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Abstract— Video restoration aims to restore high-quality
frames from low-quality frames. Different from single image
restoration, video restoration generally requires to utilize
temporal information from multiple adjacent but usually
misaligned video frames. Existing deep methods generally tackle
with this by exploiting a sliding window strategy or a recurrent
architecture, which are restricted by frame-by-frame restoration.
In this paper, we propose a Video Restoration Transformer
(VRT) with parallel frame prediction ability. More specifically,
VRT is composed of multiple scales, each of which consists
of two kinds of modules: temporal reciprocal self attention
(TRSA) and parallel warping. TRSA divides the video into
small clips, on which reciprocal attention is applied for joint
motion estimation, feature alignment and feature fusion, while
self attention is used for feature extraction. To enable cross-clip
interactions, the video sequence is shifted for every other layer.
Besides, parallel warping is used to further fuse information from
neighboring frames by parallel feature warping. Experimental
results on five tasks, including video super-resolution, video
deblurring, video denoising, video frame interpolation and space-
time video super-resolution, demonstrate that VRT outperforms
the state-of-the-art methods by large margins (up to 2.16dB)
on fourteen benchmark datasets. The codes are available at
https://github.com/JingyunLiang/VRT.

Index Terms— Video restoration, video super-resolution, video
deblurring, video denoising, video frame interpolation, space-
time video super-resolution.

I. INTRODUCTION
IDEO restoration, which reconstructs high-quality (HQ)
frames from multiple low-quality (LQ) frames, has
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Fig. 1. Tllustrative comparison of sliding window-based models (la, e.g., [2],
[3]), recurrent models (1b, e.g., [7], [9], [11], [12], [13]) and the proposed
parallel VRT model (Ic). Green and blue circles denote low-quality (LQ)
input frames and high-quality (HQ) output frames, respectively. t — 1, ¢ and
t + 1 are frame serial numbers. Dashed lines represent information fusion
among different frames.
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attracted much attention in recent years. Compared with single
image restoration, the key challenge of video restoration lies
in how to make full use of neighboring highly-related but
misaligned supporting frames for the reconstruction of the
reference frame.

Existing video restoration methods can be mainly divided
into two categories: sliding window-based methods [1], [2],
[3], [4], [5], [6] and recurrent methods [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16]. As shown in Fig. 1a, sliding
window-based methods generally input multiple frames to
generate a single HQ frame and process long video sequences
in a sliding window fashion. Each input frame is processed
for multiple times in inference, leading to inefficient feature
utilization and increased computation cost.

Some other methods are based on a recurrent architecture.
As shown in Fig. 1b, recurrent models mainly use previously
reconstructed HQ frames for subsequent frame reconstruction.
Due to the recurrent nature, they have three disadvantages.
First, recurrent methods are limited in parallelization for
efficient distributed training and inference. Second, they suffer
from significant performance drops on few-frame videos [17].
Third, as will show in the experiments, recurrent models are
less robust to noises, since information is accumulated frame
by frame.

In this paper, we propose a Video Restoration Transformer
(VRT) that allows for parallel computation in video restora-
tion. Based on a multi-scale framework, VRT divides the video
sequence into non-overlapping clips and shifts it alternately to
enable inter-clip interactions. Specifically, each scale of VRT
has several temporal reciprocal self attention (TRSA) modules
followed by a parallel warping module. In TRSA, reciprocal
attention is focused on mutual alignment between neighboring
two-frame clips, while self attention is used for feature
extraction. At the end of each scale, we further use parallel
warping to fuse neighboring frame information into the current
frame. After multi-scale feature extraction, alignment and
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fusion, the HQ frames are individually reconstructed from their
corresponding frame features.

Compared with existing video restoration frameworks, VRT
has several benefits. First, as shown in Fig. Ic, VRT is
trained and tested on long video sequences in parallel.
In contrast, both sliding window-based and recurrent methods
are often tested frame by frame. Second, VRT has the
ability to utilize information from multiple neighbouring
frames during the reconstruction of each frame. By contrast,
sliding window-based methods cannot be easily scaled up
to long sequence modelling, while recurrent methods may
forget distant information after several time steps. Third, VRT
proposes to use reciprocal attention for joint feature alignment
and fusion. It adaptively utilizes features from supporting
frames and fuses them into the reference frame, which can be
regarded as implicit motion estimation and feature warping.

Our contributions can be summarized as follows:

1) We propose a new framework named Video Restoration
Transformer that is characterized by parallel computation.
It jointly extracts, aligns, and fuses frame features at
multiple scales.

2) We propose reciprocal attention for mutual alignment
between frames. It is a generalized “soft” version of
image warping after implicit motion estimation.

3) VRT achieves state-of-the-art performance on video
restoration, including video super-resolution, deblurring,
denoising, frame interpolation and space-time video
super-resolution. It outperforms state-of-the-art methods
by up to 2.16dB on benchmark datasets.

II. RELATED WORK
A. Video Restoration

Similar to image restoration [18], [19], [20], learning-based
methods, especially CNN-based methods, have become the
primary workhorse for video restoration [2], [5], [12], [21],
[22], [23], [24], [25], [26], [27] in recent years.

1) Framework Design: From the perspective of architecture
design, existing methods can be roughly divided into two
categories: sliding window-based and recurrent methods.
Sliding window-based methods often takes a short sequence
of frames as input and merely predict the center frame [2], [3],
[S], [6], [28], [29]. Although some works [30] predict multiple
frames, they still focus on the reconstruction of the center
frame during training and testing. Recurrent framework is
another popular choice [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16]. Huang et al. [7] propose a bidirectional recurrent
convolutional neural network for SR. Sajjadi et al. [8] warp
the previous frame prediction onto the current frame and feed
it to a restoration network along with the current input frame.
This idea is used by Chan et al. [12] for bidirectional recurrent
network, and further extended as grid propagation in [13].

2) Temporal Alignment and Fusion: Since supporting
frames are often highly-related but misaligned, temporal
alignment plays an critical role in video restoration [2], [3],
[12], [13], [31]. Early methods [1], [32] use traditional flow
estimation methods to estimate optical flow and then warp the
supporting frames towards the reference frame. To compensate
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occlusion and large motion, Xue et al. [31] utilize task-
oriented flow by fine-tuning the pre-trained optical flow
estimation model SpyNet [33] on different video restoration
tasks. Jo et al. [34] use dynamic upsampling filters for implicit
motion compensation. Tian et al. [3] propose TDAN that
utilizes deformable convolution [35] for feature alignment.
Based on TDAN, Wang et al. [2] extend it to multi-scale
alignment, while Chan et al. [13] incorporate optical flow as
a guidance for offsets learning.

3) Attention Mechanism: Attention mechanism has been
exploited in video restoration in combination with CNN [2],
[17], [32], [36]. Liu et al. [32] learn different weights for
different temporal branches. Wang et al. [2] learn pixel-
level attention maps for spatial and temporal feature
fusion. To better incorporate temporal information, Suin
and Rajagopalan [36] propose a reinforcement learning-
based framework with factorized spatio-temporal attention.
Cao et al. [17] propose to use self attention among local
patches within a video.

B. Vision Transformer

In the last few years, transformer-based models [37], [38],
[39] have achieved promising performance in various vision
tasks, such as image recognition [40], object detection [41]
and image restoration [20], [42], [43]. The key idea lies behind
these methods is the self attention mechanism, which refines
one feature according to the weighting of other features based
on the calculated similarity. In fact, a related idea of self-
similarity has been exploited in video restoration before the
deep learning era. For example, [44] and [45] exploited
the non-local means in video denoising, by searching the
pixels that resemble the pixel in restoration. Concurrent to our
paper, there are several modern transformer-based methods for
various restoration tasks. For video super-resolution, Liu et
al. [46] propose to use attention on relevant visual tokens
along spatio-temporal trajectories. Song et al. [47] propose an
efficient hybrid transformer-based model with spatio-temporal
transformer blocks and 3D convolutional layers. The flickering
artifact is also investigated and alleviated by the their proposed
sliding block strategy and overlap loss. Liu et al. [48] design
a spatio-temporal stability module to learn the self-alignment
from inter-frames. For video deblurring and denoising,
Li et al. [49] propose the grouped spatial-temporal shift
to implicitly capture inter-frame correspondences for multi-
frame aggregation. For video frame interpolation, Zhou et
al. [50] develop a texture consistency loss and a guided
cross-scale pyramid module for better alignment. For spatio-
temporal video super-resolution, Zhang et al. [5S1] propose the
cross-frame transformer module to refine the current feature
maps through self-attention mechanism. For compressed video
super-resolution, Qiu et al. [52] divide the video into different
frequency bands and apply temporal attention to them before
joint spatial attention. Compared with above methods, the
proposed VRT is a general video restoration framework with
parallel frame prediction ability and it achieves state-of-the-art
performance on various restoration tasks.
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III. VIDEO RESTORATION TRANSFORMER

A. Overall Framework

Let 119 ¢ RT*HxWxCin be a sequence of low-quality (LQ)
input frames and ¢ ¢ RT*sHxsWxCou be 3 sequence of
high-quality (HQ) target frames. T, H, W, C;,, and C,,, are
the frame number, height, width and input channel number
and output channel number, respectively. s is the upscaling
factor, which is larger than 1 (e.g., for video SR) or equal to 1
(e.g., for video deblurring). The proposed Video Restoration
Transformer (VRT) aims to restore 77 HQ frames from 7 LQ
frames in parallel for various video restoration tasks, including
video SR, deblurring, denoising, efc. As illustrated in Fig. 2,
VRT can be divided into two parts: feature extraction and
reconstruction.

1) Feature Extraction: At the beginning, we extract shallow
features 157 € RT*HxWxC by 3 single spatial 2D convolution
from the LQ sequence [ LO  After that, based on [53],
we propose a multi-scale network that aligns frames at
different image resolutions. More specifically, when the total
scale number is S, we downsample the feature for § — 1
times by squeezing each 2 x 2 neighborhood to the channel
dimension and reducing the channel number to the original
number via a linear layer. Then, we upsample the feature
gradually by unsqueezing the feature back to its original
size. In such a way, we can extract features and deal with
object or camera motions at different scales by two kinds of
modules: temporal reciprocal self attention (TRSA, see III-
B) and parallel warping (see III-C). Skip connections are
added for features of same scales. Finally, after multi-scale
feature extraction, alignment and fusion, we add several TRSA
modules for further feature refinement and obtain the deep
feature 1PF € RT*H>WxC,

2) Reconstruction: After feature extraction, we reconstruct
the HQ frames from the addition of shallow feature ISF
and deep feature IPF. Different frames are reconstructed
independently based on their corresponding features. Besides,
to ease the burden of feature learning, we employ global
residual learning and only predict the residual between the
bilinearly upsampled LQ sequence and the ground-truth HQ
sequence. In practice, different reconstruction modules are
used for different restoration tasks. For video SR, we use the
sub-pixel convolution layer (pixel shuffle layers followed by
convolution layers) [54] to upsample the feature by a scale
factor of s. For video deblurring, a single convolution layer
is enough for reconstruction. Apart from this, the architecture
designs are kept the same for all tasks.

3) Loss Function: For fair comparison with existing
methods, we use the commonly used Charbonnier loss between
the reconstructed HQ sequence /%7€ and the ground-truth HQ
sequence 117€ as

£=\/||IRHQ—IHQ||2+62, (1)

where € is a constant that is empirically set as 1073,
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B. Temporal Reciprocal Self Attention

In this section, based on the attention mechanism [37], [39],
we first introduce the reciprocal attention and then propose the
temporal reciprocal self attention.

1) Reciprocal Attention: Given a reference frame feature
XR € RVXC and a supporting frame feature X5 e RV*C,
where N is the number of feature elements and C is the
number of feature channels, we define the query QF, key K
and value V¥ as

of =xkp2 kS=x5PX vSi=xPY, (2
where P2, PX PV e RE*P are linear projection matrices.
D is the channel number of projected features. In particular,
the query QR is the projected feature of the reference
frame feature X®, while the key K and value V° are two
corresponding features of the supporting frame X°. Next, the
query QF is used to query the key K5 in order to generate the
attention map A = SoftMax(QR(K%)T /v/D) € RV*N | which
is then used for weighted sum of value V5. This is formulated
as

MA(QX, k5, v5) = SoftMax(Q® (k5T VD)V,  (3)

where SoftMax means the row softmax operation. When we
regard the supporting frame feature as a dictionary with key-
value pairs, this attention calculates the weighted sum of all
values according to one input query from the reference frame.

Since QR and K% come from XR and X5, respectively,
A reflects the correlation between elements in the reference
image and the supporting image. For clarity, we rewrite Eq. (3)
for the i-th element of the reference image as

N
eI @
j=1

where YIR refers to the new feature of the i-th element in the
reference frame. As shown in Fig. 3a, when K,i . (e.g., the
yellow square from the supporting frame) is the most similar
element to Qf: (e.g., the orange square from the reference
frame), A;x > A; ; holds for all j # k (j < N). When all
Ki:(j # k) are very dissimilar to Q,R, we have

[ A — 1, )

Aij— 0, for j#k,j<N.

In this extreme case, by combining Eq. (4) and (5), we have
Yif = Vk‘?:, which moves the k-th element in the supporting
frame to the position of the i-th element in the reference
frame (see the dashed red line in Fig. 3a). This actually
equals to image warping given an optical flow vector. When
A;x — 1 does not hold, Eq. (4) can be regarded as a “soft”
version of image warping. In practice, the reference frame
and supporting frame can be exchanged, allowing reciprocal
alignment between two frames. Besides, similar to multi-head
self attention, we can also perform the attention for A times
and concatenate the results as multi-head reciprocal attention
(MRA).

Particularly, reciprocal attention has several benefits over
the combination of explicit motion estimation and image
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Fig. 2. The framework of the proposed Video Restoration Transformer (VRT). Given T low-quality input frames, VRT reconstructs 7" high-quality frames in
parallel. It jointly extracts features, deals with misalignment, and fuses temporal information at multiple scales. On each scale, it has two kinds of modules:
temporal reciprocal self attention (TRSA, see Sec. III-B) and parallel warping (PW, see Sec. III-C). The downsampling and upsampling operations between
different scales are omitted for clarity. In the TRSA module, MRA, MSA and MLP represent multi-head reciprocal attention, multi-head self attention and

multi-layer perception, respectively.
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(a) Reciprocal attention (b) Stacking of temporal reciprocal self attention (TRSA)

Fig. 3. [Illustrations for reciprocal attention and temporal reciprocal self attention (TRSA). In Fig. 3a, we let the orange square (the i-th element of the
reference frame) query elements in the supporting frame and use their weighted features as a new representation for the orange square. The weights are shown
around solid arrows (we only show three examples for clarity). When A; ; — 1 and the rest A; ; — 0(j # k), the reciprocal attention equals to warping
the yellow square to the position of the orange square (illustrated as a dashed arrow). Fig. 3b shows a stack of temporal reciprocal self attention (TRSA)
layers. The sequence is partitioned into 2-frame clips at each layer and shifted for every other layer to enable cross-clip interactions. Dashed lines represent
information fusion among different frames.

warping. First, reciprocal attention can adaptively preserve X; € R M*C and X, e R'™NM*C_ We use multi-head
information from the supporting frame than image warping, reciprocal attention (MRA) on X; and X, for two times:
which only focuses on the target pixel. It also avoids warping X; towards X, and warping X, towards X;. The
black hole artifacts when there is no matched positions. warped features are combined and then concatenated with the
Second, reciprocal attention does not have the inductive biases result of multi-head self attention (MSA) within two frames,
of locality, which is inherent to most CNN-based motion followed by a multi-layer perceptron (MLP) for the purpose
estimation methods [33], [55] and may lead to performance of dimension reduction. After that, another MLP is added for
drop when two neighboring objects move towards different further feature transformation. Two LayerNorm (LN) layers
directions. Third, reciprocal attention equals to conducting and two residual connections are also used as shown in the
motion estimation and warping on image features in a joint green box of Fig. 2. The whole process formulated as follows
way. In contrast, optical flows are often estimated on the input .

RGB image and then used for warping on features [12], [13]. X1, X = Splity (LN(X))

Besides, flow estimation on RGB images is often not robust Y1, Y2 = MRA(X1, X2), MRA(X2, X1)

to lighting variation, occlusion and blur [31]. Y3 = MSA(Concaty (X1, X))
2) Temporal Reciprocal Self Attention (TRSA): Reciprocal X = MLP(Concat,(Concaty (Y1, Y2), ¥3)) + X
attention is proposed for joint feature alignment between two X = MLP(LN(X)) + X (6)

frames. To extract and preserve feature from the current frame,
we use reciprocal attention together with self attention. Let where the subscripts of Split and Concat refer to the specified
X € R?*NXC represent two frames, which can be split into ~ dimensions. For example, Split,(-) means splitting the tensor
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Fig. 4. Illustration of parallel warping. For every frame feature X;(r < T),
frame X;_ 1 and Xy4 are warped towards X; as X +—1 and X +1 respectively.
Then, X;, X +—1 and X ++1 are concatenated together (denoted by blue boxes)
for feature fusion and dimension reduction with a multi-layer perception
(MLP). The final output is X;. The dashed arrows and circles denote warping
operations and warped features, respectively.

along the O-th dimension. However, due to the design of
reciprocal attention, Eq. (6) can only deal with two frames
at a time.

One naive way to extend Eq. (6) for 7 frames is to
deal with frame-to-frame pairs exhaustively, resulting in the
computational complexity of O(T?). Inspired by the shifted
window mechanism [40], [56], we propose the temporal
reciprocal self attention (TRSA) to remedy the problem.
TRSA first partitions the video sequence into non-overlapping
2-frame clips and then applies Eq. (6) to them in parallel.
Next, as shown in Fig. 3b, it shifts the sequence temporally by
1 frame for every other layer to enable cross-clip connections,
reducing the computational complexity to O(T'). The temporal
receptive field size is increased when multiple TRSA modules
are stacked together. Specifically, at layer i (i > 2), one frame
can utilize information from up to 2(i — 1) frames.

3) Discussion: Video restoration tasks often need to process
high-resolution frames. Since the complexity of attention is
quadratic to the number of elements within the attention
window, global attention on the full image is often impractical.
Therefore, following [20], [40], we partition each frame
spatially into non-overlapping M x M local windows, resulting

in 2% windows. Shifted window mechanism (with the shift

2
of LAXT’IJ X L%J pixels) is also used spatially to enable cross-
window connections. Besides, although stacking multiple
TRSA modules allows for long-distance temporal modelling,
distant frames are not directly connected. As will show in the
ablation study, using only a small temporal window size cannot
fully exploit the potential of the model. One naive idea is to
directly use larger temporal attention window size. However,
this could be computationally intensive and impractical for
videos. To balance the performance and efficiency, we use the
normal TRSA modules for the first three quarters of layers
and use larger temporal window size for the last quarter of
layers.

C. Farallel Warping

Due to spatial window partitioning, the reciprocal attention
mechanism may not be able to deal with large motions
well. Hence, as shown in the orange box of Fig. 2, we use
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feature warping at the end of each network stage to handle
large motions. As shown in Fig. 4, for any frame feature
X,, we calculate the optical flows of its neighbouring frame
features X1 and Xi+1, and warp them towards the frame
X; as Xt 1 and Xl+1 (ie., backward and forward warping).
Then, we concatenate X;, X, 1 and X,+1 along the channel
dimension (denoted by the blue box). To keep the original
channel size for later operations, we reduce its dimension by a
multi-layer perception (MLP) and obtain X;. This mechanism
can be generalized for four (i.e., X;—2, X;—1, X;+1 and
X:42) and six (i.e., X;—3, X1—2, Xi—1, Xr41, Xr42 and X;43)
neighboring frames. Note that different frames are processed
in parallel.

Specifically, following [13], we predict the optical flow by a
flow estimation model and use deformable convolution [35] for
deformable alignment. Given estimated optical flows O;_1;
and O;y1;, we first use them to warp X;—; and X;ii,
respectively as

I X = W(Xi_1, 0_1.). -

X;Jrl =W(X141, Or11,1),

where W represents the image warping function. X; | and
X; 41 are the initial warped features. Then, we use several
convolution layers (denoted as C) to predict the optical
flow residuals (offsets) o;—1, 0s+1,; and modulation masks
my—_1,, mi41,¢ from the concatenation of O;_1, Os41, X;_l
and X 41 as

Ot—1.t5 0141, My—1¢, Myx1,1 = C(Concat(O;_1 4,
/ /
0t+1,l‘a Xf_l’ X[+]))' (8)

Next, we warp X;_1 and X;4 again as

{ Xi—1 =D(X—1, Or—14 + 0110, Mi—1.0), ©)

Xt+1 = D(Xt+1, Org1,t + 01,6, Met1,1)s

where D refers to the deformable convolution. Finally, the
outputs X;_1 and X;;1 and concatenated with X, as the new
feature for the ¢-th frame.

IV. EXPERIMENTS
A. Experimental Setup

For video SR, we use 4 scales for VRT. On each scale,
we stack 8 TRSA modules, the last two of which use a
temporal window size of 8. The spatial window size M x M,
head size h, and channel size C are set to 8 x 8, 6 and
120, respectively. After 7 multi-scale feature extraction stages,
we add 24 TRSA modules (only with self attention) for
further feature extraction before reconstruction. For flow
estimation, we extract multi-scale flows from different layers
of SpyNet [33], [57] and feed them into different scales of
VRT. In video SR, for the additional TRSA modules in the
8-th stage, the channel number is set as 180. We use temporal
window sizes of 8 and 2 for the first two thirds of modules and
the rest ones, respectively. In video deblurring and denoising,
we use a relatively smaller model. The channel sizes for the
first 7 stages and the 8-th stage are 96 and 120, respectively.
For the 8-th stage, we only use 16 TRSA modules. In addition,
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TABLE I

QUANTITATIVE COMPARISON (AVERAGE PSNR/SSIM) WITH STATE-OF-THE-ART METHODS FOR VIDEO SUPER-RESOLUTION (x4) ON REDS4 [60],

VIMEO-90K-T [31], VID4 [61] AND UDM10 [21]. BEST AND SECOND BEST RESULTS ARE IN RED AND BLUE COLORS, RESPECTIVELY. TWEg
CURRENTLY DO NOT HAVE ENOUGH GPU MEMORY TO TRAIN THE FULLY PARALLEL MODEL VRT ON 30 FRAMES

Training BI degradation BD degradation

Method frames | Paramsy | REDSA [60] || Vimeo-90K-T [31]] Vid4 [61] || UDMIO [21]] Vimeo-90K-T [31]| Vid4 [61]

Vimeo-90K) | Runtimems) || (RGB channel) (Y channel) (Y channel) || (Y channel) (Y channel) (Y channel)
Bicubic -/ - - 26.14/0.7292 31.32/0.8684 23.78/0.6347 || 28.47/0.8253 31.30/0.8687 21.80/0.5246
SwinlIR [20] - 119/ - 29.05/0.8269 35.67/0.9287 25.68/0.7491 || 35.42/0.9380 34.12/0.9167 25.25/0.7262
SwinIR-ft [20] 1/1 119/ - 29.24/0.8319 35.89/0.9301 25.69/0.7488 || 36.76/0.9467 35.70/0.9293 25.62/0.7498
TOFlow [31] 5/7 -/ - 27.98/0.7990 33.08/0.9054 25.89/0.7651 || 36.26/0.9438 34.62/0.9212 25.85/0.7659
FRVSR [8] 10/7 5.1/7137 - - - 37.09/0.9522 35.64/0.9319 26.69/0.8103
DUF [34] 717 5.8/974 28.63/0.8251 - 27.33/0.8319 || 38.48/0.9605 36.87/0.9447 27.38/0.8329
PFNL [21] 777 3.0/ 295 29.63/0.8502 36.14/0.9363 26.73/0.8029 || 38.74/0.9627 - 27.16/0.8355
RBPN [10] 717 12.2 /1507 || 30.09/0.8590 37.07/0.9435 27.12/0.8180 || 38.66/0.9596 37.20/0.9458 27.17/0.8205
RLSP [9] /7 421749 - - - 38.48/0.9606 36.49/0.9403 27.48/0.8388
RSDN [11] -I7 6.2 /94 - - - 39.35/0.9653 37.23/0.9471 27.92/0.8505
FDAN [14] -I7 9.0/ - - - - 39.91/0.9686 37.75/0.9522 27.88/0.8508
EDVR [2] 5/7 20.6 / 378 31.09/0.8800 37.61/0.9489 27.35/0.8264 || 39.89/0.9686 37.81/0.9523 27.85/0.8503
GOVSR [25] -I7 7.1/ 81 - - - 40.14/0.9713 37.63/0.9503 28.41/0.8724
VSRT [17] 517 326/ - 31.19/0.8815 37.71/0.9494 27.36/0.8258 - - -
VRT (ours) 6/- 30.7 /236 31.60/0.8888 - - - - -
BasicVSR [12] 15/14 6.3/63 31.42/0.8909 37.18/0.9450 27.24/0.8251 || 39.96/0.9694 37.53/0.9498 27.96/0.8553
IconVSR [12] 15/14 8.7/70 31.67/0.8948 37.47/0.9476 27.39/0.8279 || 40.03/0.9694 37.84/0.9524 28.04/0.8570
TCNet [48] 15/14 9.6/ 94 31.82/0.9002 37.84/0.9514 27.48/0.8380 - - -
TTSR [46] 50/14 6.8/ - - - - 40.41/0.9712 37.92/0.9526 28.40/0.8643
BasicVSR++ [13] 30/14 7317177 32.39/0.90691 37.79/0.9500 27.79/0.8400 || 40.72/0.9722 38.21/0.9550 29.04/0.8753
VRT-lightweight (ours) | 30/14 73795 32.01/0.8976 37.83/0.9505 27.82/0.8404 - - -
VRT (ours) 16/7 35.6 /243 32.19/0.9006 38.20/0.9530 27.93/0.8425 || 41.05/0.9737 38.72/0.9584 29.42/0.8795

the gated variant GEGLU [38] is used to replace the plain
feed-forward network.

We augment the input frames by random flipping, rotation
and cropping, with a training batch size of 8 and 300K training
iterations. The model is trained by the Adam optimizer [58]
with 81 = 0.9 and B> = 0.99. The learning rate is initialized
as 4e — 4 and decreased gradually according to the Cosine
Annealing scheme [59]. To stabilize training, we use the
pretrained model of SpyNet for initialization and fix the flow
estimation part for the first 20K iterations. We also use a
smaller initial learning rate (i.e., S5e — 5) for it.

There are several training differences in different tasks.
First, we set the training frame number as 6 for most tasks
(7 for Vimeo-90K in video SR) and additionally provide
experiments on 16 frames for REDS in video SR. For Vimeo-
90K, following [13], we initialize the model with the REDS
pretrained model. Second, the training patch size is 64 x 64
for video SR and 192 x 192 for other tasks. Third, for
video denoising, we follow [28], [29] and train a non-blind
denoising model using varying noise levels (o ~ U(0, 50)) by
concatenating the noise level map with the noisy video along
the channel dimension. All experiments are conducted on a
server with 8 A100 GPUs. For video SR, it takes about 5 and
10 days for 6-frame and 16-frame experiments, respectively.
For video deblurring and denoising, the training time is about
10 days.

1) Dataset: For video super-resolution, we train the
model on two different training datasets for scale factor 4.
First, we generate low-resolution images by the MATLAB
imresize function (i.e., bicubic degradation) and train
the model on REDS [60]. REDS4 [2] is used as the test
set. Second, we train the model on Vimeo-90K [31] with
two different degradations: bicubic and blur downsampling

(Gaussian blur with o = 1.6 followed by subsampling). The
testing datasets include Vimeo-90K-T [31], Vid4 [61] and
UDMIO0 [21]. For video deblurring, we train the model on
three different datasets (DVD [4], GoPro [62] and REDS [60]).
We test it on their corresponding testing sets (for REDS,
we use REDS4 [2]). For video denoising, we train the model
on the DAVIS [63] and test it on the corresponding testing set
and Set8 [28].

For evaluation, following [2], [6], [12], [28], [36],
we calculate the metrics on RGB channel for REDS4 [2], DVD
testing set [4], GoPro testing set [62], DAVIS testing set [63]
as well as Set8 [28], and on the Y channel for Vimeo-90K-
T [31], Vid4 [61] and UDMI10 [21].

B. Video SR

1) Quantitative Results: As shown in Table I, we compare
VRT with the state-of-the-art image and video SR methods [2],
(81, [91, [10], [11], [12], [13], [14], [17], [21], [25], [31],
[34]. VRT achieves best performance for both bicubic (BI)
and blur-downsamplng (BD) degradations. Specifically, when
trained on the REDS [60] dataset with short sequences, VRT
outperforms VSRT by up to 0.57dB in PSNR. Compared
with another representative sliding window-based model
EDVR, VRT has an improvement of 0.50~1.57dB on
different datasets, showing its good ability to fuse information
from multiple frames. Note that VRT outputs all frames
simultaneously rather than predicting them frame by frame as
EDVR does. On the Vimeo-90K [31] dataset, VRT surpasses
BasicVSR++ by up to 0.38dB, although BasicVSR++ and
other recurrent models may mirror the 7-frame video for
training and testing. When VRT is trained on longer sequences,
it shows good potential in temporal modelling and further

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 23,2025 at 13:43:04 UTC from |IEEE Xplore. Restrictions apply.



LIANG et al.: VRT: A VIDEO RESTORATION TRANSFORMER

ﬂ

LQ (x4)

i
2 m

IconVSR [12]

LQ (x4)

IconVSR [12]

Fig. 5.

increases the PSNR by 0.52dB. As indicated in [17], recurrent
models often suffer from significant performance drops on
short sequences. In contrast, VRT performs well on both short
and long sequences. We note that VRT is slightly lower than
the 32-frame model BasicVSR++-. This is expected since VRT
is only trained on 16 frames. When we reduce the model
size of VRT to be similar to BasicVSR++ and train it with
30 or 14 frames, we find that it outperforms BasicVSR++ on
Vimeo-90K-T and Vid4, but not on REDS4. We guess it is
due to the difference of the characteristics of different testing
sets.

We also provide comparison on parameter number and
runtime in Table 1. As a parallel model, VRT needs to
restore all frames at the same time, which leads to relatively
larger model size and longer runtime per frame compared
with recurrent models. However, VRT has the potential for
distributed deployment, which is hard for recurrent models
that restore a video clip recursively by design.

2) Qualitative Results: Visual results of different methods
are shown in Fig. 5. As one can see, in accordance with
its significant quantitative improvements, VRT can generate
visually pleasing images with sharp edges and fine details,
such as horizontal strip patterns of buildings. By contrast, its
competitors suffer from either distorted textures or lost details.

3) Performance in Different Motion Conditions: Follow-
ing [23], we compare different methods on Vimeo90K [31]
(x4, BI degradation) with fast/ medium/ slow motions.
As shown in Table II, VRT leads to larger improvement on
fast motion videos than on slow ones when compared with
existing methods.

4) Performance on Different Testing Frame Numbers:
To compare the characteristics of recurrent models and
the proposed parallel model VRT, we compare VRT with
a representative recurrent model BasicVSR++ [13] using
different testing frame numbers. As shown in Table III,
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BasicVSR++ [13]
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VSRT [17]

VRT (ours)

BasicVSR++ [13]

Visual comparison of video super-resolution (x4) methods.

(@ (®)
Fig. 6. Visualization of attention maps. The first row shows the original
image patches at the same position from different frames, while the rest rows
are the attention weight visualizations of six different attention heads. The
query pixel is marked by a red point in the first frame.

from 100 frames to 5 frames, the PSNR of BasicVSR++
drops significantly, while the VRT is less sensitive to the
testing frame numbers and outperforms BasicVSR++ by large
margins on few-frame cases.

5) Robustness to Noise: In addition, to compare the noise
robustness of parallel models and recurrent models, we hack
the LQ input video by manually setting all pixels of the 50-th
frame as zero in testing. As shown in Fig. 7, VRT suffers
from less performance drop and has less adverse impact on
neighbouring frames than BasicVSR, indicating that VRT is
more robust to noise.

6) Attention Visualization: To show exploit what the
attention mechanism has learned, we plot the attention maps
between a pixel (marked as red points) from the first frame
and the rest pixels in the same attention window. As shown
in Fig. 6, when the red point moves towards the top-right
direction from the first frame to the last frame, it moves
most attention to the top-right direction as well. Similar
observations can be concluded from other examples. This
shows the temporal dependency modelling ability of our model
across different frames.
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TABLE II
VIDEO SR (x4, Bl DEGRADATION) RESULTS ON VIMEO-FAST/ MEDIUM/ SLOW SUBSETS
Subset | EDVR [2] | BasicVSR [12] | BasicVSR++ [13] | VRT (TRSA) | VRT (PA) | VRT (ours, TRSA+PA)
Fast 40.77 4034 40.98 40.78 4129 4144
Medium 37.81 3735 37.99 37.95 38.22 38.42
Slow 34.52 34.11 3457 34.90 34.65 34.98
TABLE 111 100 1 i I l
ABLATION STUDY ON TESTING FRAME NUMBERS § 80
# Frame 5 10 20 40 60 100 & 60
BasicVSR++ [13] | 30.73 | 31.12 | 31.43 | 31.81 | 3221 | 32.39 3
VRT (ours) 31.69 | 31.88 | 32.01 | 32.10 | 32.15 | 32.19 3 40
(9]
—_
& 2
36 :
- VRTl(orlgnaI). 0 Ours v.s. Ours v.s. Ours v.s. Ours v.s.
35 —— BasicVSR (orignal) TSP PVDNet GSTA ARVo
fffff VRT (hacked)
D3y - BasicVSR (hacked) Fig. 8. User study of video deblurring on the DVD [4] dataset.
E M S
733 > . . .
A are 23.6M and 23.5M, respectively, and their runtimes are 0.4s
32 1 and 1.1s, respectively. Notably, during evaluation, we do not
i use any pre-processing techniques such as sequence truncation
3175 20 40 60 80 100 1y pre-p! g q q
Frame Index and image alignment [16], [24].
(a) Clip 011, REDS [60] 2) Qualitative Results: Fig. 9 shows the visual comparison
38 of different methods. VRT is effective in removing motion
— VAT (orignal) blurs and restoring faithful details, such as the pole in the
37 BasicVSR (orignal) . R
e VRT (hacked) first example and characters in the second one. In comparison,
***** BasicVSR (hacked .
236 asIcVSR (hacked) other approaches fail to remove blurs completely and do not
o
g3 produce sharp edges.
In addition, we conduct a user study with 20 users on video
3 deblurring. Each user is given multiple pairs of deblurred
33 videos from DVD [4], where one is our result. As shown in

0 20 40 60 80 100
Frame Index

(b) Clip 015, REDS [60]

Fig. 7. Comparison of per-frame PSNR drop when pixels of the 50-th frame
of the LQ input video is hacked to be all zeros during testing.

C. Video Deblurring

1) Quantitative Results: We conducts experiments on three
different datasets for fair comparison with existing meth-
ods [2], [4], [5], [6], [16], [22], [24], [36], [62], [64]. Table IV
shows the results on the DVD [4] dataset. It is clear that
VRT achieves the best performance, outperforming the second
best method ARVo by a remarkable improvement of 1.47dB
and 0.0299 in terms of PSNR and SSIM. PVDNet proposes
motion estimation learning to better aggregate information
from multiple frames, but it is inferior to the proposed VRT,
which uses reciprocal attention for alignment. Related to the
attention mechanism, GSTA designs a gated spatio-temporal
attention mechanism, while ARVo calculates the correlation
between pixel pairs for correspondence learning. However,
both of them are based on CNN, achieving significantly
worse performance compared with the transformer-based VRT.
We also compare VRT on the GoPro [62] (Table V) and
REDS [60] (Table VI) datasets. VRT shows its superiority
over other methods with significant PSNR gains of 2.15dB
and 1.99dB. The total number of parameters of VRT is 18.3M
and the runtime is 2.2s per frame on 1280 x 720 blurred
videos. In contrast, the model sizes of EDVR and PVDNet

Fig. 8, over 90% of the users vote that VRT has better visual
quality than existing methods.

D. Video Denoising

We also conduct experiments on video denoising to show
the effectiveness of VRT. Following [28], [29], we train one
non-blind model for noise level o € [0, 50] on the DAVIS [63]
dataset and test it on different noise levels. Table VII shows the
superiority of VRT on two benchmark datasets over existing
methods [26], [28], [29], [67]. Even though PaCNet [26] trains
different models separately for different noise levels, VRT still
improves the PSNR by 0.82~2.16dB. As for the efficiency, the
VRT has a runtime of 2.2s, while the runtimes of DVDnet and
PaCNet are 8s and 35.4s, respectively.

E. Video Frame Interpolation

To show the generalizability of our framework, we conduct
experiments on video frame interpolation. Following [68],
[69], we train the model on Vimeo-90K [31] for single frame
interpolation and test it on quintuples generated from Vimeo-
90K-T [31], UCF101 [70] and DAVIS [63]. As shown in
Table VIII, VRT achieves best or competitive performance
on all datasets compared with it competitors, including those
using depth maps or optical flows. As for the model size,
VRT only has 9.9M parameters, which is much smaller than
the recent best model FLAVR (42.4M).
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TABLE IV

QUANTITATIVE COMPARISON (AVERAGE RGB CHANNEL PSNR/SSIM) WITH STATE-OF-THE-ART METHODS FOR VIDEO DEBLURRING ON DVD [4].
FOLLOWING [6], [24], ALL RESTORED FRAMES INSTEAD OF RANDOMLY SELECTED 30 FRAMES FROM EACH TEST SET [4] ARE USED IN
EVALUATION. BEST AND SECOND BEST RESULTS ARE IN RED AND BLUE COLORS, RESPECTIVELY

‘ Method | DeepDeblur SRN || DBN STFAN | SFE | EDVR | TSP | PVDNet GSTA | ARVo VRT (ours) ‘
[62] [64] [4] [5] [22] [2] [24] [16] [36] [6]
PSNR 29.85 30.53 30.01 31.24 31.71 31.82 32.13 32.31 32.53 32.80 34.27 (+1.47)
SSIM 0.8800 0.8940 0.8877 0.9340 0.9160 | 0.9160 | 0.9268 0.9260 0.9468 | 0.9352 | 0.9651 (+0.03)
TABLE V

QUANTITATIVE COMPARISON (AVERAGE RGB CHANNEL PSNR/SSIM) WITH STATE-OF-THE-ART METHODS FOR VIDEO DEBLURRING
ON GOPRO [62]. BEST AND SECOND BEST RESULTS ARE IN RED AND BLUE COLORS, RESPECTIVELY

| Method | DeepDeblur SRN | SAPHN | MPRNet SFE || ESTRNN | EDVR | TSP | PVDNet GSTA | VRT (ours) |
[62] [64] [65] [66] [22] [15] [2] [24] [16] [36]
PSNR 29.23 30.26 31.85 32.66 31.01 31.07 31.54 31.67 31.98 32.10 34.81 (+2.15)
SSIM 0.9162 0.9342 0.9480 0.9590 0.9130 0.9023 0.9260 | 0.9279 0.9280 0.9600 | 0.9724 (+0.01)

STFAN [5] TSP [24]
PVDNet [16] VRT (ours)

SAPHN [65]

72-3‘.'!11: r.m—m: W2-3300.§ 172-33M"'

MPRNet [66]

I 5511,
= S501. TSG

000210, GOPRO410_11_00, GoPro TSP [24] PVDNet [16] VRT (ours)

Fig. 9. Visual comparison of video deblurring methods.

TABLE VI TABLE VII
QUANTITATIVE COMPARISON (AVERAGE RGB CHANNEL PSNR/SSIM) QUANTITATIVE COMPARISON (AVERAGE RGB CHANNEL PSNR) WITH
WITH STATE-OF-THE-ART METHODS FOR VIDEO DEBLURRING ON STATE-OF-THE-ART METHODS FOR VIDEO DENOISING ON DAVIS
REDS [60]. BEST AND SECOND BEST RESULTS ARE IN RED AND [63] AND SET8 [28]. 0 IS THE ADDITIVE WHITE GAUSSIAN NOISE
BLUE COLORS, RESPECTIVELY LEVEL. BEST AND SECOND BEST RESULTS ARE IN RED AND
Secbeti RN DBN EOVR BLUE COLORS, RESPECTIVELY
eepDeblur
Method VRT
| etho | (621 [64] || | 2] | (ours) ‘ | ot | o | VLNB | DVDnet | FastDVDnet | PaCNet | (oo
PSNR 26.16 26.98 26.55 34.80 36.79 (+1.99) [67] [28] [29] [26]
SSIM 0.8249 0.8141 0.8066 | 0.9487 | 0.9648 (+0.02) 10 | 38.85 38.13 38.71 39.97 40.82 (+0.85)
20 35.68 35.70 35.77 36.82 38.15 (+1.33)
DAVIS | 30 | 33.73 34.08 34.04 34.79 36.52 (+1.73)
40 | 32.32 32.86 32.82 33.34 35.32 (+1.98)
. R 50 | 31.13 31.85 31.86 32.20 34.36 (+2.16)
F: Space-Time Video Super-Resolution 10 T 37.26 36.08 36.44 37.06 37.88 (+0.82)
20 | 33.72 33.49 33.43 33.94 35.02 (+1.08)
With the pretrained models on video SR (VSR) and video Set8 | 30 | 3174 | 3179 31.68 3205 | 33.35 (+1.30)
. . . . 40 | 30.39 30.55 30.46 30.70 32.15 (+1.45)
frame interpolation (VFI), we directly test VRT on space-time 50 | 2924 | 2956 2953 2066 | 31.22 (+1.56)

video super-resolution by cascading VRT models in two ways:

VFI followed by VSR, or VSR followed by VFI. As shown

in Table IX, compared with existing methods, VRT provides O- Ablation Study

a strong baseline for space-time video super-resolution, even For ablation study, we set up a small version of VRT as the
though it serves as a two-stage model and is not specifically baseline model by halving the layer and channel numbers. All
trained for this task. In particular, it improves the PSNR by models are trained on Vimeo-90K [31] for bicubic video SR
1.03dB on the Vid4 dataset. (x4) and tested it on Vid4 [61].
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TABLE VIII

QUANTITATIVE COMPARISON (AVERAGE RGB CHANNEL PSNR) WITH
STATE-OF-THE-ART METHODS FOR VIDEO FRAME INTERPOLATION
(SINGLE FRAME INTERPOLATION, x2) ON VIMEO-90K-T [31],
UCF101 [70] AND DAVIS [63]. R, D AND F MEANS THAT
THE MODEL USES RGB IMAGES, DEPTH MAPS OR OPTICAL
FLOWS. BEST AND SECOND BEST RESULTS ARE IN RED
AND BLUE COLORS, RESPECTIVELY

Vimeo-90K-T UCF101 DAVIS
Method ‘ Inputs [31] ‘ [70] ‘ [63] ‘
DAIN [71] R+D+F 33.35/0.945 31.64/0.957 | 26.12/0.870
QVI [68] R+F 35.15/0.971 32.89/0.970 | 27.17/0.874
CAIN [72] R 33.93/0.964 32.28/0.965 | 26.46/0.856
SuperSloMo [73] R 32.90/0.957 32.33/0.960 | 25.65/0.857
AdaCoF [74] R 35.40/0.971 32.71/0.969 | 26.49/0.866
FLAVR [69] R 36.25/0.975 33.31/0.971 27.43/0.874
VRT (ours) R 36.53/0.977 33.30/0.970 | 27.88/0.889
TABLE IX

QUANTITATIVE COMPARISON (AVERAGE Y CHANNEL PSNR) WITH
STATE-OF-THE-ART METHODS FOR SPACE-TIME VIDEO SUPER-
RESOLUTION (TIME: x2, SPACE: x4) ON VID4 [61] AND VIMEO-
90K-T [31]. [71] Is THE FRAME INTERPOLATION METHOD
DAIN. NOTE THAT THE PROPOSED VRT IS NOT TRAINED
ON THIS TASK. WE DIRECTLY TEST IT BY CASCADING
PRE-TRAINED VIDEO SUPER-RESOLUTION (VSR)

AND VIDEO FRAME INTERPOLATION (VFI) MOD-

ELS. BEST AND SECOND BEST RESULTS ARE
IN RED AND BLUE COLORS,

RESPECTIVELY
VFI+VSR Vid4 Vimeo-Fast Vimeo-Medium Vimeo-Slow
Methods [61] [31] [31] [31]
[71]+Bicubic 23.55/0.6268 32.41/0.8910 30.67/0.8636 29.06/0.8289
[71]+RCAN [19] 25.03/0.7261 35.27/0.9242 33.82/0.9146 32.26/0.8974
[71]+RBPN [10] 25.96/0.7784 35.55/0.9300 34.45/0.9262 32.92/0.9097
[71]1+EDVR [2] 26.12/0.7836 35.81/0.9323 34.66/0.9281 33.11/0.9119
ZSM [23] 26.31/0.7976 36.81/0.9415 35.41/0.9361 33.36/0.9138
CFT [51] 26.02/0.7803 36.41/0.9293 32.60/0.8841 31.49/0.8944
STARnet [75] 26.06/0.8046 36.19/0.9368 34.86/0.9356 33.10/0.9164
TMNet [76] 26.43/0.8016 37.04/0.9435 35.60/0.9380 33.51/0.9159
RSTT [77] 26.43/0.7994 36.80/0.9403 35.66/0.9381 33.50/0.9147
VRT (VFI+VSR) 26.59/0.8014 36.56/0.9372 35.28/0.9343 33.75/0.9204
VRT (VSR+VFI) 27.46/0.8392 36.98/0.9439 36.01/0.9434 34.01/0.9236
TABLE X

ABLATION STUDY ON MULTI-SCALE ARCHITECTURE AND PARALLEL
WARPING. GIVEN AN INPUT OF SPATIAL SIZE 64 x 64, THE
CORRESPONDING FEATURE SIZES OF EACH SCALE ARE SHOWN
IN BRACKETS. WHEN SOME SCALES ARE REMOVED, WE ADD

MORE LAYERS TO THE REST SCALES TO KEEP
SIMILAR MODEL SIZE
1 2 3 4

Parallel

(64x64) | (32x32) | 16x16) | 8 x8) | warping | ToONR
7 v 7713
v v v 2720
v v v v 2725
v v v v 2711
7 7 7 7 7 7738

1) Impact of Multi-Scale Architecture & Parallel Warping:
Table X shows the ablation study on the multi-scale
architecture and parallel warping. When the number of model
scales is reduced, the performance drops gradually, even
though the computation burden becomes heavier. This is
expected because multi-scale processing can help the model
utilize information from a larger area and deal with large
motions between frames. Besides, parallel warping also helps,
bringing an improvement of 0.17dB.

2) Impact of Temporal Reciprocal Self Attention & the
Comparison With Parallel Warping: To test the effectiveness
of reciprocal and self attention in TRSA, we conduct ablation
study in Table XI. When we replace reciprocal attention
with self attention (i.e., two self attentions) or only use
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TABLE XI
ABLATION STUDY ON TEMPORAL RECIPROCAL SELF ATTENTION

Attention 1 Self Attn. - Reciprocal Attn. Reciprocal Attn.
Attention 2 Self Attn. Self Attn. - Self Attn.
PSNR 27.17 27.11 26.92 27.28
TABLE XII

ABLATION STUDY ON ATTENTION WINDOW SIZE
(FRAME x HEIGHT x WIDTH)

[ Window Size [ TX8X8 [ 2x8Xx8 [ 4x8x8 [ 8x8x8 |
| PSNR | 2710 | 2713 [ 2718 | 2728 |

one self attention, the performance drops by 0.11~0.17dB.
One possible reason is that the model may be more focused
on the reference frame rather than on the supporting frame
during the computation of attention maps. In contrast, using
the reciprocal attention can help the model to explicitly
attend to the supporting frame and benefit from feature
fusion. In addition, we can find that only using reciprocal
attention is not enough. This is because reciprocal attention
cannot preserve information of reference frames. Furthermore,
we compare the performance of TRSA and parallel warping
under different motion conditions. As shown in Table II, both
of these two modules are effective and important for the model,
but they show different characteristics. TRSA performs better
on slow-motion videos, while parallel warping is better at fast-
motion videos. We guess it is because TRSA allows for direct
interactions within the attention window for small motions,
but is less efficient than parallel warping in dealing with large
motions outside of the attention window.

3) Impact of Attention Window Size: We conduct ablation
study in Table XII to investigate the impact of attention
window size in the last few TRSAs of each scale. When the
temporal window size increases from 1 to 2, the performance
only improves slightly, possibly due to the fact that previous
TRSA layers can already make good use of neighboring two-
frame information. When the size is increased to 8, we can
see an obvious improvement of 0.18dB. As a result, we use
the window size of 8 x 8 x 8 for those layers.

V. CONCLUSION

In this paper, we proposed the Video Restoration Trans-
former (VRT) for video restoration. Based on a multi-scale
framework, it jointly extracts, aligns, and fuses information
from different frames at multiple resolutions by two kinds of
modules: multiple temporal reciprocal self attention (TRSA)
and parallel warping. More specifically, TRSA is composed
of reciprocal and self attention. Reciprocal attention allows
joint implicit flow estimation and feature warping, while self
attention is responsible for feature extraction. Parallel warping
is also used to further enhance feature alignment and fusion.
Extensive experiments on various benchmark datasets show
that VRT brings significant performance gains (up to 2.16dB)
for various video restoration tasks, including video super-
resolution, video deblurring, video denoising, video frame
interpolation and space-time video super-resolution.
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