
A Compute&Memory Efficient Model-Driven Neural
5G Receiver for Edge AI-assisted RAN

Mahdi Abdollahpour§ Marco Bertuletti∗ Yichao Zhang∗ Yawei Li∗
Luca Benini§∗ Alessandro Vanelli-Coralli§∗
§DEI, University of Bologna ∗IIS, ETH Zürich

§{mahdi.abdollahpour,luca.benini,alessandro.vanelli}@unibo.it, ∗{mbertuletti,yiczhang,yawli,lbenini,avanelli}@iis.ee.ethz.ch

Abstract—Artificial intelligence approaches for base-band
processing for radio receivers have demonstrated significant per-
formance gains. Most of the proposed methods are characterized
by high compute and memory requirements, hindering their
deployment at the edge of the Radio Access Networks (RAN) and
limiting their scalability to large bandwidths and many antenna
6G systems. In this paper, we propose a low-complexity, model-
driven neural network-based receiver, designed for multi-user
multiple-input multiple-output (MU-MIMO) systems and suitable
for implementation at the RAN edge. The proposed solution is
compliant with the 5G New Radio (5G NR), and supports different
modulation schemes, bandwidths, number of users, and number of
base-station antennas with a single trained model without the need
for further training. Numerical simulations of the Physical Uplink
Shared Channel (PUSCH) processing show that the proposed
solution outperforms the state-of-the-art methods in terms of
achievable Transport Block Error Rate (TBLER), while reducing
the Floating Point Operations (FLOPs) by 66×, and the learnable
parameters by 396×.

Index Terms—5G, channel estimation, convolutional neural
networks, neural receiver

I. Introduction
The evolution of Beyond-5G (B5G) and 6G Radio Access

Networks (RAN), enabled by diverse edge functions, is rapidly
advancing the network’s service quality, capabilities, and
user densities in complex deployment scenarios [1]. With
the evolution of functional disaggregation in 3rd Generation
Partnership Project (3GPP) and Open-RAN (O-RAN), Artificial
Intelligence (AI)-based RAN processing is emerging as a key
trend, promoted by open interfaces [2]. Processing the uplink
Physical (PHY)-layer at the RAN edge is crucial for improving
latency, performance, and system flexibility, but it stands out as
one of the most computational and memory demanding RAN
functions [3].

Recent research [4] has focused on AI-for-RAN to en-
hance PHY-layer performance. Neural Network (NN)-based
Orthogonal Frequency Division Multiple Access (OFDMA)
receivers have demonstrated improved Bit-Error-Rate (BER)
performance compared to conventional Linear Minimum Mean
Squared Error (LMMSE)-receivers [5]–[8]. However, these
models incur high computational complexity and large memory
footprint compared to classical approaches, exacerbating the
computational bottleneck of the PHY processing.

As a consequence of growing computational requirements for
mixed AI&wireless workloads, base-station edge-processors are
evolving from RAN-specialized Application Specific Integrated

Circuits (ASICs) to high-performance many-core programmable
processors [9]–[13].

The top three rows of table I provide an insight into the
computing capability, on-chip memory of these devices relative
to the performance and memory footprint required by a runtime-
compliant state-of-the-art (SoA) neural receiver (NRX) [7],
addressing a 4×2 Multiple-User (MU)-Multiple-Input, Multiple-
Output (MIMO) problem (4 receive antennas, 2 transmit data
streams) in a 1-ms Transmission Time Interval (TTI) allocating
273 Physical Resource Blocks (PRBs) per stream. None of
the devices intended for edge deployment can provide the
required performance (as indicated by the required-to-processor
performance ratios). High performance CPUs and GPUs have
significantly higher capabilities, but they vastly exceed the
power budget of a base station edge-processor. Hence, they need
to be accessed via the fronthaul link of the Next Generation
Node B (gNB), causing a significant increase of end-to-end
latency.

TABLE I
Increase in computational complexity and memory capacity required to

SoA RAN processors for Edge deployment of NRX
Edge 16b-

TFLOPs
RAM
(MiB)

Power
(W)

Req.-
Perf.

Req.-
Mem.a

Marvell OCTEON10 [9] yes 1 24 50 75.86× 1.09×
TeraPool [10] yes 3.7 4 7 20.86× 6.54×
Qualcomm X100 [11] yes - - 18 - -

NVDIA H100 [12] no 1979 50 510 0.04× 0.52×
Intel Sapphire Rapids [13] no 75.3 112.5 - 1.04× 0.23×
aSize of model parameters plus inputs.

This status quo stresses the need for lightweight models
tailored for edge deployment that curtail compute and memory
resources, preserving critical RAN performance metrics.

The SoA neural receivers use a fully data-driven approach
which leads to large models with high computational costs [5],
[7], [8]. In contrast, in our solution we follow a model-driven
approach: we augment the conventional LMMSE receiver
with learnable parameters, and specialized ResNet blocks
(ResBlocks) processing to suppress noise and interference,
which results in significant complexity reduction.

In this paper, we propose the design of a small, efficient
Model Driven Neural Receiver (MDX), fully compatible with
the 5th Generation (5G) New Radio (NR) and suitable for
edge-RAN deployment. The proposed design is available open-
source [14]. The main contributions of the proposed design
are:

ar
X

iv
:2

50
8.

12
89

2v
1

 [
ee

ss
.S

P]
 1

8
A

ug
 2

02
5

https://arxiv.org/abs/2508.12892v1

Fig. 1. The Mu-MIMO uplink system model. The colored conventional
processing blocks are replaced with the proposed MDX model.

• The combined design of conventional baseband processing
blocks with learnable parameters and specialized Res-
Blocks processing to suppress noise and interference,
approaching Transport Block Error Rate (TBLER) perfor-
mance near the limit with perfect channel knowledge.

• The evaluation of the receiver performance for the Physical
Uplink Shared Channel (PUSCH) in terms of TBLER in
3GPP Tapped Delay Line (TDL)-A channel model.

• The assessment of the computational complexity, and the
memory footprint of our model against SoA AI-receivers.

Our proposed MDX delivers superior TBLER performance and
also achieves a 66× reduction in Floating Point Operations
(FLOPs) and a 396× reduction in model parameters compared
to the purely data-driven SoA, making it well suited for edge
deployment. Furthermore, despite being trained only on a small
4×2 MIMO problem, we show that MDX effectively generalizes
to support larger MIMO sizes and diverse configurations (e.g.,
modulation schemes, bandwidths), facilitating practical online
training on edge devices.

II. System Model
This section describes the telecommunication system (Fig. 1)

used for our model evaluation. We consider the 5G NR MU-
MIMO Orthogonal Frequency Division Multiplexing (OFDM)
uplink transmission, where 𝑁𝑇𝑋 layers (data streams) from 𝑁𝑈

User Equipments (UEs) are transmitted to a gNB with 𝑁𝑅

receiving antennas. Each UE may have multiple antennas and
multiple layers: we generalize to multiple antennas by assuming
2 transmitting antennas and 1 layer per UE.

Each layer’s transmission is divided into time slots. Within
each slot the data is mapped on a Resource Grid (RG): the
set RG = {1, . . . , 𝐹} × {1, . . . , 𝑆}, where 𝐹 is the number
of subcarriers, and 𝑆 is the number of OFDM symbols in
a slot. The smallest RG unit is a Resource Element (RE),
identified by a subcarrier index 𝑓 and an OFDM symbol
index 𝑠, (𝑓 , 𝑠) ∈ RG. Each RE, associated with the layer 𝑛𝑇𝑋,
where 1≤𝑛𝑇𝑋 ≤𝑁𝑇𝑋, carries a complex symbol 𝑥 𝑓 ,𝑠,𝑛𝑇𝑋

. The
symbol 𝑥 𝑓 ,𝑠,𝑛𝑇𝑋

is defined by a 2𝐵𝑛𝑇𝑋 Quadrature Amplitude
Modulation (QAM) constellation, and encodes a vector of
bits b 𝑓 ,𝑠,𝑛𝑇𝑋

∈ {0, 1}𝐵𝑛𝑇𝑋 , where 𝐵𝑛𝑇𝑋
denotes QAM order of

layer 𝑛𝑇𝑋. Slots typically contain 14 OFDM symbols, and
the frequency domain is organized into PRBs, each PRB
comprising 12 subcarriers, which serve as the fundamental
units for resource allocation [15].

After the FFT, the received signal on RE (𝑓 , 𝑠) is:

Fig. 2. Model driven neural receiver block diagram. The colored blocks
include trainable weights. The dashed blocks are used only in training.

y 𝑓 ,𝑠 = H 𝑓 ,𝑠x 𝑓 ,𝑠 + n 𝑓 ,𝑠 , (1)
where y 𝑓 ,𝑠 ∈ C𝑁𝑅 , and x 𝑓 ,𝑠 ∈ C𝑁𝑇𝑋 are the received and
transmitted symbols, H 𝑓 ,𝑠 ∈ C𝑁𝑅×𝑁𝑇𝑋 is the MIMO channel
matrix, and n 𝑓 ,𝑠 ∈C𝑁𝑅 is the complex additive Gaussian noise
with power spectral density 𝑁0, distributed as CN(0, 𝑁0I).

The majority of REs carry data symbols. A subset within
each RG transmits the Demodulation Reference Signals
(DMRSs), also known as pilots. The data-carrying positions
can be defined as the set D, including all RE indices (𝑓 , 𝑠)
corresponding to data symbols. DMRSs and their positions
within an RG are layer-specific, known at the receiver, and
used for channel estimation. The DMRS positions for layer
𝑛𝑇𝑋 are defined by the set P𝑛𝑇𝑋

of all the (𝑓 , 𝑠) indices of
REs carrying pilots. In our configuration, the DMRS positions
are located at OFDM symbols 2 and 11 and are configured to
use a Code-Division Multiplexing (CDM) group size of 2 in
the frequency domain.

III. Model Driven Neural Receiver (MDX)
In this section, we describe the architecture of our lightweight

model: a mix of AI-enhanced classical signal processing blocks
and AI blocks. The overall architecture of MDX is shown in
Fig. 2. The model applies first Pilot Aided Least Squares (PA-
LS) channel estimation, then LMMSE equalization with learn-
able parameters. The core of the MDX network consists of Data
Aided Least Squares (DA-LS) channel estimation, specialized
ResBlocks, and a Demapper with learnable parameters, which
outputs the final bit Log-Likelihood Ratios (LLRs). Finally,
the LLRs undergo Low Density Parity Check Code (LDPC)
decoding. We detail these steps in the following.

A. PA-LS Channel Estimation
In 5G MU-MIMO, pilot sequences assigned to different

layers are orthogonal in time, frequency, or code domains.

These predefined signals are used to obtain an initial estimate
of channel vectors at the RE positions carrying pilots as

ĥPA-LS
𝑓 ,𝑠,𝑛𝑇𝑋

=
𝑝∗
𝑓 ,𝑠,𝑛𝑇𝑋

y 𝑓 ,𝑠

|𝑝 𝑓 ,𝑠,𝑛𝑇𝑋
|2
∈ C𝑁𝑅 , ∀[𝑓 , 𝑠] ∈ P𝑛𝑇𝑋

, (2)

where 𝑝 𝑓 ,𝑠,𝑛𝑇𝑋
denotes the complex-valued pilot symbol

transmitted by layer 𝑛𝑇𝑋 at RE (𝑓 , 𝑠), y 𝑓 ,𝑠 represents the
corresponding received signal, and the notation (·)∗ denotes
the complex conjugate. When CDM groups are used, the pilots
of layers in the same CDM group are not orthogonal in time
and in frequency. In such cases, the PA-LS channel estimate in
(2) is averaged over the subcarriers in the same group. Then,
linear interpolation is used to obtain the channel estimates at
data-carrying REs. The PA-LS channel vectors can be arranged
in matrix form as

ĤPA-LS
𝑓 ,𝑠 =

[
ĥPA-LS
𝑓 ,𝑠,1 , . . . , ĥ

PA-LS
𝑓 ,𝑠,𝑁𝑇𝑋

]
∈ C𝑁𝑅×𝑁𝑇𝑋 . (3)

B. Equalization and Demapping
We use the LMMSE equalization to obtain an estimate of

the transmitted symbols. The LMMSE matrix is defined as

G 𝑓 ,𝑠 =

(
Ĥ𝐻

𝑓 ,𝑠Ĥ 𝑓 ,𝑠 + 𝜎̂2
adj, 𝑓 ,𝑠 𝐼

)−1
Ĥ𝐻

𝑓 ,𝑠 ∈ C𝑁𝑇𝑋×𝑁𝑅 , (4)

where Ĥ 𝑓 ,𝑠 ∈ C𝑁𝑅×𝑁𝑇𝑋 is an estimate of the MIMO channel.
The superscript 𝐻 denotes Hermitian operation, 𝐼 is a 𝑁𝑇𝑋 ×
𝑁𝑇𝑋 identity matrix, and

𝜎̂2
adj, 𝑓 ,𝑠 = 𝚿(𝑓 ′, 𝑠) · 𝜎̂ 𝑓 ,𝑠 , (5)

where 𝜎̂ 𝑓 ,𝑠 is the estimated noise variance, 𝑓 ′= ((𝑓 − 1)mod
12) + 1, ’mod’ being modulo operation, 𝚿 ∈ R12×14 is a
learnable matrix. Due to the sparse placement of pilot symbols
within an RG, which provide only localized channel information,
the channel estimation error varies across REs near the pilot
locations and those farther away. The learnable matrix 𝚿 adjusts
the LMMSE equalizer’s input error variances on a per-PRB
basis, enabling the receiver to adapt to these variations. The
equalized symbols can be computed as

x̂ 𝑓 ,𝑠 = Diag(G 𝑓 ,𝑠Ĥ 𝑓 ,𝑠)−1G 𝑓 ,𝑠y 𝑓 ,𝑠 ∈ C𝑁𝑇𝑋 . (6)

where the operator Diag(·) constructs a diagonal matrix using
the diagonal elements of the input matrix. The effective post-
equalization residual noise variances are

𝝈̂res, 𝑓 ,𝑠 = diag
(
Diag(G 𝑓 ,𝑠Ĥ 𝑓 ,𝑠)−1 − I

)
. (7)

where, the operator diag(·) returns the diagonal ele-
ments of the input matrix as a vector, and 𝝈̂res, 𝑓 ,𝑠 =

{𝜎̂2
res, 𝑓 ,𝑠,1, . . . , 𝜎̂

2
res, 𝑓 ,𝑠,𝑁𝑇𝑋

}. The equalization process can be
written as the function

x̂ 𝑓 ,𝑠 , 𝝈̂res, 𝑓 ,𝑠 = LMMSE𝚿
(
Ĥ 𝑓 ,𝑠 , y 𝑓 ,𝑠 , 𝜎̂

2
𝑓 ,𝑠

)
. (8)

Lets define LLR for a bit 𝒷 as 𝓁 = log(𝑝/(1 − 𝑝)), where 𝑝

denotes the probability of 𝒷=1. Then the estimated symbols
can be demapped onto LLRs as

𝓁𝑏 =
1

𝜎̂2
dem
(arg min

𝑥∈C0
𝑏

| |𝑥 − 𝑥 | |22 − arg min
𝑥∈C1

𝑏

| |𝑥 − 𝑥 | |22), (9)

where the sets C0
𝑏

and C1
𝑏

represent the constellation points for
which the 𝑏-th bit is 0 and 1, respectively, and 𝑏 = 1, . . . , 𝐵

Fig. 3. The specialized ResBlock. The ”Conv2DSep” and ”Conv2D 1×1”
form a depthwise separable convolution [16], and ”BN” indicates batch
normalization.
with 𝐵 denoting the number of bits per symbol. The noise
variance is adjusted as

𝜎̂2
dem, 𝑓 ,𝑠 = 𝛾𝑚𝚽(𝑓 ′, 𝑠) · 𝜎̂2

res, 𝑓 ,𝑠 , (10)

where 𝚽 ∈ R12×14 is a learnable matrix, and 𝛾𝑚 for 𝑚 =

1, . . . , 𝑀 is a modulation-specific learnable scaler where 𝑀

indicates the number of supported modulation orders. The
demapping function can be written as

𝓁𝑏, 𝑓 ,𝑠,𝑛𝑇𝑋
=Demapper𝛾𝑚 ,𝚽

(
x̂ 𝑓 ,𝑠 (𝑛𝑇𝑋), 𝝈̂res, 𝑓 ,𝑠 (𝑛𝑇𝑋)

)
(11)

C. DA-LS Channel Estimation
For all (𝑓 , 𝑠) ∈ D, the data symbols can be estimated using

PA-LS channel matrix as
x̂DA-LS
𝑓 ,𝑠 , 𝝈̂DA-LS

res, 𝑓 ,𝑠 = LMMSE𝚿DA-LS
(
ĤPA-LS

𝑓 ,𝑠 , y 𝑓 ,𝑠 , 𝜎̂
2
𝑓 ,𝑠

)
. (12)

Then the estimated symbols in (12) can be used to obtain a
data-aided estimate of channel as

ĥDA-LS
𝑓 ,𝑠,𝑛𝑇𝑋

=

(
y 𝑓 ,𝑠−ĤPA-LS

𝑓 ,𝑠,\𝑛𝑇𝑋
x̂DA-LS
𝑓 ,𝑠,\𝑛𝑇𝑋

)
· (x̂DA-LS

𝑓 ,𝑠 (𝑛𝑇𝑋))∗, (13)

where, ĥDA-LS
𝑓 ,𝑠,𝑛𝑇𝑋

∈ C𝑁𝑅 , the subscript (·)\𝑛𝑇𝑋
excludes the 𝑛𝑇𝑋-

th column or element from a matrix or a vector respectively.
The resulting DA-LS channel vectors in matrix form are

ĤDA-LS
𝑓 ,𝑠 =

[
ĥDA-LS
𝑓 ,𝑠,1 , . . . , ĥDA-LS

𝑓 ,𝑠,𝑁𝑇𝑋

]
∈ C𝑁𝑅×𝑁𝑇𝑋 . (14)

Note that, the resulting channel estimate in (13) has different
scaling from the actual channel. Additionally, it is noisy, and
retains post-equalization residual interferences. However, the
following neural processing, using our specialized ResNet
blocks, can learn to adjust the scale and suppress noise and
interference.

D. ResBlocks Processing
The so far estimated MIMO channel is enhanced by further

processing through a series of N ResBlocks. The block diagram
of our specialized ResBlock is illustrated in Fig. 3. In the
figure, 𝐴𝑙 and 𝐵𝑙 are the outputs of previous ResBlock, and
𝑃𝑛𝑇𝑋

is the positional encoding of layer 𝑛𝑇𝑋. The block ”PRB
Mul.” indicates a per-PRB weighting multiplier. The details of
ResBlocks processing is explained in the following.

Defining the set of MIMO links as L = {1,. . .,𝑁𝑅} ×
{1,. . .,𝑁𝑇𝑋}, the ResBlocks process every (𝑛𝑅, 𝑛𝑇𝑋) ∈ L, in
parallel using shared weights. The inputs of the network are:

1. The PA-LS channel estimates in (3) reshaped as a 3-
Dimensional (3D) tensor A1 ∈ R𝐹×𝑆×2, with its (𝑓 , 𝑠, 𝑘)-th
element defined as

A1 (𝑓 , 𝑠, 𝑘) =

ℜ

(
𝐻̂PA-LS

𝑓 ,𝑠
(𝑛𝑅, 𝑛𝑇𝑋)

)
if 𝑘 = 1,

ℑ
(
𝐻̂PA-LS

𝑓 ,𝑠
(𝑛𝑅, 𝑛𝑇𝑋)

)
if 𝑘 = 2,

(15)

2. The DA-LS channel estimates in (14) reshaped as a 3D
tensor B1 ∈ R𝐹×𝑆×2 with its (𝑓 , 𝑠, 𝑘)-th element defined as

B1 (𝑓 , 𝑠, 𝑘) =

ℜ

(
𝐻̂DA-LS

𝑓 ,𝑠
(𝑛𝑅, 𝑛𝑇𝑋)

)
if 𝑘 = 1,

ℑ
(
𝐻̂DA-LS

𝑓 ,𝑠
(𝑛𝑅, 𝑛𝑇𝑋)

)
if 𝑘 = 2,

(16)

3. The layer-specific Positional Encoding (PE), P𝑛𝑇𝑋
∈

R12×14×4, which is provided to all ResBlocks. We incorporate a
per-PRB positional encoding to capture the channel’s structure
across time and frequency domains. The encoding consists
of two components. The first component ¤P, inspired by [8],
consists of the normalized relative vertical (in frequency) and
horizontal (in time) distance of each RE inside a PRB from
the nearest DMRS. It is a real-valued 3D tensor with a shape
of 12×14×2. Since the DMRS positions are layer-specific,
this component of the PE is also layer-dependent. The second
component, ¥P, is a real-valued 3D tensor of shape 12×14×2,
consisting of the normalized absolute cartesian coordinates of
each RE inside a PRB, and is defined as

¥P(𝑓𝑝 , 𝑠𝑝 , 𝑘)=
{

𝑓𝑝
12 if 𝑘 =1,
𝑠𝑝
14 if 𝑘 =2,

, ∀1≤ 𝑓𝑝 ≤12, 1≤ 𝑠𝑝 ≤14. (17)

Then, the overall PE is created by concatenating the two
components, ¤P and ¥P, along the last dimension.

Algorithm 1 summarizes the ResBlocks processing. We use
𝑁 =4 ResBlocks, where each ResBlock produces two outputs, A
and B, except for the final block, which generates only A. The A
outputs are weighted on a per-PRB basis before performing the
residual summation, using a learnable multiplier 𝚪𝑙 ∈ R12×14×1,
𝑙 = 1, . . . , 𝑁 . The tensors are repeated and broadcast to the
appropriate shapes when necessary. The network output for the
link (𝑛𝑅, 𝑛𝑇𝑋) is denoted by A𝑁+1 ∈ R𝐹×𝑆×2. This output can
be interpreted as a complex-valued matrix C𝑛𝑅 ,𝑛𝑇𝑋

∈ C𝐹×𝑆 .
E. Detection

We use the channel estimates enhanced by ResBlocks
processing for the MIMO detection. The output of Alg. 1
can be written as ĤNN

𝑓 ,𝑠
∈ C𝑁𝑅×𝑁𝑇𝑋 where its (𝑛𝑅, 𝑛𝑇𝑋)-th

element defined as
ĤNN

𝑓 ,𝑠 (𝑛𝑅, 𝑛𝑇𝑋) = C𝑛𝑅 ,𝑛𝑇𝑋
(𝑓 , 𝑠). (18)

The equalized symbols and the processed noise variance are
x̂D
𝑓 ,𝑠 , 𝝈̂

D
res, 𝑓 ,𝑠 = LMMSE𝚿D

(
ĤNN

𝑓 ,𝑠 , y 𝑓 ,𝑠 , 𝜎̂ 𝑓 ,𝑠

)
. (19)

Then the LLRs can be computed as
𝓁

D
𝑏, 𝑓 ,𝑠,𝑛𝑇𝑋

= Demapper𝛾𝑚 ,𝚽

(
x̂D
𝑓 ,𝑠 (𝑛𝑇𝑋), 𝝈̂

D
𝑓 ,𝑠 (𝑛𝑇𝑋)

)
(20)

F. Training MDX
The proposed MDX architecture is fully differentiable. It

is trained by defining a loss function and back-propagating
the gradients. We use Binary Cross-Entropy (BCE) loss for
the LLRs and Mean Squared Error (MSE) loss for the MIMO

Algorithm 1 ResBlocks Processing
1: Inputs: 𝐻̂PA-LS

𝑓 ,𝑠
, 𝐻̂DA-LS

𝑓 ,𝑠
∀(𝑓 , 𝑠) ∈RG, P𝑛𝑇𝑋

∀1≤𝑛𝑇𝑋 ≤𝑁𝑇𝑋 , 𝑁 .
2: for (𝑛𝑅 , 𝑛𝑇𝑋) ∈ L do
3: Create A1, B1 ⊲ (15), (16)
4: P← Repeat P𝑛𝑇𝑋

on first dimension ⊲ 𝐹 × 𝑆 × 4
5: for 𝑙 ← 1 to 𝑁 do
6: X← Concat(A𝑙 ,B𝑙) ⊲ 𝐹 × 𝑆 × 4
7: X← ReLU (BN(X)) ⊲ 𝐹 × 𝑆 × 4
8: X← Concat(X,P) ⊲ 𝐹 × 𝑆 × 8
9: X← Conv2D (Conv2DSep(X)) ⊲ 𝐹 × 𝑆 × 8

10: X← ReLU(X) ⊲ 𝐹 × 𝑆 × 8
11: A𝑙+1 ← Conv2D(Conv2DSep(X)) ⊲ 𝐹 × 𝑆 × 2
12: 𝚪̃𝑙 ← Repeat and Broadcast 𝚪𝑙 ⊲ 𝐹 × 𝑆 × 2
13: A𝑙+1 ← A𝑙 + 𝚪̃𝑙 · A𝑙+1 ⊲ 𝐹 × 𝑆 × 2
14: if 𝑙 < 𝑁 then
15: B𝑙+1 ← Conv2D(Conv2DSep(B𝑙+1)) ⊲ 𝐹 × 𝑆 × 2
16: B𝑙+1 ← B𝑙 + B𝑙+1 ⊲ 𝐹 × 𝑆 × 2
17: end if
18: end for
19: C𝑛𝑅 ,𝑛𝑇𝑋

← Complex(A𝑁+1) ⊲ C𝑛𝑅 ,𝑛𝑇𝑋
∈ C𝐹×𝑆

20: end for
21: Output: C𝑛𝑅 ,𝑛𝑇𝑋

, ∀(𝑛𝑅 , 𝑛𝑇𝑋) ∈ L

channel estimates. For a given estimate of LLRs 𝓁, and for
every training data sample 𝑛TTI processed by MDX (every TTI),
the BCE loss function is defined as

JBCE
𝑛TTI (𝓁) = −

1
|D|𝑁𝑇𝑋

∏𝑁𝑇𝑋

𝑛𝑇𝑋=1 𝐵𝑛𝑇𝑋

𝑁𝑇𝑋∑︁
𝑛𝑇𝑋=1

∑︁
(𝑓 ,𝑠) ∈D

𝐵𝑛𝑇𝑋∑︁
𝑏=1(

𝒷𝑏, 𝑓 ,𝑠,𝑛𝑇𝑋
log2 (𝑝𝑏, 𝑓 ,𝑠,𝑛𝑇𝑋

)+

(1 − 𝒷𝑏, 𝑓 ,𝑠,𝑛𝑇𝑋
) log2 (1 − 𝑝𝑏, 𝑓 ,𝑠,𝑛𝑇𝑋

)
)
, (21)

where 𝑝𝑏, 𝑓 ,𝑠,𝑛𝑇𝑋
= 1/(1 + exp(−𝓁𝑏, 𝑓 ,𝑠,𝑛𝑇𝑋

)), 𝐵𝑛𝑇𝑋
is the

number of bits per symbol for the 𝑛𝑇𝑋-th MIMO layer, and
|D| represents the cardinality of the set D. Similarly, a MSE
loss is defined as

JMSE
𝑛TTI (Ĥ 𝑓 ,𝑠) =

1
|D||L|

∑︁
(𝑓 ,𝑠) ∈D

∥Ĥ 𝑓 ,𝑠 −H 𝑓 ,𝑠 ∥2𝐹 , (22)

where Ĥ 𝑓 ,𝑠 is an estimate of the MIMO channel, and ∥ · ∥𝐹
is the Frobenius norm. In addition to using BCE loss on the
final estimate of LLRs in (20), we also put a BCE loss on an
intermediate estimate of the LLRs. The intermediate estimate
of LLRs are

𝓁
DA-LS
𝑏, 𝑓 ,𝑠,𝑛𝑇𝑋

= Demapper1,1

(
x̂DA-LS
𝑓 ,𝑠 (𝑛𝑇𝑋), 𝝈̂DA-LS

𝑓 ,𝑠 (𝑛𝑇𝑋)
)
, (23)

where the subscripts ”1, 1” indicate that all learnable parameters
of the demapping function are fixed to 1, making them non-
trainable. Then, the overall loss function can be defined over a
training batch of size 𝑁TTI as

J =
1

𝑁TTI

𝑁TTI∑︁
𝑛TTI=1

log2 (1 + snr𝑛TTI)(
JBCE
𝑛TTI (𝓁

D) + JBCE
𝑛TTI (𝓁

DA-LS) + 𝜆 · JMSE
𝑛TTI (Ĥ

NN
𝑓 ,𝑠)

)
, (24)

where snr𝑛TTI is the linear SNR of the 𝑛TTI-th training sample,
and the multiplier 𝜆 is a hyperparameter that weights the MSE
loss. Note that the intermediate LLRs in (23) are computed
only in the training phase.

IV. Simulation Results
We compare the performance of MDX with the SoA model

from [7], [8]. In addition, three baseline methods are used for
comparison: Least Squares (LS) channel estimation at pilot
locations with linear interpolation to data symbols followed by
LMMSE equalization, LMMSE channel estimation with K-best
detection, and perfect channel knowledge with K-best detection.
For more details on these baselines see [7], [8], [17].
A. Simulation Setup

We use the Adaptive Moment Estimation (ADAM) optimiza-
tion with a learning rate of lr = 0.001, and 𝜆 = 0.01 to train
our MDX. The end to end MIMO transmission is simulated
in Sionna [17]. As in [8], the training is done on the 3GPP
Urban Microcell (UMi) channel model, with random drops of
users for each training data sample 𝑛TTI, ensuring randomized
power delay profiles, angle of arrival and departure. Also, the
number of users, and their speeds are randomized: the number
of active users is drawn from a triangular distribution, and the
user speeds from a uniform distribution in [0, 56] m/s. The
model was trained on 3 different modulation orders namely
4-QAM, 16-QAM, and 64-QAM with different LDPC code
rates corresponding to 5G Modulation Coding Schemes (MCSs)
indices 𝐼MCS = {9, 14, 19} described in [18, Table 5.1.3.1-1].

All benchmarked methods employed an identical PUSCH
configuration: 4 PRBs for training and 273 for evaluation,
with 2.14 GHz carrier frequency, 30 kHz subcarrier spacing.
The DMRS configurations consist of 2 CDM groups, with
pilot symbols allocating OFDM symbols 2, and 11. The
evaluations are performed on MCS indices 𝐼MCS and a TDL-
A channel model [19], with Doppler shifts and RMS delay
spreads uniformly drawn from the intervals [0, 325] Hz and
[10, 300] ns, respectively. The number of filters for ResBlocks
of MDX is set to 8. All results in this paper were obtained using
a single pre-trained MDX model without additional training
or fine-tuning. The MDX model was trained on an NVIDIA
GeForce GTX 1080 Ti GPU for 500,000 iterations with a batch
size of 𝑁TTI = 128.
B. MU-MIMO 4×2

We evaluated the receivers on a MU-MIMO PUSCH scenario
with 2 active layers (𝑁𝑇𝑋 = 2), and 4 receiver antenna
elements (𝑁𝑅 = 4). Fig. 4 shows the TBLER performance
vs Signal-to-Noise Ratio (SNR) values, for varying MCS
indices in 𝐼MCS. For this evaluation we use the NRX model
that supports varying MCS by a masking method. We use
the weights open sourced in [7]. Our model outperforms the
LS channel estimation baseline across all three modulation
orders and achieves performance comparable to LMMSE
channel estimation baseline at 16-QAM and 64-QAM. While
MDX surpasses NRX at 64-QAM, NRX performs better at
QPSK, albeit at the cost of significantly higher computational
complexity.

C. MU-MIMO 16×4
Fig. 5 shows the evaluation results of the receivers on a MU-

MIMO PUSCH scenario with a varying number of active layers

(maximum 𝑁𝑇𝑋 = 4), 16 receiver antenna elements (𝑁𝑅 = 16),
and for MCS indices in 𝐼MCS. Here we use the same MDX
model from previous evaluation (trained on MU-MIMO 4×2),
without further training.

Using the source code from [7], [8], we trained a separate
NRX model for each of the three MCS indices in 𝐼MCS. We
adopted the parameterization (e.g., filter counts, iterations) from
[8], and set the unspecified 𝑑𝑠 =64. Each model was trained
on Swiss National Supercomputing Centre (CSCS) resources
(NVIDIA GH200 GPUs) for several million iterations with a
batch size of 128.

Our model outperforms the baseline with LS channel
estimation as well as NRX across all tested modulation
orders and number of active layers. It performs close to the
LMMSE channel estimation baseline at 16-QAM modulation,
and approaches perfect channel knowledge at 64-QAM.

D. Complexity Analysis
The complexity of MDX is dominated by two LMMSE

blocks, and ResBlocks processing (mostly depth-wise separable
convolutional neural networks). The NRX model uses compute-
expensive depthwise separable convolutional layers, and fully
connected layers. We count one complex-valued multiplication
as four real-valued multiplications. The number of real valued
multiplications for our LMMSE block is 2𝑁3

𝑇𝑋
+ 6𝑁𝑅𝑁

2
𝑇𝑋
+

6𝑁𝑅𝑁𝑇𝑋 − 2𝑁𝑇𝑋 + 2 per RE. For the pair of a depthwise
separable convolution followed by a point-wise convolution
(with stride set to 1) we count 𝑘2𝑁0𝐹𝑆+𝑁0𝑁𝐹𝑆 multiplications
(𝑘 , 𝑁0, and 𝑁 denote the filter size, number of input feature
maps, and number of output feature maps). The complexities,
in FLOPs, along with the number of parameters for the MDX
and NRX models, configured as for the TBLER evaluation, are
in Table II. In the 4×2 MU-MIMO configuration, our MDX
model requires 106× fewer FLOPs and 157× fewer parameters
than the NRX model. For the 16×4 MU-MIMO configuration,
these reductions are 66× and 396×, respectively.

TABLE II
FLOPs and Parameters

MIMO Model FLOPs(G) Params(k) NRX/MDX

4 × 2 MDX 0.7 2.7 106× (FLOPs)
NRX 78.6 431.2 157× (Params)

16 × 4 MDX 6 2.7 66× (FLOPs)
NRX 397.6 1,088.4 396× (Params)

V. Conclusion
This paper presents a 5G NR PUSCH receiver that inte-

grates conventional PHY blocks with learnable parameters
and ResBlocks processing. By employing a model-driven
approach, we substantially lowered the receiver’s computational
complexity (by 66×) and memory requirements (by 396×),
while surpassing the performance of both classical baselines
and SoA solutions. Additionally, we simplified the training
phase, which is essential for online learning using site-specific
data captured from the actual radio environment at the edge
base stations. On the other hand, our receiver processes
each MU-MIMO link independently using shared parameters

Fig. 4. TBLER vs. SNR performance with 𝑁𝑇𝑋 = 2 active layers, and 𝑁𝑅 = 4 receiving antenna elements for a 3GPP TDL-A channel.

Fig. 5. TBLER vs. SNR for varying MCS indices and number of active layers in a 3GPP TDL-A channel. Columns represent the number of active layers,
ranging from 1 (left) to 4 (right). Rows correspond to MCS indices: 9 (top), 14 (middle), and 19 (bottom).

and depthwise separable convolutions, unlocking significant
potential for parallel processing. Furthermore, it demonstrates
greater flexibility than existing SoA solutions, supporting a
wide range of PUSCH MU-MIMO configurations—including
variations in MIMO layers, receiver antennas, bandwidths, and
modulation orders—using a single pre-trained model. The MDX
implementation along with trained weights will be open-sourced
to ensure reproducibility [14].

References

[1] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
Mag. NET, vol. 34, no. 3, pp. 134–142, 2019.

[2] X. Lin, “Artificial Intelligence in 3GPP 5G Advanced: A Survey,”
IEEE ComSoc, 2023. [Online]. Available: https://www.comsoc.org/
publications/ctn/artificial-intelligence-3gpp-5g-advanced-survey

[3] E. Björnson, J. Hoydis, L. Sanguinetti et al., “Massive MIMO networks:
Spectral, energy, and hardware efficiency,” Foundations and Trends in
Signal Processing, vol. 11, no. 3-4, pp. 154–655, 2017.

[4] C. Zhang, Y.-L. Ueng, C. Studer, and A. Burg, “Artificial intelligence
for 5G and beyond 5G: Implementations, algorithms, and optimizations,”
IEEE J. Emerg. Sel. Top. Circ. Syst., vol. 10, no. 2, pp. 149–163, 2020.

[5] M. Honkala, D. Korpi, and J. M. Huttunen, “Deeprx: Fully convolutional
deep learning receiver,” IEEE J. WCOM, vol. 20, no. 6, pp. 3925–3940,
2021.

[6] D. Korpi, M. Honkala, J. M. Huttunen, and V. Starck, “Deeprx
MIMO: Convolutional MIMO detection with learned multiplicative
transformations,” in IEEE Conference on ICC, 2021, pp. 1–7.

[7] R. Wiesmayr, S. Cammerer, F. A. Aoudia, J. Hoydis, J. Zakrzewski, and
A. Keller, “Design of a standard-compliant real-time neural receiver for
5G NR,” 2024. [Online]. Available: https://arxiv.org/abs/2409.02912

[8] S. Cammerer et al., “A neural receiver for 5G NR multi-user MIMO,”
in IEEE GLOBECOM Workshops, Dec. 2023, pp. 329–334.

[9] “Data Processing Units, Empowering 5G carrier, enterprise and AI
cloud data infrastructure.” [Online]. Available: https://www.marvell.com/
products/data-processing-units.html

[10] Y. Zhang, M. Bertuletti, S. Riedel, A. Vanelli-Coralli, and L. Benini,
“TeraPool-SDR: An 1.89TOPS 1024 RV-Cores 4MiB Shared-L1 Cluster
for Next-Generation Open-Source Software-Defined Radios,” in IEEE
GLSVLSI, 2024, pp. 86–91.

[11] “How we Won the Acceleration Architecture Debate.” [Online].
Available: https://www.qualcomm.com/news/onq/2023/03/how-we-won-
the-acceleration-architecture-debate

[12] Nvidia Corporation, “NVIDIA H100 Tensor Core GPU,” 2024. [Online].
Available: https://www.nvidia.com/en-us/data-center/h100/

[13] Intel Corporation, “Intel Architecture Day 2021 Presentation: Alder Lake,
Sapphire Rapids, Ponte Vecchio, Xe-HPG,” Presentation and Briefing
Materials, 2021. [Online]. Available: https://www.anandtech.com/show/
16881/intel-architecture-day-2021-a-sneak-peek-at-the-next-decade/

[14] [Online]. Available: https://github.com/Mahdi-Abdollahpour/mdx
[15] 3GPP, “Physical channels and modulation,” TS 38.211, March 2025,

version 18.6.0.
[16] F. Chollet, “Xception: Deep learning with depthwise separable convolu-

tions,” in IEEE Conference on CVPR, July 2017, pp. 1251–1258.
[17] J. Hoydis et al., “Sionna: An open-source library for next-

generation physical layer research,” 2023. [Online]. Available:
https://arxiv.org/abs/2203.11854

[18] 3GPP, “Physical layer procedures for data,” TS 38.214, March 2025,
version 18.6.0.

[19] 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz,”
Tech. Rep. TR 38.901, March 2024, version 18.0.0.

https://www.comsoc.org/publications/ctn/artificial-intelligence-3gpp-5g-advanced-survey
https://www.comsoc.org/publications/ctn/artificial-intelligence-3gpp-5g-advanced-survey
https://arxiv.org/abs/2409.02912
https://www.marvell.com/products/data-processing-units.html
https://www.marvell.com/products/data-processing-units.html
https://www.qualcomm.com/news/onq/2023/03/how-we-won-the-acceleration-architecture-debate
https://www.qualcomm.com/news/onq/2023/03/how-we-won-the-acceleration-architecture-debate
https://www.nvidia.com/en-us/data-center/h100/
https://www.anandtech.com/show/16881/intel-architecture-day-2021-a-sneak-peek-at-the-next-decade/
https://www.anandtech.com/show/16881/intel-architecture-day-2021-a-sneak-peek-at-the-next-decade/
https://github.com/Mahdi-Abdollahpour/mdx
https://arxiv.org/abs/2203.11854

