicoDet [51] 320 0.99 27%

TY-v1 3cls [31] 224 1.66 68%

TY-vl 10cls [32] 224 2.36 65%

TY-v1 20cls [32] 224 3.35 60%

TY-v1.3-Small* 256 0.40 30%

TY-v1.3-Big* 256 0.96 38%

YOLO-v5-nano [18] |640 2.66 34%

TY-v5-Small* 256 0.63 35%

TY-v5-Big* 256 0.89 42% 14%

YOLO-v8-nano [19] |640 3.2 37%

TY-v8-Small* 256 0.71 39%

TY-v8-Big* 256 0.84 44% 15%

TY-v10* 256 0.85 49% 14%

* This works’ TinyissimoYOLO networks deployed and evaluated on

GAP9.

# https://github.com/RangiLiyu/nanodet.

functional and fashionable smart glasses frame with a peak power consumption
below 100 mW. This makes our solution to smart glasses not only aesthetically
appealing but also capable of directly executing demanding YOLO object detec-
tion tasks, showcasing both efficiency and effectiveness in image processing for
real-world applications.

3 TinyissimoYOLOs

This section presents a family of sub-million parameter detection algorithms,
based on a different version of the YOLO architecture, which we have developed
for accelerated MCUs or in general low-power edge processors. These networks
are proposed as a trade-off between computational resources and performance,
as for example in on-device execution for smart glasses systems. The networks
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predict multi-object-class probabilities and bounding boxes from 256 x 256 res-
olution images. However, the networks can be adapted for larger and smaller
resolutions.

3.1 Network Architectures

YOLOvV5, YOLOvV8, and YOLOv10 employ different backbone and head archi-
tectures to predict class probabilities and bounding boxes. We accurately eval-
uated the respective versions to extract their performance under sub-million
parameter constraints, see the network specifications in Table 1. This has been
conducted to establish a family of networks suitable to be deployed on AloT
devices. In particular, for the deployment of multi-object detection networks on a
MCU with ML acceleration, such as the GAP9. All the networks described below
have been deployed on the GAP9 and not only will their detection capability be
evaluated, but also their deployed inference performance, energy consumption,
and their ability to parallelize the inference execution on such a hardware.

The new TinyissimoYOLOv1.3 key differentiator lies in the incorporation of
the Detection Block from the V8 architecture into the final prediction layer of
TinyissimoYOLOv1.3. In contrast to the originally proposed TinyissimoYOLO
versions [31,32] this strategic enhancement imbues the latter with heightened
sensitivity and a larger number of detection parameters, without scaling the
detection block linearly. Consequently, TinyissimoYOLOv1.3 demonstrates pre-
cise multi-class object detection capability on sub-million parameters.

TinyissimoYOLOvV5’s architecture features a Cross-Stage Partial CSP con-
nection [48] bottleneck module named ‘C3’. In C3, the input is duplicated
through two separate 1 x 1 convolutions which are then concatenated and pro-
cessed through a final 1 x 1 convolution to produce the final output. The main
distinction between the architecture of YOLOv5 and YOLOWS lies in the number
of convolutions and on the expansion or contraction of the hidden channels in
the CSP. Differently from YOLOv5, TinyissimoYOLOv5-big has a layer chan-
nel multiple of 0.15 instead of 0.25 (YoloV5-nano) and contains 4 times fewer
parameters, while the small version uses a channel multiple of 0.1.

YOLOv8 CSP Block called ‘C2F’, which powers TinyissimoYOLOvS8 starts
with a 1 x 1 convolution that expands the input channels to twice the hidden
channel size. Then, it splits the output into two equal parts and applies a series of
bottleneck layers on each part. Finally, it concatenates the processed outputs and
applies a second 1 x 1 convolution. TinyissimoYOLOv8 has a depth multiple of
0.30 instead of the 0.33 in YoloV8-nano, a layer channel multiple of 0.18 instead
of 0.25, and contains 5 times fewer parameters than the nano version, while the
small version uses a channel multiple of 0.1.

The latest YOLO version v10 [46], removes the need to perform Non-
maximum Suppression NMS during training and improves the detection accu-
racy on established datasets. The enhanced CSP feature extraction backbone,
combined with the updated and NMS-free head achieves SOTA detection per-
formance while having faster execution times. Our TinyissimoYOLOv10, utilizes
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the same backbone, neck, and head however, we use a channel multiple of 0.18
and a depth multiple of 0.15 to achieve sub-million number of parameters.

3.2 Implementation Details

We trained the proposed models on an NVIDIA GeForce RTX 4090 for 1000
epochs, with a batch size of 64. The initial learning rate {r = le — 3 was reduced
using a cosine learning rate scheduler to Ir = le —5 after a 3 epoch-long warmup
phase (Ir = le —2). The training process utilised a Multi-Object Detection Loss
[35], and images with a resolution of 256 x 256 pixels. Additionally, several
established image augmentations are applied to the images, such as exposure
and saturation adjustments in the HSV color space, horizontal image flipping,
image translation, scaling as well as image mosaicing. We optimize the weights
using Stochastic Gradient Descent SGD (momentum = 0.937) and trained with
Automatic Mixed Precision AMP. The networks have been integrated into the
Ultralytics framework [19]. Thereafter, we applied Post-Training Quantization
PTQ [12] to quantize the networks to 8-bit integer values, such that the sub-
million parameter network fits into a MCU memory of 1 MB.

DEBUGING

ol
DVS-Camera | WIFL ‘
GENX320 NINA-WIO S
RGB-Camera nPM1300
musn-c m Deme
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Fig. 2. Development Board: a) The proposed hardware system consists of two
boards. The board on the left—development board—is shown, featuring additional
power circuitry, multiple camera interfaces, Wi-Fi, and debug possibility. The smart
glasses board—zoomed in—, features two MCUs, several sensors, and a power man-
agement system for stand-alone operation. b) shows the hardware block diagram for
the development and smart glasses board respectively.

4 System Design

To achieve “truly” smart and energy-efficient smart glasses, we propose a
hardware-software smart glasses solution, eventually eliminating the transmis-
sion of private data, and decreasing inference latency while effectively increasing
battery run-time. For this, a development board was designed—see Fig. 2a—and
utilized for rapid end-to-end evaluations while the new smart glasses PCB has
been designed to retrofit existing smart glasses temples for the final system, see
Fig. 1a.
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4.1 Smart Glasses Design

A modular design was targeted so that reuse of the same platform can be guar-
anteed for other ultra-low-power all-day battery runtime AloT applications. All
components are tightly integrated onto a custom, miniaturized Printed Circuit
Board PCB, to replace existing PCB of commercial smart glasses.

The design features dedicated low-power infrastructure to power cycle
energy-hungry sensors while powering the minimal required components. This
platform is co-designed with a development platform for the rapid integration of
further research sensors.

Figure 2a shows the hardware overview. The development board is shown on
the left, while the smart glasses electronics is the zoomed-in PCB (green) on the
development board. The right side of the Fig. 2b describes the hardware using a
block diagram. The left side shows the development board, while the zoomed-in
version is the smart glasses electronics. The M2 connector aims for development
and reusability. To further minimize the form factor and fit temples of smart
glasses, several on-board sensors are left away, resulting in the design that can
be seen in Fig. 1b. The final miniaturized smart glasses PCB fits smoothly inside
the temples of smart glasses, see Fig. la.

Smart Glasses Electronics: The platform can be broken down into the following
three main parts: (i) battery and power management,(ii) dual-MCU architecture
leveraging energy-efficiency (iii) various sensors such as accelerometer, multiple
cameras, and microphones.

The battery and power management is needed for untethered operation of
the smart glasses’ electronics. One ultra-low-power MCU is in charge of wireless
communication, low-power signal processing (i.e. data from MEMS sensors),
and power management of the various power domains by using multiple power
switches in series and parallel within the same voltage levels. The aforementioned
tasks are controlled by a SoC. In the development board, the ISM4520 has
been chosen. It features a low-power nRF52 from Nordic Semiconductor with a
built-in ARM Cortex-M4 processor, on-chip BLE and Long Range modulation
technique LoRa. The smart glasses, however, don’t need LoRa. Therefore the
ISP2053 has been chosen. It features a dual-core nRF53 with an embedded
Bluetooth 5.2 module. This SoC’s footprint is smaller than the one built into the
devboard, making it ideal for the smart glasses system.

In addition to the SoC with built-in communication modules, a more power
and energy-efficient RISC-V parallel processor, GAP9 from Greenwaves Tech-
nologies, is used for enabling computational intensive on-the-edge AI algorithm
inference for image and audio processing using neural networks. GAP9 enables
both parallelization and hardware acceleration while the GAP9 achieves the over-
all best trade-off performance in a few milliwatts envelope, considering latency,
energy consumption per inference, and parallelization of the computation. In
particular, the GAP9 SoC has a built-in general-purpose neural network accel-
erator capable of running SOTA algorithms’ operations whenever the algorithm
fits inside the memory. A FRAM is placed such that both GAP9 and nRF52 can
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access a shared memory space to share sensor data and system states. Addition-
ally, GAP9 has a big amount of off-chip memory such as 254 MB of Flash and
64 MB DRAM.

The miniaturized smart glasses electronics shown in Fig.1b, is a mini-
mal electronics design, incorporating 2 cameras—GENX320 from Prophesee
and HMO0360 from Himax—, an accelerometer—LIS2DW—, a microphone and
the above-described power management as well as BLE 5.2. The miniatur-
ized design requires a high-precision PCB design with 8-impedance matched
layers for the camera’s CSI-2 protocol connection and the OctoSPI interface
between GAP9 and external RAM and FLASH. However, for system develop-
ment, the M2 PCB was utilized which features additional sensors, such as the
eCompass—LSM303—, GNSS module—MIA-M10Q—, Microphones with wake-
up capabilities—T5838—and an on-board micro-SD card storage for gigabytes
of data collection. Removing these additional sensors of the M2 PCB allows all
the electronics design to be shrunk into a trapezoidal form factor, Fig.1b of
14 mm x 56 mm with a height of 3mm to fit the temples, see Fig. 1a.

The Development Board—see Fig. 2—is designed for modular, rapid design
and integration of various new sensors and system development. The main focus
is on the design of GAP9’s interfacing with different cameras using the CSI-2
protocol. The single-line CSI-2 interface is multiplexed to interface two cameras.
Once a connector for interfacing commercial of the shelf COTS RGB cameras,
designed for use with Raspberry Pis has been added. This interface is shared
with a second camera connector, specifically designed for the new event-based
camera GENX320 from Prophesee. As a third camera option, a Lepton3.5 is
added to the development board for adding infrared camera capabilities and
interfaced via SPI.

4.2 End-to-End System and Experimental Settings

First, we describe which hardware was used for system deployment, followed by
the deployment procedure of the developed TinyissimoYOLO networks. Lastly,
we describe the end-to-end system and how the experiments are conducted.

To showcase onboard intelligence and longer battery runtime, an end-to-end
firmware has been designed and deployed on the GAP9 hardware. For the power
evaluation, the development board together with the M2 PCB is used. Since the
M2 system features the same hardware used for the end-to-end system, power
measurements have been conducted with it. To maximize similarity, the sensors
and peripherals not fitted in the miniaturized smart glasses PCB are switched
off.

The deployment of the networks is done using Greenwaves Technologies’
NNTool. Starting with the unquantized exported .onnx file from the Ultralytics
framework, NNTool has an integrated PTQ flow. As such, the networks were
deployed using 8-bit integer precision. Once quantized, the network can be auto-
tiled by Greenwaves Technologies’ Autotiler. This tool is used for automatic code
generation, in particular, to generate C-code for the deployment onto the target
cores or accelerator (NE16) of GAP9. Further, the user can specify the amount
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of L1, L2, and L3 memory to be used and the Autotiler tool will generate the
network according to the constraints given such that the network is executed
with minimal memory wait stalls, depending on each layer’s size and operation
used. Once the C-code has been generated, the network can be integrated into
a custom user-specific project.

We implemented the end-to-end pipeline which is visualized in Fig. 5. First,
a raw image in a Bayern pattern is captured. The image gets demosaiced on
the Fabric Controller FC of GAP9. TinyissimoYOLO is used to predict objects
while its network output is post-processed to extract the bounding boxes of the
detected objects. The image-capturing process uses double-buffering, to decrease
latency arising from the image sensor data acquisition. The demosaic process as
well as the post-processing of the network’s output utilizes the FC, while the
object detection network runs on the cluster and on the neural engine.

The measurements of the networks are done by measuring the current con-
sumption over 10 consecutive network inferences and calculating the average
current consumption. Knowing the voltage level at which GAP9 is operating,
the power as well as the energy consumption is calculated. We also calculate
the number of Multiply and Accumulate MAC the network has to conduct one
inference.

Lastly, the full end-to-end system is measured on board level, to incorpo-
rate the camera, both microcontrollers, the Power Management Integrate Ciruit
PMIC, and all the voltage converter’s inefficiencies.

5 Results

This chapter summarizes the results achieved in this work. First, the networks’
detection accuracy is presented. Second the networks are deployed on the GAP9
and the achieved performance is reported. Lastly, the full end-to-end system
results are provided including an always-on battery runtime estimation for the
end-to-end system.

5.1 Detection Results

In this section, the performance evaluation of the various TinyissimoYOLO net-
work configurations on the PascalVOC test dataset is presented. The results
are summarized in Table1 and visualized in Table2 using images taken with
GAP9—first row of Table2—, and an Single-Lens ReflexSLR camera—second
row. The evaluation of the newly proposed TinyissimoYOLO network with the
different network configurations on the PascalVOC dataset reveals a noteworthy
improvement in different network configurationsmAP scores. Specifically, tran-
sitioning from TinyissimoYOLOv1.3-Small to TinyissimoYOLOv8-Big or the
TinyissimoYOLOv10 architecture results in a substantial mAP enhancement,
showcasing the effectiveness of the latter in accurately detecting objects across
various classes.
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5.2 Deployed Networks on GAP9

The networks are 8-bit quantized and deployed on the NE16 accelerator of GAP9
and compared in terms of latency—Fig. 4b-b—, inference efficiency—Fig. 4b-
¢—, and energy per inference—Fig. 4b-d—for each TinyissimoYOLO network
version v1.3, v5, v8-small/big and v10. TinyissimoYOLOv1.3 outperforms the
other networks in terms of latency with only 16.9 ms execution time. V5 and
both v8 variants need 32.7 ms, 34 ms, and 36.6 ms, respectively. In terms of
inference efficiency, v1.3 is best parallelizable with up to 43.37 MAC/cycle. The
v5 and v8 versions have 16.28 MAC/cycle, 14.98 MAC/cycle, 15.27 MAC/cycle,
respectively. Since v1.3 performs fastest and most parallelized, it’s also the most
energy efficient consuming only 1.27 mJ, followed by v5 consuming 2.34 mJ,
v8-small with 2.48 mJ and v8-big consuming 2.62 mJ.

Deploying the networks at different clocking frequencies of the NE16 core at
different voltage levels leads to a Pareto Optima curve for running the networks
quantized on the SoC of GAP9. Figure 4a shows the TinyissimoYOLOv1.3, v5,
and v8 being deployed in both ‘small’ and ‘big’ versions. It shows that, while

Table 2. Qualitative Results: TinyissimoYOLOvS8 running on images captured with
our system (row 1) and with images taken using an SLR camera (row 2).
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Fig. 3. Full System Power Measurement: The lines described in the legend show
if the mentioned system process is running or not running. We show 18fps GAP9 on-
device image-capturing, demosaicing, network inference and postprocessing execution.
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v1.3-Small has the lowest detection robustness, as seen in Tab. 1, it benefits from
the lowest inference latency and has the lowest energy consumption. Addition-
ally, the frequency sweep for all the TinyissimoYOLO versions proposed can
be used as a look-up table for finding the ideal network’s execution frequency.
Depending if the application allows for low energy consumption and low accu-
racy, running TinyissimoYOLOv1.3-small at 150 MHz would be the ideal choice
or if the application needs the fastest inference time and most accuracy, running
TinyissimoYOLOv8-Big at 370 MHz is the ideal choice.
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Fig. 4. Evaluation of the Deployed TinyissimoYOLO Versions on GAP9

5.3 System Results

Running the end-to-end solution on the GAP9 requires the system to initialize all
required processing units of the SoC. Including the NE16 accelerator of GAP9,
initializing the CSI-2 interface for the HM0360 camera from Himax, and creating
all the needed memory buffers for image capturing and demosaicing/de-bayering.
Once initialized, the system can run the system application loop, which consists
of image capturing (double-buffered), demosaicing of the image, AI inference
execution (TinyissimoYOLOv1.3), and post-processing of the network output.
Figure 3 shows the power consumption during the full operation of the system,
running the loop ten consecutive times. For the following power measurements,
the loop was executed 100x and the average is reported. Capturing an image 100
times took on average 34.69 ms while consuming 1.17 mJ or 18.79 mA. Demo-
saicing needed only 4.87 ms while consuming 23.82 mA resulting in 0.209mJ of
energy. Running the small TinyissimoYOLOv1.3 network on NE16 consumed
52.27 mA of current during 16.86 ms resulting in 1.59 mJ of Energy. The rest of
the TinyissimoYOLO version is evaluated in Sect.5.2. Table 3 summarizes the
current, power, and energy measurements for the corresponding demonstration
process. Last, the post-processing took 27 u s, consuming 28.3 mA resulting in
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1.38 1 J. With that, the average loop execution consumes 3.28 mJ, i.e. 29.55 mA
for 61.67 ms.

Post-

Wake UP GAP9 —_— System Init Processing

1

Y

| Image Capture |.>

34.69ms 4.87ms 16.86ms 0.027ms

BLE
Transfer

Demosaic )..»‘ DNN Inference

Fig. 5. End-to-End System Overview: The image shows the flow chart of the
demonstrator firmware, including the execution latency for the corresponding task.
The box sizes are in relative size to the execution time.

Table 3. System demonstrator: energy consumption measurement.

Event Current Power Energy Time
[mA] [mW] [mJ] [ms]
System quiescent” 0.75 2.48 2.48
Init system 11.96 21.54 0.89 41.44
Capture image 18.78 33.82 1.17 34.69
2 | Demosaic non-cluster 23.82 42.88 0.21 4.87
3 Run Tinyissimoyolov1.3 | 52.27 94.10 1.59 16.86
Post processing 28.26 50.86 0.001 0.03
Loop AVG. 30.0 54.0 3.05 56.45

*

nRF wakes up from sleep mode, changes power settings, and sleeps again.

Battery Runtime Estimation. The smart glasses are charged with a battery,
which fits inside the opposite temple of the smart-glasses’ electronics, see Fig. 1a,
with a maximal energy content of up to 154 mAh and 585 Wh with a nominal
voltage level of around 3.8 V. The continuous execution of the presented end-
to-end system consumes 30.0 mA at 1.8 V continuously and draws 54 mW from
the battery. Including the HM0360 image sensor and the nRF MCU, the total
system power consumption is 62.9 mW, resulting in a battery runtime of 9.3 h.
In perspective the newly released RayBan-Meta smart glasses, with the same
sized battery capacity, claim to last 4h with moderate usage or up to 3h of

continuous audio streaming and voice assistance’.

6 Conclusion

This paper proposed a novel smart glasses platform and demonstrated the sys-
tem’s capabilities. We perform image capturing and demosaicing, before running

" https://www.meta.com/ch/en/legal /ray-ban-meta/disclosures, .
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AT inference and post-processing the networks’ output to get bounding boxes.
The end-to-end processing loop takes 56 ms and consumes 62.9 mW resulting in
18fps of continuous end-to-end execution for 9.3 h on a battery with 154 mAh.
This sets a notable achievement for image processing on MCU class devices.

Further, this paper proposed a family of new TinyissimoYOLO versions,
using the YOLOv3 detection layer and the YOLO version-specific head,
while evaluating the architectures proposed in TinyissimoYOLOv1, YOLOV5,
YOLOvVS, and YOLOv10. The networks contain 50x to 100x fewer parameters
than the initial YOLOv1 version and have been evaluated and compared on
the PascalVOC and MS-COCO test datasets. The networks achieve sub-million
parameters for up to 20 classes and fit quantized on MCUs. TinyissimoYOLOvS8
with 840 k parameters, achieves 44% mAP while being executed within and 34
ms on the GAP9. The fastest small TinyissimoYOLOv1.3 is executed within 16.2
ms consuming only 1.27 mJ of energy for one inference and achieves 30% mAP.
As such, this paper presents a highly generalized multi-class detection family of
networks running with near SOTA performance detection accuracy in real-time
(>18fps) on the GAP9 MCU.
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