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Abstract

The automated analysis of chemical literature holds
promise to accelerate discovery in fields such as material
science and drug development. In particular, search ca-
pabilities for chemical structures and Markush structures
(chemical structure templates) within patent documents are
valuable, e.g., for prior-art search. Advancements have
been made in the automatic extraction of chemical struc-
tures from text and images, yet the Markush structures re-
main largely unexplored due to their complex multi-modal
nature. In this work, we present MarkushGrapher, a multi-
modal approach for recognizing Markush structures in doc-
uments. Our method jointly encodes text, image, and
layout information through a Vision-Text-Layout encoder
and an Optical Chemical Structure Recognition vision en-
coder. These representations are merged and used to auto-
regressively generate a sequential graph representation of
the Markush structure along with a table defining its vari-
able groups. To overcome the lack of real-world training
data, we propose a synthetic data generation pipeline that
produces a wide range of realistic Markush structures. Ad-
ditionally, we present M2S, the first annotated benchmark
of real-world Markush structures, to advance research on
this challenging task. Extensive experiments demonstrate
that our approach outperforms state-of-the-art chemistry-
specific and general-purpose vision-language models in
most evaluation settings. Code, models, and datasets are
available "

1. Introduction

Document understanding plays a critical role in accelerat-
ing discovery in chemistry. For example, databases [32]
can be built to offer a unified view of the current knowledge
in documents. Such databases can substantially facilitate
and accelerate Research & Development in fields ranging
from drug discovery to material science [37]. In documents,
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Figure 1. MarkushGrapher extracts Markush structures from
documents using their visual and textual definitions.

molecules can be referred to using textual names or depic-
tions of their molecular structures. Over the past years, sub-
stantial advances have been made to extract molecules from
text using chemical name entity recognition [26, 43, 56], as
well as, from images through chemical structure image seg-
mentation [40, 45, 57] and chemical structure recognition
[31, 38, 41]. More recently, advances in multi-modal docu-
ment understanding have opened up opportunities to extract
chemical structure templates, the so-called Markush struc-
tures [42]. These widely used representations are compact
descriptions of families of related molecules. A Markush
structure consists of a combination of an image and a
text element: the image defines the Markush backbone,
which contains atoms, bonds, and variable regions, while
the accompanying text element specifies the molecular sub-
stituents that can replace those variable regions. The vari-
able regions can be variable groups (commonly referred to
as R-groups), frequency variation indicators, and positional
variation indicators [12]. A visualization of these variable
regions is provided in the suppl. materials. These struc-
tures are particularly valuable for prior-art search, freedom-
to-operate assessment, or landscape analysis in patent doc-
uments [42]. Yet, only a very few databases containing
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Markush structures exist (CAS MARPAT [13], CAS DW-
PIM [15], and WIPO Patentscope), all of which are propri-
etary and manually created. Multi-modal Markush Struc-
ture Recognition (MMSR) is a critical task towards auto-
matically creating and scaling Markush structure databases.

MMSR presents several substantial challenges that cur-
rently limit the effectiveness of automatic recognition meth-
ods. First, the immense diversity of Markush backbones, re-
sulting from the combinatorial explosion of atom-and-bond
associations, makes good generalization particularly diffi-
cult for data-driven deep learning models. Second, Markush
backbones can be depicted in a wide range of styles and
conventions. Third, Markush textual descriptions employ
various formats for representing substituents, such as non-
structured names, molecular string identifiers, and chemical
formulas. In more complex cases, the descriptions may con-
tain interdependent variable definitions. Finally, the lack of
real-world training datasets adds another layer of complex-
ity to applying deep learning methods in this field.

Initial approaches focused on subparts of the MMSR
task. Among them, some methods can recognize a sub-
set of Markush backbone images [10, 38, 41]. From the
cropped image, they apply a deep network to directly out-
put a string of characters identifying the Markush back-
bone, in the form of a Simplified Molecular Input Line En-
try System (SMILES) [53] or a sequential graph representa-
tion. These models extend the task of recognizing molecule
images, known as Optical Chemical Structure Recognition
(OCSR), by generalizing the recognition of abbreviations
to variable groups. However, variable groups are only one
specific feature of Markush structure, and these methods
do not handle the full complexity of Markush backbones,
such as frequency variation indicators. Other works are de-
signed to analyze variable groups definitions from textual
descriptions only. Such methods are formulated as a clas-
sification task, where labels, and definitions in the textual
description are classified. These text-only and image-only
methods are limited as they do not exploit the dependencies
between variables’ textual definitions and their context in
the Markush backbone.

Recently, some toolkits have combined textual and vi-
sual information for chemical document understanding [14,
49]. However, they still rely on separate models to handle
both modalities. At the same time, document understand-
ing has seen the emergence of multi-modal models [20, 46].
They perform a wide range of tasks on documents, using a
unified architecture which takes visual and textual inputs,
and outputs images and texts as well. Such document un-
derstanding models were trained on documents in chemistry
[52], and more specifically, to answer if a query molecule is
covered by the Markush structures in a document [9]. In this
scenario, the model must implicitly recognize multi-modal
Markush structures. However, using this method to search

through large sets of documents is not practical, because it

would require to run the model on every document for each

user query.

In this work, we introduce MarkushGrapher for Multi-
modal Markush Structure Recognition, illustrated in Fig-
ure 1. The encoder-decoder model takes as input an image
of a Markush structure and the OCR cells of all text de-
picted in the image, and outputs a text sequence represent-
ing the structure. This output sequence contains two parts,
one represents the graph of the Markush backbone image,
and one represents a table of substituents which instantiates
the variables in the backbone. The image and OCR cells are
jointly encoded using two encoders, a Vision-Text-Layout
(VTL) encoder and an Optical Chemical Structure Recog-
nition (OCSR) encoder. These encodings are then concate-
nated and used by a text decoder to autoregressively gener-
ate a Markush sequential representation.

To further aid the research in the community, we intro-
duce M2S, a benchmark dataset of annotated real Markush
structures. We also release our pipeline for generat-
ing synthetic Markush structures used to train Markush-
Grapher. Comprehensive experiments are performed on
three benchmarks: MarkushGrapher-Synthetic, M2S and
USPTO-Markush. Our model outperforms general-purpose
as well as chemistry-specific document understanding mod-
els. In summary:

* We develop MarkushGrapher, which combines a VTL en-
coder and an OCSR encoder to recognize multi-modal
Markush structures. Our method achieves state-of-the-
art performance for joint recognition of visual and textual
definitions of Markush structures.

* We introduce M2S, a benchmark of manually-annotated
multi-modal Markush structures from patent documents.

* We build a synthetic data generation pipeline to generate
a wide variety of images and accompanying text descrip-
tions of Markush structures.

2. Related Work

Markush Structure Recognition. Existing work on
Markush structure recognition typically treats vision and
text understanding as separate tasks. On one hand,
some models focus exclusively on visual understanding of
Markush structures. These recognition methods are often
adapted from OCSR techniques [34, 35], which targets stan-
dard molecular structures. They commonly employ a vision
encoder paired with an autoregressive text decoder, as seen
in DECIMER [41], MolScribe [38], MolNextTR [10], and
MPOCSR [28]. By only covering variable groups repre-
sented as abbreviations, these methods omit most Markush
structure features. While Image2SMILES [22] incorpo-
rates Markush images with position variation indicators, it
remains limited in scope. In contrast, our method tack-
les all Markush structure features: variable groups, fre-
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Figure 2. Markush structure recognition architecture. MarkushGrapher jointly encodes the input image and its text with a VTL encoder
(blue) and an OCSR encoder (red). The VTL output (e1) and the OCSR output (e2) are concatenated. Finally, this joint encoding is
processed with a text decoder to predict a sequential representation of the Markush backbone (purple) and its substituent table (orange).

quency and positional variation indicators. On the other
hand, some approaches exclusively target the recognition
of the textual Markush structure component. This task can
be formulated as a classification task, and approached, for
example, using BioBERT [25] or hand-written grammars
[29]. Additionally, several toolkits aim to combine text-
only and image-only models for document understanding
in chemistry, including CliDE [49], for chemical structure
recognition, and OpenChemlIE [14] for reaction recogni-
tion. Specifically, Beard and Cole [7], Haupt [16], and Jie,
et al., [51] proposed toolkits for reconstructing multi-modal
Markush structures from text-only and image-only models.
However, for MMSR, it is preferred to jointly analyze visual
and textual modalities to effectively exploit the dependen-
cies between textual variable definitions and their context
in the Markush backbone (see Section 5.6). While Jie, et
al., generate a structural library from Markush structures,
our method extracts a compact representation. This is cru-
cial for scalability as, for example, Wagner, et al., estimated
that a single patent EPO810209B1 already contains about
5 x 106 molecules [50].

Document Understanding. Document understanding in-
volves extracting a document’s content and structure from
a page image input [5, 30]. Recent advancements integrate
textual and visual information through unified models, ad-
dressing multiple tasks including document classification,
layout segmentation, question answering, information ex-
traction, key-value extraction, table structure recognition,
and chart question answering [19, 20, 23, 33, 52, 55]. Cer-
tain models, such as UDOP [46], rely on an external OCR
input and introduce a technique for merging these OCR text
tokens together with the image patches containing them.
More specifically, initial progress has been made in extend-
ing general document understanding models for the recog-
nition of Markush structures. Uni-SMART [9] determines
whether a query molecule can be found in a document, di-
rectly as a molecule, or covered by one of the Markush
structures in the document. However, this approach does
not enable the explicit extraction of Markush structures,
rendering it impractical for large-scale applications.

3. MarkushGrapher

We introduce MarkushGrapher, a Vision-Text-Layout trans-
former for MMSR. The model architecture is illustrated in
Figure 2. First, the input is encoded using a unified Vision-
Text-Layout (VTL) encoder and a Optical Chemical Struc-
ture Recognition (OCSR) vision encoder. Second, a text de-
coder autoregressively predicts from this encoding an opti-
mized Markush sequential representation. Finally, this out-
put is parsed to resolve the graph of the Markush structure
backbone and its table of variable groups.

3.1. Architecture

MarkushGrapher takes as input three components: an im-
age, the text content in the image, and the positions of this
text provided by bounding boxes. For MMSR, the text,
visual, and layout modalities are interdependent. On the
Markush backbone, text cells represent the atoms, abbrevi-
ations, and variable groups, which are positioned via the
bounding boxes, while the image defines the bonds and
other non-textual objects. Both are needed together to cor-
rectly predict structures. Additionally, the text definition of
variable groups gives prior information to the neighboring
regions of these groups within the image (see Section 5.6).
Besides that, relying on an external OCR, instead of training
MarkushGrapher with image-only input has multiple ad-
vantages. First, an OCR model can be trained on a wide
variety of datasets with fine-grained supervision making it
highly robust with various typography. Second, using an
OCR is needed to recognize complex abbreviations [31]
whose diversity can not be fully covered in training sets.
Third, recent work on OCSR shows that relying on localized
image features greatly reduces the required number of train-
ing samples and improves performance [18, 38]. By pro-
viding atom positions as input, the model can easily iden-
tify such local features. The three input modalities - image,
text and position - are then encoded using two separate en-
coders.

On the one hand, a Vision-Text-Layout encoder jointly
encodes the three modalities following the UDOP’s ap-
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Figure 3. Optimized CXSMILES format. The figure presents
the steps of the CXSMILES optimization. The CXSMILES (1)
is first compacted by moving variable groups in the SMILES se-
quence and removing unnecessary characters (2). Then, the in-
dices of atoms are appended after each atom (between < ¢ > and
< /i > tokens) and the sequence is encoded using a specific vo-
cabulary for atoms and bonds (< chem > tokens) (3).

proach [46]. Let e; be the output encoding of the VTL

encoder,
e1(v,t,1) = VIL(v,t,1). (D

In this setup, the image (v) is first divided into patches.
Image patches and text () tokens are independently pro-
jected to obtain visual and textual embeddings. Then, the
layout (I) information is used to merge both. For each text
cell, the embedding of the image patch containing its cen-
ter is selected. Then, the corresponding visual and textual
embeddings are summed. Next, a sequence is formed by
appending the joint visual-textual embeddings, followed by
the remaining visual embeddings that do not overlap with
any text region. The resulting sequence is used as input to
a standard transformer encoder. More details on the joint
text-vision-layout encoding technique can be found in the
UDOP publication [46].

On the other hand, the image is encoded by an OCSR
vision encoder. Let e; be its output encoding,

ea(v) = OCSR(v) . )

We use a pre-trained vision encoder implemented as an
OCSR transformer. The image is encoded and then pro-
jected using a Multi-Layer Perceptron (MLP). Because of
the similarities between the Markush structures and chemi-
cal structure images, this approach benefits from the robust
features learned by OCSR models trained on larger train-
ing sets and on real data. This projected OCSR encoding is
finally concatenated with the VTL output,

e(v,t,l) = e (v,t,1) @ MLP(ea(v)) . 3)

From this joint encoding, a text decoder iteratively predicts
a sequence representing a Markush structure. More details
in Section 5.1.

3.2. Optimized Markush Structure Representation

Next, we describe the Markush structure representation in
MarkushGrapher, shown in Figure 3. Markush structure
backbones are commonly represented using a string iden-
tifier named Chemaxon Extended SMILES (CXSMILES)

[3]. The CXSMILES format extends the standard SMILES
format, used to store atoms and bonds of molecular struc-
tures. CXSMILES strings begin with a standard SMILES,
and append an extension block, which allows to represent
variable groups, position variation indicators (denoted as
‘m’ sections in the CXSMILES), and frequency variation
indicators (denoted ‘Sg’ section in the CXSMILES). Sub-
stituents for each variable group can also be stored. Illus-
trations are provided in the suppl. materials.

To facilitate the auto-regressive prediction of the CXS-
MILES, we optimized its format (see Fig. 2), making it
more compact. Uninformative characters (spaces and end-
ing ‘) are removed. To shrink the required attention win-
dow, we move the variable groups from the extension sec-
tion to the SMILES by representing them as special atoms.
Also, we add to each atom its SMILES index. As the ex-
tension section uses the indices to identify atoms, this ex-
tra information explicitly links atoms in the SMILES and
the extension section. Moreover, we arrange the atom in-
dices in the ‘m’ sections in ascending order to maintain
a consistent format. Finally, we use a specific vocabulary
for atoms and bonds rather than encoding them as standard
characters. Instead of storing substituents directly in the
CXSMILES a substituent table is appended. It enables to
store free-text substituents and to compact the definition by
grouping together variable groups that have the same sub-
stituents, as well as compressing lists of integers defining
frequency variation variables.

4. Datasets
4.1. Synthetic Training Data Generation

To the best of our knowledge, no training dataset of anno-
tated Markush structures is available. Thus, we develop a
synthetic generation pipeline, described in Figure 4, to gen-
erate a broad diversity of visual and textual Markush rep-
resentations. Generating synthetic Markush structures is a
challenge as it requires aligning multi-modal data [51].

Our dataset is created using molecules represented by
SMILES selected from the PubChem database [24]. To
increase the variety of molecular structures, we sample
SMILES based on substructure diversity. Using the RDKit
[27] library, these SMILES are augmented to create artifi-
cial CXSMILES. (Cf. suppl. material for details.)

Next, we render these CXSMILES using the Chemistry
Development Kit (CDK) [54]. Drawing parameters are ran-
domly selected to increase diversity. These include font,
bond width, spacing of bonds and atoms, index display as
subscripts or superscripts, explicit or implicit carbon dis-
play, aromatic cycles with circles, and atom number display.
To extract the OCR cells from the synthetic images, we de-
velop a parser for the SVG images generated with CDK.
It yields the bounding boxes of text in the image. These

14508



Random Drawing
Parameters

SMILES
CC.0=C(OCclccececl)C1CNSOCL

|
v

Markush Backbone Image Image and OCR cells

0
R - R’

2 Sy 0
1\ I | . = s
= R{E/O\ NH | |
R, .| o. NH
I g
= I
o

Text description Image

SMILES-to-CXSMILES Image 1 .| CXSMILES
Augmentation Generation Mapping
CXSMILES Manual
[1*]C.0=[2*](OC[3*]1ccccc1)C1CNSOCL Templates
| SRO;;;R1;;:Rj35555555:5,58:n:2,3,4,5:F:ht,m:1:6.7 %
8.9.10.11|
Text 1, um

Generation Augmentation

wherein, RO is C1-C6 alkyl, a halogen, a cyano, or a nitro
grou

h 0is C1-C6 alkyl, a hal o foup: - .
wherein, R0 la C1-C5 aly, a halogen, a cyano, of ain Rj is selected from Carbon, Silicon, and Germanium

group.
L, Rjis selected from Carbon, Silicon, and Germanium. ~—— RlisCorS.

Rlis CorS. fis an integer from 1 to 4.
fis an integer from 1 t0 4.

Figure 4. Synthetic training data generation. The figure presents the pipeline for generating synthetic training samples. First, a molecule
is sampled from PubChem and augmented to create a CXSMILES. Second, the CXSMILES is used to jointly generate a image of the
Markush backbone and its OCR cells (red), and generate an image of a text description and its OCR cells (green) . Finally, images are

collated to create a training sample.

boxes are mapped to their corresponding text, by aligning
the SVG file with an associated MOL file [11], which con-
tains the molecular structures.

Furthermore, we generate a text description defining
variable groups depicted in the image. For this descrip-
tion to be chemically correct and compatible with the CXS-
MILES, valence constraints must be respected. The de-
scriptions are generated using multiple templates and map-
pings. These templates describe the structure of the sen-
tence and are manually extracted from patent documents.
They consist of sentences defining variable groups, lists of
variable groups, or frequency variation labels. The sen-
tences contain lists of variable groups, lists of substituents,
and lists of integers, which are also defined using multi-
ple templates. Additionally, some templates are used to ap-
pend additional information at the beginning or the end of
the description, at the beginning or the end of each item
definition, or to add noise information to the description.
Then, these templates are instantiated based on mappings,
which are lists of manually selected substituents from patent
documents, common abbreviations represented by SMILES
or names, molecular substructures represented by SMILES
or names, and atoms represented by chemical symbols or
names. Together with the description, we generate the sub-
stituent table.

Finally, we use a LLM to paraphrase a fraction of these
descriptions. The substituents table is provided as context
to avoid changing any semantic information in the descrip-
tion, but only the writing style. This wide variety of gener-
ated descriptions helps generalization. Details on the data
generation pipeline are available in the suppl. material.

4.2. The M2S Dataset

There is no public benchmark of annotated real data. Col-
lecting annotations is tedious, hence Markush structure
databases usually restrict their textual annotations to a set
of keywords [6]. In our case, we chose that the substituents
table can contain free-text to cover a large variety of cases.

We introduce M2S, a benchmark of annotated Markush

structures from patent documents. The images are crops
of Markush structure backbone images and their tex-
tual descriptions. It contains 103 images selected from
patents published by the US Patent and Trademark Office
(USPTO), European Patent Office (EPO) and World In-
tellectual Property Organization (WIPO). They are manu-
ally annotated with Markush structure backbones, stored as
CXSMILES, OCR cells, and substituent tables. The im-
ages have a selection bias towards Markush structures in the
claims, because these are the most relevant for patents. The
Markush structure backbones were annotated on Chemaxon
Marvin JS [1], and the OCR cells were annotated using La-
belStudio [48]. See suppl. material for further details.

5. Experiments

This section describes experiments with multiple Multi-
modal Markush Structure Recognition benchmarks.

5.1. Implementation Details

The Vision-Text-Layout encoder and text decoder use a T5-
large encoder-decoder architecture [39]. The OCSR en-
coder is the vision encoder of MolScribe [38]. It is frozen
during training. Overall, the model has 831M parameters
(744M trainable). It is trained on 210,000 synthetic im-
ages, presented in Section 4.1. We train for 10 epochs on
a NVIDIA H100 GPU using ADAM with a learning rate of
Se-4, 100 warmup steps, a batch size of 10 and a weight
decay of le-3. The LLM used to augment 10 percent of
synthetic text descriptions is Mistral-7B-Instruct-v0.3 [21].
(Cf. suppl. material for details.)

5.2. Evaluation Datasets and Metrics

Datasets. For a comparison with SOTA, our method is eval-
uated on the benchmarks MarkushGrapher-Synthetic, M2S
and USPTO-Markush. We also use a subset of the Sci-
Assess benchmark [8] for qualitative evaluation. M2S is
described in Section 4.2. MarkushGrapher-Synthetic is a
set of 1000 synthetic Markush structures generated using
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Table 1. Comparison of our method with existing MMSR models. Evaluation on synthetic (MarkushGrapher-Synthetic) and real data
(M2S, USPTO-Markush) benchmarks. Exact match (EM) evaluates the percentage of perfect predictions. Tanimoto score (T) and F1-score
(F1) evaluate the similarity between the prediction and ground-truth with a percentage between 0 (most dissimilar) and 100 (most similar).

Methods MarkushGrapher-Synthetic (1000) M2S (103) USPTO-Markush (74)
CXSMILES Table Markush CXSMILES Table Markush CXSMILES
EM T EM Fl EM EM T EM Fl EM EM T
Image-only
DECIMER [41] 7 35 - - - 3 25 - - - 7 40
MolScribe [38] 11 47 - - - 21 73 - - - 7 97
Multi-modal
Pixtral-12B-2409 [4] 0 3 9 35 0 0 3 7 27 0 - -
Llama-3.2-11B-Vision-Instruct 0 2 3 7 0 0 1 1 11 0 - -
GPT-4o [36] 0 6 10 46 0 4 11 19 49 0 - -
Uni-SMART [9] - - - - - 0 46 0 1 0 - -
MarkushGrapher (Ours) 65 96 84 96 57 38 76 29 65 10 32 74

the pipeline described in Section 4.1. The images are sam-
pled such that overall, each Markush features (R-groups,
'm’ and ’Sg’ sections) is represented evenly. SciAssess [8]
is a benchmark to assess LLMs in scientific literature analy-
sis, covering topics such as biology, chemistry, material sci-
ence, and medicine. In the chemistry domain, it evaluates if
amolecule is contained in a document either, as a molecular
structure image, or as a part of one of its Markush structures.
The set contains 50 question-answer pairs drawn from 14
documents. As this task is not precisely aligned with our
setup, we manually retrieve Markush structure backbone
images from these documents and use them for qualita-
tive evaluation. USPTO-Markush is a dataset containing
75 Markush structure backbone images from USPTO patent
documents [2]. Its images are annotated with OCR cells and
CXSMILES and a large proportion includes indicators for
positional and frequency variations.

Metrics. We introduce metrics to evaluate MMSR in two
tasks: image recognition and substituent table recognition.
For image recognition, we rely on CXSMILES exact match
and Tanimoto similarity score [47]. The CXSMILES ex-
act match measures the percentage of perfectly recognized
CXSMILES. A match is exact if two conditions are met:
(1) disregarding Markush features, the predicted SMILES
matches the ground truth according to InChIKey [17] equal-
ity, and (2) variable groups, as well as the ‘m’ and ‘Sg’ sec-
tions, are correctly represented. As to the Tanimoto score,
it measures the structural similarity between two chemical
compounds. In our case, we remove Markush features, en-
code structures using the RDKit DayLight fingerprint [44],
and compute a similarity score by comparing the bit vec-
tors of these fingerprints using the Tanimoto coefficient. To
compute the CXSMILES exact match and Tanimoto score,
the stereo-chemistry is ignored. For substituent table recog-
nition, we measure the exact match and the F1-score sim-
ilarity. The exact match measures the proportion of per-
fectly recognized tables, i.e., all variable groups and sub-
stituents are correct. To compute the F1-score, we first de-
termine recall and precision by averaging the percentage of

correctly retrieved (for recall) and correctly predicted (for
precision) substituents per variable group, and then aggre-
gate these averages across all variable groups. Finally, we
report the Markush structure exact match, which requires
both the CXSMILES exact match and substituent table ex-
act match to be correct.

5.3. State-of-the-art Comparison

5.3.1. Multi-modal Markush Structure Recognition

Table 1 compares the MMSR methods for both visual
and textual recognition of Markush structures across syn-
thetic (MarkushGrapher-Synthetic) and real-world (M2S,
USPTO-Markush) benchmarks. Our approach demon-
strates superior performance to image-only, chemistry-
specific models on most datasets. Notably, MarkushGra-
pher surpasses MolScribe in CXSMILES exact match ac-
curacy on M2S (38% against 21%), USPTO-Markush (32%
against 7%), and MarkushGrapher-Synthetic (65% against
11%). This substantial performance advantage highlights
that DECIMER and MolScribe capture only a limited
subset of Markush features, specifically R-groups repre-
sented as abbreviations. Interestingly, MolScribe achieves
a higher CXSMILES Tanimoto score on the USPTO-
Markush dataset. This score, which disregards Markush-
specific structural features, highlights MolScribe’s robust-
ness in identifying standard chemical structures. This ob-
servation inspired the integration of the OCSR encoder into
MarkushGrapher.

Our method substantially outperforms general-purpose
VLMs in CXSMILES recognition. VLMs fail to recog-
nize Markush structures. Although Uni-SMART is trained
to verify if a molecule is covered within a document con-
taining Markush structures, it cannot actually identify these
structures per se, a simpler task by comparison. Markush-
Grapher also surpasses Uni-SMART in terms of the CXS-
MILES Tanimoto score. Furthermore, MarkushGrapher
outperforms VLMs in table recognition, achieving higher
exact match (29% vs. 19%) and Fl-score (65% vs. 49%).
It is worth noticing that the table exact match and F1-score
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Figure 5. Qualitative comparison. Examples of predictions are shown for the different MM SR models on real-world data (M2S, USPTO-
Markush, SciAssess) and on synthetic data (MarkushGrapher-Synthetic).

metrics may be disadvantageous for language models, as
they often paraphrase content into semantically equivalent
terms, which would be counted as errors; nonetheless, these
metrics remain the most appropriate.

Overall, our multi-modal approach allows MarkushGra-
pher to outperform other methods on both the recognition
of image and text in Markush structures.

5.4. Markush Features Analysis

Table 2 shows the performance of MarkushGrapher vs.
image-only MMSR models for the different features of
Markush structures. MarkushGrapher has a clearly higher
CXSMILES exact match performance, largely because
DECIMER and MolScribe can not generate predictions for

the ‘m’ and ‘Sg’ sections. While MarkushGrapher beats
MolScribe at recognizing R-groups in the M2S dataset, it
fails to do so in the USPTO-Markush dataset. This is prob-
ably due to the images of the M2S benchmark contain-
ing text descriptions, whereas USPTO-Markush consists
solely of Markush backbone images. The performance of
MarkushGrapher is notably stronger than the other models
on USPTO-Markush, with its higher proportion of images
with ‘Sg” and ‘m’ sections. Additionally, MarkushGrapher
is more effective at recognizing R-groups and ‘m’ sections
compared to ‘Sg’ sections. Diversifying the frequency vari-
ation indicators in synthetic examples could further improve
the recognition of ‘Sg’ sections.
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Table 2. Comparison of Markush features performances. Im-
pact of the Markush features on the recognition performances. The
percentage of correctly recognized R-groups (R), ‘m’ sections (m),
‘Sg’ sections (Sg), and CXSMILES (EM) are reported.

M2S USPTO-Markush
Methods R m Sg EM R m Sg EM
DECIMER [41] 2 0 0 3 3 0 0 7
MolScribe [38] 61 0 0 21 7% 0 0 7

MarkushGrapher (Ours) 75 76 31 38 69 67 18 32

5.5. Qualitative Evaluation

Next, we conduct a qualitative evaluation of MarkushG-
rapher vs. SOTA methods. Figure 5 shows examples of
predicted molecules for images from various benchmark
datasets. MarkushGrapher accurately recognizes complex
Markush image features such as position variation indica-
tors (Figure 5, column 1, 2 and 4) and frequency variation
indicators (Figure 5, column 2 and 3). Contrary to Uni-
SMART and GPT-40 our model does not predict an incor-
rect table when the input image does not contain any table
(Figure 5, column 3 and 4). Even when Markush features
are disregarded in the evaluation, MarkushGrapher some-
times outperforms MolScribe (Figure 5, column 3), likely
because MolScribe struggles with text descriptions or the
presence of Markush features within the images. In addi-
tion, MarkushGrapher can handle the prediction of long ta-
bles which often confuse other models. (Cf. suppl. material
for more details.)

5.6. Ablation Study

MarkushGrapher encoder. Table 3 shows the impact of
the MarkushGrapher encoder. It can be observed that using
the OCSR encoder, in addition, to the VTL encoder give
an improvement of performances on the USPTO-Markush
dataset. We also compare two fusion alternatives. Early
fusion (EF) corresponds to concatenating the OCSR encod-
ings with the input of the VTL encoder, and late fusion (LF)

Input Images

HN/ HN/

NH NH

wherein B” is O. wherein B” is OH.

MarkushGrapher

Figure 6. Cross-modality understanding. A bond is masked in
the input image (black patch). For an oxygen atom O, Markush-
Grapher predicts a double bond (red box 1). For an alcohol group
OH, MarkushGrapher predicts a single bond (red box 2).

Table 3. MarkushGrapher encoder analysis. Comparison of
encoders in MarkushGrapher: VTL only, VTL and OCSR with
early fusion (EF) or late fusion (LF).

M2S USPTO-Markush
Methods EM T EM T
VTL 38 77 23 71
VTL + OCSR (EF) 38 77 28 76
VTL + OCSR (LF) 38 76 32 74

Table 4. Markush structure representation analysis. Perfor-
mance of MarkushGrapher using optimized CXSMILES (Opti-
mized), optimized CXSMILES without the R-groups compression
(Compression), and optimized CXSMILES without the atom in-
dexing (Indexing).

M2S USPTO-Markush
Methods EM T EM T
Optimized 38 76 32 74
- Compression 30 68 31 70
- Indexing 35 71 24 79

corresponds to concatenating the OCSR encodings with the
output of the VTL encoder. Late fusion yields better results.
Optimized Markush structure representation. Table 4
highlights the impact of Markush structure representation.
Removing the R-group compression or the atom indexing
both lower performances on M2S and USPTO-Markush.
The indexing is crucial for USPTO-Markush, which con-
tains more CXSMILES with ‘m’ or ‘Sg’ sections.
Modalities dependencies. MarkushGrapher exploits de-
pendencies between the text and image definitions of
Markush structures. As shown in Figure 6, the model suc-
cessfully infers a bond masked by a black patch in the input
image. To deduce this bond, the model refers to the text
description and applies chemistry rules. Specifically, if B”
is an oxygen atom O, there must be two connections to the
rest of the molecule, indicating a double bond. Conversely,
if B” is an alcohol group OH, there only must be a single
connection, resulting in a single bond. This ability to un-
derstand cross-modal dependencies is enabled by our joint
visual and textual recognition approach, which is helpful
for accurately recognizing complex multi-modal Markush
structures. (Cf. suppl. material for further analysis.)

6. Conclusion

We propose a novel architecture to recognize multi-modal
Markush structures in documents by combining a Vision-
Text-Layout encoder and an Optical Chemical Structure
Recognition encoder. Our model jointly process visual and
textual definitions of a Markush structure and converts these
to a structured graph and table. The model is trained on
synthetic images and demonstrates strong generalization ca-
pabilities, allowing it to outperform existing methods on
real-world data including our new M2S dataset. Markush-
Grapher is a step towards large-scale extraction of Markush
structures in documents, a key challenge in patent analysis
[42].
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