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Abstract

Referring video object segmentation (RVOS) seeks to seg-
ment the objects within a video referred by linguistic ex-
pressions. Existing RVOS solutions follow a “fuse then se-
lect” paradigm: establishing semantic correlation between
visual and linguistic feature, and performing frame-level
query interaction to select the instance mask per frame with
instance segmentation module. This paradigm overlooks
the challenge of semantic gap between the linguistic de-
scriptor and the video object as well as the underlying clut-
ters in the video. This paper proposes a novel Semantic
and Sequential Alignment (SSA) paradigm to handle these
challenges. We first insert a lightweight adapter after the vi-
sion language model (VLM) to perform the semantic align-
ment. Then, prior to selecting mask per frame, we exploit
the trajectory-to-instance enhancement for each frame via
sequential alignment. This paradigm leverages the visual-
language alignment inherent in VLM during adaptation and
tries to capture global information by ensembling trajec-
tories. This helps understand videos and the correspond-
ing descriptors by mitigating the discrepancy with intricate
activity semantics, particularly when facing occlusion or
similar interference. SSA demonstrates competitive perfor-
mance while maintaining fewer learnable parameters.

1. Introduction

Referring video object segmentation (RVOS) is an emerg-
ing multimodal video understanding task, which aims at
segmenting the target from a video based on linguistic de-
scription [7, 10, 18, 47]. It has diverse applications in fields
such as human-robot interaction [40, 41] and video edit-
ing [3], garnering attention from the academic community.

Traditional RVOS approaches [4, 54] typically focus on
simple yet static scenes with prominent object, where one
static expression referrs to only one target [ 10, 18, 47]. Such
isolated objects can be easily captured by static attributes in
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Figure 1. (a) Previous frameworks extracted features from inde-
pendent extractors, while not effectively leverage the consistency
of the object query sequence. (b) Our SSA framework yields suf-
ficient visual-linguistic interaction through semantic alignment by
Vision-Language Model and global video modeling via sequential
alignment.

a single frame. However, in real-world video scenarios, ex-
isting pipelines struggle to seamlessly interpret the motion
and multi-targets expressions with complex and dynamic
scenarios due to substantial movement, abrupt scene change
and non-salient targets [7, 26]. This leads to the challenge
of aligning both video-text and trajectory-instance relations.

RVOS in real-world environment requires explicitly
identifying the particular target trajectory referred by the
motion guidance. This underscores the necessity for robust
visual-text semantic understanding to establish the corre-
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Figure 2. Comparison of correlation between performance and
trainable parameters on MeViS dataset [7]. Circle size represents
the numbers of trainable parameters for each model.

spondence between video content and motion description,
as well as the capacity to comprehend the entire video that
ensure consistent object sequence segmentation. Existing
methods [4, 7, 12, 13, 53, 54] utilize independent backbones
to learn visual-text relationships from scratch, which may
cause semantic gap during training (Fig. 1 (a)). After the
challenging relationship modeling, they segment the target
for each frame individually [4, 53, 54] or introduce video
query [14] initialized solely by text feature, then interacting
with heavily processed frame contents to generate sequence
output [7, 13], both of which are suboptimal due to over-
looking the comprehensive video representation from object
sequences. To enhance the solution in real-world scenarios,
a paradigm shift is needed, where both multi-modality se-
mantic features and sequential information are uniformly
aligned to improve multi-modal understanding and consis-
tent temporal perception.

To alleviate the misalignment issues in real-world scenes
overlooked by pervious methods, we propose a novel frame-
work called SSA (Fig. 1 (b)), aimed at enhancing the se-
mantic alignment across visual-text features and sequen-
tial alignment across frame contents. Specifically, we
leverage a frozen Vision-Language Model (VLM) to pro-
vide semantically correlated visual-textual features. We
regard RVOS as a complex concept that involves various
fine-grained entities, such as motions, scenes, and instances
parsing. So we further propose a lightweight adapter to re-
fine the visual-text semantic alignment between pixel-level
video content and referring description for sufficient inter-
actions, as we hypothesize that, the textual representations
of the relevant entities should be aligned with specific re-
gions of the image.

Furthermore, to improve the global understanding of
the entire video context, we incorporate a sequential align-
ment module to enhance the trajectory-to-instance corre-
spondence. By ensembling these global trajectories, we can
obtain a video-level context about the whole video thereby

facilitating the consistent mask generation. This synergistic

integration of sequential alignment and semantic alignment

further improves the overall performance.
The contributions of this paper are as follows:

* We propose the Semantic and Sequential Alignment
(SSA) framework that leverages video-to-text correspon-
dences as well as trajectory-to-instance correspondence
to guide the adaptation from VLM to RVOS.

* We propose a new lightweight adapter to refine the visual-
language alignment of VLM. It encourages SSA to extract
the semantics of the most important image regions given
the referring descriptor and alleviate training difficulties.

* We further conduct sequential alignment on the trajectory
to fully exploit global context, improving the overall in-
terpretation of the video.

* SSA achieves new state-of-the-art results, especially on
the challenging MeViS dataset [7] by 2.2% J &F with
fewer trainable parameters, and exhibits significant im-
provement compared to LVLM methods (Fig. 2).

2. Related Work

Referring Video Object Segmentation. Referring Video
Object Segmentation (RVOS) requires segmenting the tar-
get within a video based on the corresponding language ex-
pression [10, 24]. Seo et al. [47] establish the first large-
scale RVOS benchmark, driving progress in the filed of
RVOS. Many prior approaches in referring video segmen-
tation have primarily adapted VIS [9, 56] (e.g. VisTR [51])
as streamlined pipeline, such as MTTR [51] and Refer-
Former [54]. To better modeling temporal context [32], sub-
sequent explorations include OnlineRefer [53] that lever-
ages query propagation to explore online RVOS, Tem-
pCD [49] that interacts with a global refer token with se-
quences of intra-frame queries.

Recently, a new large-scale benchmark called MeVisS [7]
is introduced. Compared to the previous RVOS datasets [ 10,
18, 47], MeViS emphasizes the motion attributes of videos
with a large variety of motion expressions, as well as flexi-
ble expressions that refer to multi-targets. Thus, most of the
current methods [4, 12, 47, 49, 53, 54, 60] can not handle
this complex setting well, which reflects real-world scenar-
ios. To address this new issue, a “fuse then select” paradigm
has been raised. Typical works include LMPM [7] and
DsHmp [13]. These methods first employ an advanced in-
stance segmentation model to segment the possible objects
according to fusing the text features. Then, a decoder mod-
ule works for selecting the referred object and performing
heavily cross-frame association. Despite handling multiple
instances segmentation successfully, these methods either
yield suboptimal performance [7] or have complex network
structures [13].

Although our approach also builds upon query-based
segmentation architecture, it differs in key aspects. We
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Figure 3. The overview architecture of the proposed method. It primarily contains Semantic Feature Alignment Encoders (Sec. 3.2) to
capture semantic aligned visual-linguistic features, Instance Query Generation Module for extracting object-centric representation, and
Sequential Object Alignment Module (Sec. 3.3) to align instance queries across the timeline for global video understanding.

revisit RVOS from a multi-modal perception perspective
and decompose it into video-to-text correspondences and
trajectory-to-instance correspondence. Correspondingly,
we propose semantic alignment and sequential alignment
modules. First, this perspective enhances the model’s abil-
ity to associate textual queries with relevant video content.
Second, the alignment paradigm enables precise and consis-
tent sequence-instance modeling, leading to better results.

Vision-Language Models.  Vision-Language Models
(VLM) learn from image and text simultaneously, demon-
strating strong cross-modal reasoning and generalization
capabilities [2, 21, 23, 42, 46, 61]. VLMs typically use
contrastive learning [16, 37, 42], generative methods [45,
48, 57] and alignment objectives [22, 27] to achieve cross-
modal pre-training. With the powerful pre-trained knowl-
edge of VLMs, they are now widely applied to various vi-
sual analysis tasks [19, 52, 59]. In the video domain, early
works [9, 11, 50] utilize CLIP [42] as knowledge prior to
achieve VIS in open vocabulary scenarios. Meanwhile, re-
cent works, such as VISA [55] and VideoLISA [1], explore
large VLMs (LVLMs) to enable textual reasoning and refer-
ring capabilities for video segmentation. Nevertheless, typi-
cal RVOS models use standalone vision-text encoders, lead-
ing to training difficulties caused by feature misalignment.
Additionally, the current LVLM-based solutions [, 55] and
SAM2-based attempts [15, 43, 44] can be costly and yields
suboptimal results on the challenging RVOS benchmark.
In contrast, inspired by the success of VLM’s fine-tuning
trend, we utilize frozen VLM (CLIP [42]) as powerful fea-
ture extractors and introduce a context-aware adapter to al-
leviate the training challenges of RVOS.

3. Methods

3.1. Revisiting “Fuse then Select”” Paradigm

Given a video clip with T frames Z = {I;}1; and a re-
ferring expression & = {e,}Y_; consisting of N words,
RVOS needs to generate the binary masks M = {m;}L_;,
my € REXW of the targets guided by the expression €. Be-
fore elaborating on our method (§3.2), we first give a brief
introduction to “fuse then select” paradigm in RVOS.
Existing approaches [4, 12, 13, 49, 53, 54] often utilize
pretrained vision encoder and language encoder to extract
visual features F,, and textual feature F, independently:

]:’U — ¢image(I) c RTXCiXHiXWi’

1
-7:3 = Qtezt(g) S RIXCl, ( )

where ®;,4ge and Py, denote Swin Transformer [29] and
RoBERTa [28], separately. i € [1,4] is the stage index of
the image encoder, C; is the dimension of textual features.

After that, “fuse then select” methodology [7, 13] em-
ploys a decoder to fuse the visual and textual features to-
gether, and generate language-guided object embeddings
which correspond to the potential objects. Then, these po-
tential objects are associated into the trajectory candidates.
Finally, the textual features are reused to select the predicted
object trajectories from the candidates.

3.2. Semantic Feature Alignment

In contrast to the prior RVOS methods, we propose a new
framework named SSA that learns Semantic and Sequential
Alignment for RVOS. Specifically, it fully exploits both the
semantic correspondence between text and visual features,
and the temporal alignment within video sequences. Build-
ing on this, our approach enables us to construct an elegant
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Figure 4. Ilustration of the Semantic Alignment Refine Module.

model that is both strong in performance and effective in
training. The overview of our approach SSA is depicted in
Fig. 3.

To obtain more accurate grounding region according to
the text embeddings, we first devise a semantic feature
alignment in a progressive manner.

Coarse Feature Alignment. To address the rich semantic
diversity in real-world RVOS scenarios, we firstly leverage
frozen Vision-Language Model (i.e., CLIP [42]) to obtain
semantic correlated visual-linguistic representations jointly:

(-Fvvfa‘afw) = chip(zyg)7 (2)

where ®.;;, denotes the CLIP model and F,, € RNV *Ci
denotes textual features of each word.

Compared to Eq. (1), Eq. (2) facilitates the model’s

comprehensive understanding of both the video and expres-
sion while reducing training cost.
Semantic Alignment Refine Module. Considering CLIP
is pre-tained with large-scale image-text pairs, it may not
handle fine-grained visual perception tasks well, such as
image segmentation [17]. Therefore, we further design a
lightweight adapter (as shown in Fig. 4) for each stage of
CLIP to enhance vision-language semantic alignment, pro-
moting a refined grounding of relevant entities according to
the referring sentences.

Due to referring expression provide fine-grained rep-
resentations of the sentence, and we argue that they can
ground the corresponding regions in video frames. Thus the
proposed adapter consists of two-granularity cross-attention
among visual features and textual features: {visual feature
F, and sentence-level textual features F, }, {visual feature
F, and word-level textual features F,, }. In addition, to pre-
serve the general knowledge of CLIP, we also utilize con-
volution blocks to build residual path:

Frnw = softmax(]:” w VFw,

Fo Fe

fms = softmax( )Fs, 3)

f'mr - Qconv(]:v) +]:v;

where fi,w, fims and f,,, mean visual outputs from three
streams, respectively. C' denotes dimension of the joint em-
bedding space, D, indicates convolution operation.

Through Eq. (3), the adapter generates refined visual-
textual aligned features from multiple streams. To balance
the semantics introduced by different feature streams, we
employ an MLP serving as gating mechanism to learn dy-
namic weights for each stream. The final output at each
stage is as follows:

We = softmax(MLP([g( frmw), 9(fmr), 9(fms)]))s

4
-7:1):Wal'fmw+W(x2'fmr+wa3'fms7 ( )

where g(-) denotes global average pooling, W,, € R3*! is
the weight of different streams, [-] is the concatenation oper-
ation. Through the proposed adapter, multi-granularity tex-
tual features progressively align within the visual feature,
while retaining VLM’s powerful knowledge.

3.3. Sequential Object Alignment

Instance Query Generation. Once fused features F, is
obtained from VLM, the existing RVOS solutions often em-
ploy object query to serve as implicit representation of the
target in the video. Typically, they are either initialized ran-
domly for each frame [4] or sorely generated via sentence-
level textual feature (Eq. (1)) [7, 12, 53, 54].

Considering the variations in the position and shape of
objects between different video frames over time, we pro-
pose an object query generating mechanism to ensure that
queries have variability across frames via cross-modal fea-
ture interaction (as depicted in Fig. 3).

In concrete, we firstly leverage 1 x 1 convolution block
and linear layer to project the visual and textual features
into the joint space, respectively. Subsequently, bidirec-
tional cross-attention operation is adopted at bi-directional
encoder to conduct interaction between visual and textual
features frame by frame:

FIWg, - (FWE)T
JC
FW3, - (FIWE)T
JC

W{It(Z'u e W{sz sor) are learnable pro-

Ft = softmax( )Fs Wi,

&)

Ft = softmax(

)f5W1§/2t7

Q
where W{t211,v2t} ’

jection weights, ¢ denotes frame index. F! € R'*C is
updated textual feature of ¢-th frame. Additionally, F,, is
utilized to generate mask feature F,,,sx, Which is used to
produce the final mask sequence.

Instance queries {Q'}7_;, Q" € RNXC generated by
repeating F, for N times, form as initialized sequences.
Then, {Q'}1_; are fed into the frame query decoder to learn
the potential target representation {Qt}z;l for each frame.
Instance Trajectory Generation. Object queries {Q?}7_,
are extracted independently for each frame, which may lead
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Figure 5. Illustration of Sequential Object Alignment Module.

to misalignment for the same instance along the tempo-
ral dimension. To address this issue, we utilize Hungar-
ian matching algorithm [20] to match Q of adjacent frames
along timeframes to model trajectories for each potential in-
stance (as shown in Fig. 5).

Upon establishing trajectories for {Q;|i € [1,N],Q; €
RT*CY, we leverage convolution block for short-term in-
formation and self-attention layer for global view for tra-
jectory’s temporal enhancement:

ShortTerm(Q;) = Pconvin(Q:) € RT*C,

A A TxC ©)

LongTerm(Qi = éTempAttn(Qi) eR 3
where Q; is the i-th instance of N trajectories, $cono1 p and
Drempattn denote 1D convolution and temporal attention.
Trajectory to Instance Correspondence. Once obtained
the temporal enhanced instance trajectories Q7 g, we can
ensemble it as a global description of the whole video. The
global representation of instance (video query) is then ob-
tained by temporal weighted fusion:

A softmax(@FC(QTE)) S RTXNXI,

Lo ™
Qu=>_ A Qp € RN*C,
t=1

where @ ¢ denotes linear projection layer with learnable
weight in R'*¢, A is the temporal weight in each frame
through the softmax function.

Compared to previous methods that utilize frame queries
directly for sequence output [4, 12, 53, 54] or rely on solely
text features as global video query [7, 13, 33], the proposed
approach integrates global modeling from the entire video
that sufficiently mines the global information.

3.4. Video Query Decoding

Similar to previous works [7, 13, 14], given the video
queries Q,, frame queries Q7 and language features F.
video decoder works for generating binary classification
scores S5 and mask embeddings Q¢.p, separately.

Then Q¢yp is filtered through S5 by argmax operation
for single object scenarios [38, 47] or threshold operation
for multiple instance scenarios [7]. Then, it multiplies with
mask feature F,,,sx to obtain the final mask sequence of
the identified target(s).

3.5. Model Implementation and Training

Model Implementation.  Specifically, we use Con-
vNeXt [30] based CLIP [42] as feature extractors (§ 3.2), as
ConvNeXt naturally extracts multi-scale feature maps from
image, making it suitable for segmentation tasks. We uti-
lize modified mask2former [5] to implement instance query
generation and transformer blocks for video query decoder
in §3.3.

Training. Following [7, 13, 14], we employ the L to cal-
culate the loss between per-frame predictions and frame-
wise annotations, along with £,, as video-level supervision.
We implement the L7 and £, by binary cross-entropy loss
with dice loss. The overall training objective is given by:

ctrain = ﬁv + ['f + Asim‘Csirm (8)

where A, is the weight for the similarity loss Lg;,, [14].
4. Experiments

4.1. Datasets and Evaluation Metrics

Datasets. The proposed methods are evaluated on three
popular RVOS datasets: Ref-Youtube-VOS [47], Ref-
DAVIS17 [18] and MeViS [7]. Ref-Youtube-VOS [47] es-
tablishes the first large-scale dataset consisting of 3,978
videos with approximate 15k language descriptions and
202 video samples are used for online testing. Ref-
DAVIS17 [18] contains 90 videos modified DAVIS17 [39]
by providing additional textual annotations, which allocates
30 videos for validation. MeViS [7] is a new large-scale
benchmark that highlights motion information analysis in
video. It includes 2,006 video sequences with 443k fine-
grained segmentation annotations, and 28,570 sentences de-
scribing 8,171 instances in complex video scenarios. The
Val dataset of MeViS contains 140 video for online evalua-
tion, while Valu includes 50 videos for local validation.

We further validate on two additional datasets [10], and
the details are provided in the supplementary materials.
Evaluation Metrics. Following previous works [7, 54],
jaccard index J (region similarity), mean boundary sim-
ilarity F (contour accuracy), and their average J&F are
employed as evaluation metrics.

4.2. Experimental Settings

MeViS. For MeViS dataset, following previous works [7,
13], without pre-training on the image-level referring
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Table 1. Comparison with state-of-the-art methods on MeViS [7] Val and Valu dataset. { denotes our model
is trained on MeViS [7] and Ref-Youtube-VOS [7] jointly. See §4.3 for details.

Val Valu

Methods Reference JE&Ft T4 Fr | g&rt Tt F1
Compared with expert methods

URVOS [47] ECCV’2020 27.8 25.7 299 - - -
LBDT [8] CVPR’2022 29.3 27.8 30.8 - - -
MTTR [4] CVPR’2022 30.0 28.8 31.2 - - -
ReferFormer [54] CVPR’2022 31.0 29.8 322 - - -
VLT+TC [6] TPAMI’2022 35.5 336 373 - - -
HTR [36] TCSVT 2024 427 399 455 - - -
LMPM [7] ICCV’2023 37.2 342  40.2 40.2 36.5 439
DsHmp [13] CVPR’2024 46.4 43.0 498 55.3 51.0 604
Ours - 48.6 44.0 53.2 56.9 51.7 62.2
Compared with LVLM methods

VideoLISA-3.8B [1] | NeurIPS’2024 44 .4 413 476 - - -
VISA-7B [55] ECCV’2024 43.5 40.7 46.3 51.2 480 544
Ours - 48.9 44.3 534 57.8 523 63.1

datasets RefCOCO/+/g [34, 58], we train the model on
MeViS directly. The optimization is performed with
AdamW [31] for 50k iterations, with a learning rate initial-
ized to 5e=4.

Ref-Youtube-VOS and Ref-DAVIS17. For these two
datasets, following [13], we first conduct image-level pre-
training on the RefCOCO/+/g datasets [34, 58]. After that,
we fine-tune the model with videos from the Ref-Youtube-
VOS. During the pre-training phase, the model is trained
for 100k iterations. In the video-level training phase, we
trained the model for 50k iterations. For Ref-DAVIS17, we
directly apply the learned model from Ref-YouTube-VOS
to Ref-DAVIS17 [18] without online fine-tuning.

Joint Video Datasets Co-training. Considering current
VLM methods [1, 55] tend to be trained on image and video
datasets jointly, we adopt a similar strategy to explore the
performance potential by training our model on MeViS and
Ref-Youtube-VOS jointly during the video training phase.

Table 2. Comparison with SAM2 models on MeViS [7] Val
dataset. { Results are adopted from [15]. See §4.3 for details.

Methods ‘ J&Ft It F7T

Grounded-SAM 2 [44]% 38.9 357 421

AL-Ref-SAM 2 [15]% 42.8 39.5 462

Ours 48.6 44.0 53.2
4.3. Main Results

MeViS. In Tab. 1, we validate the proposed approach on the
newly released motion expressions guided video segmenta-
tion dataset MeViS [7]. With comparable training costs,
SSA outperforms other leading expert methods, surpassing
the main counterpart DsHmp [13] by 2.2% J &F on val set

19072

and 1.6% on valu set (2.5% on val and valu under our co-
training strategy).

Additionally, in comparison with methods leveraging
large vision-language models, SSA exceeds the contempo-
rary methods and establishes a new state-of-the-art perfor-
mance in terms of mean J&F (48.9%) val set and J & F
(57.8%) on valu set. Notably, our method shows a marked
performance gain over the best method VideoLiSA [1] by
4.5% J &F. These results demonstrate the importance of
semantic alignment and sequential alignment. Furthermore,
as shown in Fig. 2, our approach improves performance
while reducing approximate 46M trainable parameters com-
pared to current state-of-the-art DsHmp [ 13], alleviating the
training difficulties for RVOS task.

Moreover, the recently introduced Segment Anything
Model 2 (SAM?2) [43] has achieved breakthrough progress
in VOS tasks, and some works have migrated it to the
RVOS domain [15, 44]. For experimental completeness, we
also conduct experimental comparisons with SAM2 based
pipelines. Nevertheless, as shown in Tab. 2, our method
behaves better than the existing SAM?2 attempts in the com-
plex MeViS scenarios with a distinct performance gap:
(AL-Ref-SAM 2 [15]: 48.6 vs. 42.8, 44.0 vs. 39.5, 53.2
vs. 46.2) and (Grounded-SAM 2 [44]: 48.6 vs. 38.9, 44.0
vs. 35.7,53.2 vs. 42.1).

Ref-YouTube-VOS. The results on the Ref-YouTube-VOS
dataset are presented in Tab. 3. Our method exceeds exist-
ing approaches on Ref-Youtube-VOS across all metrics by
achieving 64.3% J &F, which is 0.7 % higher than DsHmp.
Ref-DAVIS17. On Ref-DAVIS17 (Tab. 3), our approach
achieves 67.3% J&JF and consistently outperforming the
top method (i.e., DsHmp) by more than 3.3% in terms of
J&F. These experiment results exhibit the generalization



Table 3. Comparison with state-of-the-art models on Ref-Youtube-VOS [47] and Ref-DAVIS17 [18] datasets. See

§4.3 for details.

Ref-Youtube-VOS Ref-DAVIS17
Methods Reference Backbone J&Ft Tt Ft | 7&rt Tt Fr
LBDT [8] CVPR’2022 ResNet-50 494 482 50.6 54.3 - -
MTTR [4] CVPR’2022 Video-Swin-T 55.3 54.0 56.6 - - -
ReferFormer [54] CVPR’2022 Video-Swin-T 594 58.0 60.9 59.6 56.5 62.7
OnlineRefer [53] ICCV’2023 Video-Swin-B 62.9 61.0 064.7 62.4 59.1 65.6
HTML [12] ICCV’2023 Video-Swin-T 61.2 59.5 63.0 - - -
R2VOS [25] ICCV’2023 Video-Swin-T 61.3 59.6 63.1 - - -
SgMg [35] ICCV’2023 Video-Swin-T 62.0 60.4 63.5 61.9 59.0 64.8
TempCD [49] ICCV’2023 Video-Swin-T 62.3 60.5 64.0 62.2 59.3 65.0
SOC [33] NeurIPS’2023 | Video-Swin-T 62.4 61.1 63.7 63.5 60.2 66.7
LoSh [60] CVPR’2024 Video-Swin-T 63.7 62.0 654 62.9 60.1 65.7
DsHmp [13] CVPR’2024 Video-Swin-T 63.6 61.8 654 64.0 60.8 67.2
Ours - CLIP 64.3 62.2 66.4 67.3 64.0 70.7

capability of our method.
4.4. Ablation Studies

Table 4. Ablation study on main components of SSA. Seman-
tic indicates Semantic Feature Alignment, Sequential denotes Se-
quential Object Alignment. See §4.4 for details.

Components ‘ T&Ft It 7t
Semantic  Sequential ‘
424 374 474
v 46.3 41.5 51.1
v 45.1 40.8 494
v v 48.6?6.2 44'0T6.6 53'2T5~8

In this section, we conduct ablation studies on the chal-
lenging dataset MeViS [7] to investigate our proposed ap-
proach. By removing the proposed core components, we
build vanilla baseline that shares a similar structure with
LMPM [7].

Table 5. Comparison with DsHmp [13] variant models on
MeViS dataset. See §4.4 for details.

Methods | J&Ft Tt F1
DsHmp [13] 46.4 43.0 498
+ CLIP Encoders (Eq. (2)) 47.2 429 515
+ Correspond (Eq. (7)) 47.6 434 51.8
Ours | 486 440 532

Component Analysis. We first verify the effectiveness of
main components of our framework. As shown in Tab. 4,
semantic feature alignment mechanism provides an signifi-
cant performance gain by 3.9 % of 7 &F compared to base-
line who utilizes Swin [29] and RoBERTa [28] as encoders
(2" row). This indicates the necessity of semantic align-
ment in RVOS modeling.

Adding sequential object alignment to baseline improves
the performance by 2.7% of J&F (3"¢ row). Finally, after

integrating all the main components together, we observe a
substantial improvement up to 6.2% of J&F compared to
the baseline (last row).

Additionally, we extend the DsHmp [13] to validate the
fairness. As shown in Tab. 5, when employing the same
CLIP encoders, DsHmp slightly improves by 0.8%, but still
remains 1.4% lower than SSA. Moreover, adding instance
correspondence (Eq. 7) further improves the valina Dshmp
by 1.2%. These analysis demonstrate the effectiveness as
well as suitability of the proposed components.

Table 6. Comparisons of different Semantic Feature Alignment
strategies. Frozen-CLIP denotes freezing the entire CLIP model,
Fine-tuning indicates fine-tune the last stage of CLIP, Adapter
refers to the proposed adapter. See §4.4 for details.

Frozen-  Fine- Trainable-
CLIP tuning Adapter params o J&FT
| 723M 45.1
v \ 39.4M 47.5
v v 100.6M 47.9
v v 46.5M 48.6

Effectiveness of Adapter. Further ablation studies on Se-
mantic Feature Alignment is shown in Tab. 6. Com-
pared to the baseline, it can be seen 2.4% J&F per-
formance improvement is achieved by introducing frozen
CLIP model, while reduce approximately 46% trainable pa-
rameters. Compared with fine-tuning the last stage of Con-
vNext, the training cost is increased but bring a slight per-
formance gain of 0.4%. Finally, when adopting the pro-
posed adapter, SSA further improves the J&F by 1.1%,
with affordable extra parameters increase than fine-tuning.
In-depth Analysis of Sequential Object Alignment. Fi-
nally, we study the components of Sequential Object Align-
ment. As shown in Tab. 7, by removing bi-directional at-
tention in Eq. (5) (2"¢ row) for instance query generation,
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(b) “Three people riding elephants, racing against each other.”

Figure 6. Qualitative Results on Mevis dataset [7]. The first row illustrates the segmentation results of DsHmp [13] while the second

row indicates the segmentation results of ours.

Table 7. Ablation study on Sequential Object Alignment. Se-
quential indicates the overall module, the rest rows indicate the
variants by removing specific components. See §4.4 for details.

| J&Ft Tt Ft
Sequential 48.6 44.0 53.2

Architecture

w/o Bi-directional 47.8]{()3 43.2¢0.s 52.3“),9
W/O Ensemble 47.2“,4 42.6“.4 51.9“_3
w/o Trajectory/Ensemble | 46.1;55 41.2)58 51.022

the segmentation performance drops 0.8% of 7 &F. With-
out trajectory ensemble (3"¢ row) in Eq. (7) for instance
correspondence, we observe a 1.4% of J&JF performance
decrease. Furthermore, the omission of instance trajec-
tory generation via Hungarian algorithm [20] and tempo-
ral enhancement in Eq. (6), as well as trajectory ensemble
in Eq. (7) ( 4*" row), result in a performance drop of 2.5%
of J&F. The empirical evidence suggests that importance
of each component.

4.5. Qualitative Results

As shown in Fig. 6, we present the qualitative comparison
between our approach and DsHmp [13] on the more chal-
lenging dataset, MeViS [7]. Specifically, the target (cat)
in Fig. 6 (a) suffers from the distraction of the similar ob-
ject. Except for the referring target, DsHmp erroneously
segments the stationary cat as well. In contrast, SSA can
segment the target precisely. For multi-instance referring

scenario (Fig. 6 (b)), SSA accurately segments three riders
on the elephants during the race. These qualitative results
show that the proposed semantic and sequential alignment
help the model better understand text-described objects and
ensure consistent temporal segmentation.

5. Conclusion

In this paper, we propose a novel Semantic and Sequential
Alignment framework for RVOS in real-world scenarios.
Specifically, we achieve multi-modality semantic alignment
by utilizing pretrianed VLM with proposed adapter for bet-
ter video-to-text correspondence. Besides, the trajectory-to-
instance correspondence established in the sequential align-
ment module enhances the model’s ability to achieve global
instance awareness. Extensive experiments on the challeng-
ing RVOS benchmarks demonstrate the effectiveness and
generalization capacity of our method.
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