
FastVAR: Linear Visual Autoregressive Modeling via Cached Token Pruning

Hang Guo1 Yawei Li2,∗,† Taolin Zhang1 Jiangshan Wang1

Tao Dai3,∗ Shu-Tao Xia1,4 Luca Benini2
1Tsinghua University 2ETH Zürich 3Shenzhen University 4Peng Cheng Laboratory

Figure 1. Our FastVAR can generate one 2K image using one NVIDIA 3090 GPU, while existing baseline fails due to out of memory.

Abstract
Visual Autoregressive (VAR) modeling has gained pop-

ularity for its shift towards next-scale prediction. How-
ever, existing VAR paradigms process the entire token map
at each scale step, leading to the complexity and runtime
scaling dramatically with image resolution. To address this
challenge, we propose FastVAR, a post-training accelera-
tion method for efficient resolution scaling with VARs. Our
key finding is that the majority of latency arises from the
large-scale step where most tokens have already converged.
Leveraging this observation, we develop the cached token
pruning strategy that only forwards pivotal tokens for scale-
specific modeling while using cached tokens from previous
scale steps to restore the pruned slots. This significantly
reduces the number of forwarded tokens and improves
the efficiency at larger resolutions. Experiments show
the proposed FastVAR can further speedup FlashAttention-
accelerated VAR by 2.7× with negligible performance drop
of <1%. We further extend FastVAR to zero-shot gener-
ation of higher resolution images. In particular, FastVAR
can generate one 2K image with 15GB memory footprints
in 1.5s on a single NVIDIA 3090 GPU. Code is available at
https://github.com/csguoh/FastVAR.

1. Introduction
The next-token prediction of Autoregressive (AR) mod-
els [31, 33, 48, 56, 61] has demonstrated performance com-

*Corresponding Authors, †Project Lead.

petitive with diffusion models for visual generation [48] as
well as the potential for unified vision understanding and
generation [56, 57, 59, 61]. However, this token-by-token
paradigm suffers from numerous decoding steps. Recently,
Visual Autoregressive (VAR) modeling [51] has shifted the
paradigm to next-scale prediction, enabling image gener-
ation in fewer steps. Under this new paradigm, some
works [22, 49] have developed VAR-based models for text-
to-image generation and obtained promising results.

Despite their potential, existing VAR-based methods [22,
49, 51] face a critical challenge: the computational com-
plexity and runtime latency scale dramatically with image
resolution. Specifically, unlike next-token prediction which
processes only one token per step, the next-scale prediction
of VAR requires processing the entire token map at each
decoding step. As a result, the number of tokens increases
in O(n2) with the image resolution n × n, and even leads
to O(n4) complexity in the attention [54] layer. Empiri-
cally, as shown in Fig. 2(a), even when FlashAttention [13]
is enabled, VAR models still exhibit super-linear runtime
latency. Consequently, this significant computational com-
plexity prevents existing VAR-based models from scaling
to higher resolutions, such as 2K.

In this work, we aim to address the resolution scaling
challenge of VARs by pruning forwarded tokens. Through
an in-depth analysis of the pre-trained VAR models, we
identify the following key findings. 1) Large-scale steps are
speed bottleneck but appear robustness. Runtime profiling
in Fig. 2(a) finds that the last two large-scale steps account

1

ar
X

iv
:2

50
3.

23
36

7v
3

 [
cs

.C
V

]
 8

 J
ul

 2
02

5

https://github.com/csguoh/FastVAR
https://arxiv.org/abs/2503.23367v3

2.7x faster

SDXLPixArt-Sigma

SD3

Infinity

1000 1500 2000 2500 3000 3500 4000

G
en

E
v
a
l

S
c
o
re

0.50

0.55

0.60

0.65

0.70

0.75

4500

1000

800

600

400

200

R
u

n
ti

m
e

(m
s)

0

hard to scale with

resolution

Resolution Steps (n n)
0 1000200 400 800600

Runtime (ms)

(b) Efficiency-performance tradeoff(a) Runtime at different scale steps

<1% drop

HART
easy to scale

+OursInfinity+Ours

Infinity+FlashAttn (with FlashAttn)

Figure 2. FastVAR exhibits promising resolution scalability, and
can achieve noticeable speedup with negligible performance drop.

for 60% of the total runtime. Further investigation in Tab. 4
reveals that VAR is more resilient to token pruning at large-
scale steps than at smaller scales. Thus, we direct our efforts
to the large-scale steps. 2) High-frequency modeling mat-
ters at large-scale steps. Spectrum analysis in Fig. 3(b) re-
veals that the large-scale steps are optimized to model high-
frequency tokens, such as texture details, and the remaining
low-frequency tokens almost converge in these steps. Con-
sequently, we can only forward the high-frequency tokens
for pruning. 3) Tokens from different scales are related.
Attention map analysis in Fig. 3(c) shows strong diagonal
sparsity across scales, indicating that tokens attend not only
to same-scale neighbors but also to those from the preceding
scales. Thus, we cache tokens in previous steps to compen-
sate for the pruned slots, preserving the 2D image lattice
structure and maintaining information flow.

Based on the above observations, we propose FastVAR,
a post-training acceleration recipe for efficient resolution
scaling with VARs. At its core, FastVAR employs “cached
token pruning”, which retains only pivotal tokens at large-
scale steps to reduce computational overhead while using
cached token maps from early-scale steps to compensate for
information loss. To identify the pivotal tokens, we develop
Pivotal Token Selection (PTS), a frequency-based scoring
mechanism. Token importance is determined by filter-
ing out the low-frequency component estimated via the di-
rect current component, which enables efficient frequency-
based token selection directly in the spatial domain. The se-
lected Top-K pivotal tokens are then processed by the VAR
model. To restore pruned tokens, we propose Cached Token
Restoration (CTR), which first interpolates the token map
from the cached scale and then reinstates the pruned tokens
by indexing the interpolated token map to the pruned loca-
tion. By integrating these strategies, we present FastVAR
which enjoys the following benefits:
• The proposed method is training-free and plug-and-play

for various VAR-based backbones.
• As shown in Fig. 2(b), FastVAR can be integrated with

FlashAttention, with further 2.7× speedup and <1% per-
formance drop.

• In Fig. 1, FastVAR facilitates zero-shot scaling to larger-
resolution and can produce one 2K image using only
15GB memory in 1.5s on a single NVIDIA 3090 GPU.

2. Related Work
Autoregressive Visual Generation. The previous autore-
gressive (AR) methods [27, 42, 64, 67] mostly adopt the
next-token prediction paradigm, which treats each pixel as
one token and generates pixels in a GPT or BERT style [1,
4, 6, 14, 35]. For instance, some pioneering works [9, 52]
generate pixels in raster scan order with transformer mod-
els. Later, VQVAE [53] and VQGAN [15] propose to quan-
tize image patches into discrete tokens to ease the training
process. Benefiting from the scaling up [24, 26], recent
works have shown promising results that the autoregressive
models can achieve a more competitive performance than
state-of-the-art Diffusion models [7, 8, 38, 39, 41, 43]. De-
spite this progress, existing next-token generation pipelines
struggle to efficiently synthesize high-resolution images
due to the numerous decoding steps [10]. More recently, the
Visual Autoregressive (VAR) modeling [51], which shifts to
next-scale generation fashion to allow only a few forward
steps, further advances the generation quality as well as the
model efficiency. Building on top of VAR, existing methods
have scaled up the model for production-level text-to-image
generation. For example, HART [49] adopts the continuous
diffusion module to compensate for the quantization error.
Infinity [22] employs a bitwise tokenizer for an extremely
large vector vocabulary. Despite the promising ability of
VAR-based methods, they struggle to scale to larger resolu-
tions with the increasing token numbers.
Efficient Visual Generation. To speed up diffusion mod-
els [25], many efforts have been made in recent years, in-
cluding distillation [40, 44], quantization [21, 32, 46], prun-
ing [2, 17, 55, 65, 68], and caching [30, 34, 36, 37], which
either reduce the total denoising steps or to reduce the cost
of single forward. Specifically, DeepCache [37] proposes
to reuse the intermediate features of low-resolution layers
in the U-Net. ToMeSD [2] merges similar tokens into one
token with subsequent unmerging for acceleration. Unfor-
tunately, these methods are specifically designed for dif-
fusion, which can achieve only sub-optimal performance
or cannot be used in VAR. In the efforts to accelerate AR
modeling [31, 33, 48, 56, 61], one prevalent solution is
to reduce the forward step using parallel decoding strate-
gies [23, 45, 50]. For instance, speculative decoding [5, 28]
utilizes a small draft model to generate candidate tokens,
which are then verified in parallel by the larger model.
However, the well-developed decoding strategy cannot be
directly applied to the next-scale paradigm, whose each step
involves multiple pixels [51]. As for fast VAR models, one
related work is the CoDe [10], which uses model ensemble
techniques to use a small model on the costly large resolu-
tion. However, CoDe highly depends on the availability of
different-sized models. In this work, we attempt to speed
up the VARs by pruning extra tokens, which is training-free
and is generic for multiple VAR methods.

2

16x16 32x32 64x64 96x96 128x128 192x192 256x256 320x320 384x384 512x512 640x640 768x768 1024x1024

(b) Fourier Analysis of Large-Scale Steps

(a) Visualization of Intermediate Outputs from Different Scale Steps

(c) Cross-scale Attention Map Visualization

Scale16_Head13

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.7

0.6

0.5

0.4

0.3

0.2

0.1

A
tt

en
ti

o
n
 S

co
re

0.7

0.6

0.5

0.4

0.3

0.2

0.1

A
tt

en
ti

o
n
 S

co
re

Scale10_Head0 Scale10_Head8Scale10_Head0 Scale10_Head8 Scale16_Head6Scale16_Head6Scale4_Head15Scale4_Head7 Scale4_Head15Scale4_Head7

-8

Δ
L

o
g
 A

m
p

li
tu

d
e

-6

-4

-2

0

0.00 0.17 0.83 1.00

S
ca

le
 S

te
p
s

Frequency
0.33 0.50 0.67

Step K

Step K-1

Step K-2

Step K-3

Converge at

low-frequency

High-frequency

stays optimized

Figure 3. (a) We resize different r̃k to the same size for better presentation. (b) Each curve represents the frequency characteristics of a
certain-scale token map. (c) The row represents keys of scale steps {1, 2, · · · , k}, and the column is queries of the k-th scale step.

3. Method
3.1. Preliminary
The Visual Autoregressive (VAR) modeling [51] redefines
the traditional AR by shifting from a “next-token predic-
tion” to a “next-scale prediction”, where each autoregres-
sive unit is a token map of varying scales instead of a single
token. For a given image feature map, VAR first quantizes it
into K multi-scale token maps R = {r1, r2, · · · , rK} with
progressively larger resolutions using pre-definced scale
schdual {(h1, w1), (h2, w2), · · · , (hK , wK)}. Then the R
is used to train a Transformer [54] to learn the joint distri-
bution using the causal formulation:

p(r1, r2, · · · , rK) =

K∏
k=1

p(rk|r1, r2, · · · , rk−1), (1)

where the start token r1 is the encoded text embedding from
the LLMs [11, 63] under given user prompts. During train-
ing, existing methods [22, 49, 51] usually employ a residual
strategy to reduce learning difficulty. In detail, the model
outputs at the k-th scale step fk is the residual of the inter-
mediate prediction r̃k:

r̃k = interpolate(r̃k−1, (hk, wk)) + fk, (2)

where the “interpolate(·, (hk, wk))” denotes upsample a
token map to the size of (hk, wk). Unfolding Eq. (2) de-
rives the following cumulative form:

r̃k =

k∑
i=1

interpolate(fi, (hk, wk)). (3)

In the last scale step, the predicted token maps r̃K is used
to generate the final image. During inference, since the out-
puts at different scales are generated autoregressively, the
KV-Cache can be adopted to avoid re-computing of previ-
ous steps. Although the VAR paradigm can generate images
within only K scale steps, the Transformer needs to pro-
cess all hk × wk tokens at the k-th step, hindering scaling
to higher-resolution image synthesis.

3.2. Motivation
In this work, we aim to approach linear VAR models to ad-
vance high-resolution image generation. To this end, we
investigate the scale-wise behavior of the pre-trained VAR
model [22]. We examine from three angles: the latency
profiling, the specific role of each step, and the cross-scale
token dependency. Conclusions are summarized as follows.

Observation 1: Large-scale steps are speed bottleneck
but appear robustness. As shown in the runtime curve
in Fig. 2(a), even the FlashAttention is enabled, the infer-
ence latency of the VAR exhibits a super-linear complex-
ity with resolution steps. This is because the Transformer
needs to take all the tokens at once. As a result, the to-
kens from the large-scale steps make up the majority of the
total token length. For example, the last two steps even
occupy 60% of the total time. On the other hand, the ex-
periments in Sec. 4.3 suggest the large-scale steps are more
robust to token drop than small-scale counterparts under the
same pruning ratio. Therefore, it is accessible to prune some
“unimportant tokens” at the large scale step to speed up
token processing. However, challenges still remain about
which tokens should be pruned and how to compensate for
the information loss from these pruned tokens.

3

1 2 3 4 5 151 2[T]

1 2 3 4

Visual Autoregressive Modeling Layer (Attention/FFN)

5 15 1661 2 3 4 ...

5 15 1661 2 3 4 ...

Pivotal Token Selection

Cached Token Restoration

1 5 151 2 ...

Start token from text Save for cache

Tokens at different scale Pruned tokens

(a) Overall pipeline of the proposed FastVAR (b) Token-wise implementation for one VAR layer at stage

[T][T]

 Structure Construction Stage Texture Filling Stage (FastVAR for token reduction)(keep intact)

Figure 4. (a) We keep the Structure Construction Stage as standard VAR and additionally store token maps at the (K−N)-th step as the
cache. Then the Texture Filling Stage applies FastVAR to process only pivotal tokens for fast inference. (b) For Attention or FFN layers
using FastVAR, we first employ the Pivotal Token Selection (PTS) for token reduction. After the model forward, we develop the Cached
Token Restoration (CTR) to restore the original token numbers using the caches from the previous scale step.

Observation 2: High-frequency modeling matters at
large-scale steps. To find which token should be pruned,
we visualize the intermediate predictions r̃k in Fig. 3(a).
Interestingly, we find that the generation process of the pre-
trained VAR model can be decomposed into two stages. The
Structure Construction Stage, which includes small-scale
steps, is trained to generate the outline of a subject. Af-
ter that, at the Texture Filling Stage, which is composed of
large-scale steps, is responsible for adding details based on
the previous sketch. Given that the outline is low-frequency
while the texture is high-frequency, we therefore infer that
the VAR mainly models the high-frequency texture in the
large-scale stage while keeping the low-frequency structure
almost intact. For further verification, we show in Fig. 3(b)
that the low-frequency component almost converges in the
large-scale steps, while the high-frequency modeling stays
optimized with noticeable variations. Therefore, we can
prune the redundant low-frequency tokens and forward only
the pivotal high-frequency tokens at the large-scale steps for
token number reduction.

Observation 3: Tokens from different scales are related.
After reducing the input tokens for fast forward, we still
need to restore the output tokens to the original numbers
in order to maintain the 2D image structure. To this end,
we analyze the cross-scale attention map of the unpruned
VAR model, where the query at the current scale inter-
acts with KV caches from all previous scales. As depicted
in Fig. 3(c), we observe that the attention map not only ex-
hibits a high diagonal score at self-scale, but also a high
diagonal score at cross-scale. This behavior indicates that
a token in the current scale not only attends to its same-
scale locals but also exhibits strong correlation to tokens at
the neighboring positions in previous scales. This diago-
nal attention sparsity thus facilitates us to use only a few

tokens to estimate the original output of the pruned slots,
and avoids weighting multiple tokens across the token map.
Specifically, we can approximate the outputs of pruned to-
kens by indexing in the previous-scale token maps based on
the pruning location. In this way, the information loss can
be compensated thanks to this high cross-scale similarity.

3.3. Efficient Resolution Scaling for VARs
We instantiate the above idea and present FastVAR to ap-
proximate linear VAR models. The core is the cached token
pruning, which prunes tokens at large scale steps while us-
ing cache from early scales to maintain information flow.
Overview. As shown in Fig. 4(a), denote the scale step set
of Structure Construction Stage as S = {1, 2, · · · ,K−N},
the step set of Texture Filling Stage as T = {K − N +
1, · · · ,K}. As stated in Sec. 3.2, the speedup of pruning
token maps in S is insignificant while producing a notice-
able performance drop, we therefore keep S intact as the
standard VAR. In addition, we save the per-layer outputs at
the last scale in S, i.e., the (K − N)-th step, as the cache
for subsequent token restoration. For the set T , we apply
FastVAR to prune tokens for fast-forward, followed by the
token number restoration. More details are given below.
Pivotal Token Selection. We first introduce the Pivotal To-
ken Selection (PTS) to reduce the number of tokens. As
observed in Fig. 3(b), the low-frequency tokens almost con-
verge in the later scale steps. Therefore, we can feed only
the high-frequency tokens and prune the remaining. How-
ever, the challenge lies in that common frequency operators,
such as FFT, work in the frequency domain, making it dif-
ficult to recognize the frequency characteristics of certain
tokens in the original token map. To this end, our proposed
PTS adopts an approximation solution. Specifically, denote
xk as the input of one layer, we estimate its low-frequency

4

component x̄k as the direct current component, which can
be easily obtained via the spatially global average pooling:

x̄k = global avg pool(xk). (4)

After that, the high-frequency component is computed as
the difference between the xk and x̄k. The pivotal score sk
is defined as the L2 norm of the high-frequency maps:

sk = ||xk − x̄k||2. (5)

Subsequently, we obtain the index set I for pivotal token
selection by keeping TopK scores in sk. Finally, we per-
form token pruning on xk through indexing with I to allow
the fast model forward. Notably, since the PTS reduces the
number of input tokens in one transformer layer, as an ad-
ditional benefit, the KV-cache is also reduced accordingly,
thus optimizing the GPU footprints as well as the cross-
scale attention for the subsequent scale steps.
Cached Token Restoration. The proposed PTS can effec-
tively reduce the number of tokens. However, the visual
generation tasks need to restore the original token numbers
to regain the structural 2D image. For this reason, we pro-
pose Cached Token Restoration (CTR). The main rationale
stems from the diagonal attention sparsity that the token at
the k-th scale not only attends to itself, but also exhibits
strong correlation with the corresponding slot from previ-
ous {1, 2, , · · · , k− 1} steps. Therefore, our proposed CTR
approximates the layer outputs in the pruned locations using
the counterparts from the cached step. Formally, given the
cached token map yK−N with size (hK−N , wK−N), which
is the output of the corresponding layer at step K −N , we
first upsample it to the same size of the current scale:

ycachek = interpolate(yK−N , (hk, wk)). (6)

Then the value from ycachek is scattered into the pruned slots
of yk using the index set I, to generate the restored layer
output y′k, which shares the same token numbers as the xk.
We also provide an explanation for the choice of K −N as
the caching step, see Suppl. for more details.
Implementation of FastVAR. Thanks to the token num-
ber invariance of the PTS+CTR, as shown in Fig. 4(b),
we apply this operator pair for each Attention&FFN layer
at the large-scale steps. Furthermore, we empirically find
in Sec. 4.3 that the larger scale steps exhibit stronger ro-
bustness to pruning than that of early scale steps. Therefore,
we develop a progressive pruning ratio schedule, in which
we assign larger pruning ratios to larger scale steps in the
set T . We summarize the complete algorithm of FastVAR
in the Suppl.. At last, it is worth noting that our FastVAR
does not access the attention map, and we show in Sec. 4.4
that the proposed FastVAR can be used in combination with
other acceleration techniques like FlashAttention [12, 13]
for even faster VAR generation.

4. Experiments

4.1. Experimental Setup

Models and Evaluations. We apply our FastVAR on two
VAR-based text-to-image models, namely HART [49] and
Infinity [22]. Both models can generate images of up to
1024 × 1024 resolution. For a fair comparison, we keep
all the hyperparameters the same as their default settings.
For evaluation metrics, we compare both in terms of gener-
ation quality and inference efficiency. For generation qual-
ity, we use two popular benchmarks, i.e., the GenEval [20]
and MJHQ30K [29] to validate the high-level semantic con-
sistency and the perceptual quality, respectively. For effi-
ciency evaluation, we adopt metrics including running time,
throughputs, speedup ratio, and GPU memory costs.
Implementation Details. For the number of pruned scale
steps N , we set N = 4 for Infinity and N = 2 for HART,
i.e., only token maps from the last 4 or 2 scale steps are
applied with the proposed FastVAR, with other steps kept
as standard VAR. For the progressive pruning ratio sched-
ule, we set it to {40%, 50%, 100%, 100%} for Infinity, and
{50%, 75%} for HART. The 100% pruning ratio indicates
all tokens are dropped, i.e., we skip the corresponding steps
and interpolate the intermediate outputs to the target res-
olution as the final outputs. Note that this extreme ratio
depends on the pruned backbones, and we provide further
discussion in the Suppl.. Unless specified, the efficiency of
the unpruned baselines are already accelerated by FlashAt-
tention [13], and we apply the proposed FastVAR on top
of it. Following the setup of existing methods [10, 48, 51],
the inference speeds for all methods are measured without
including the VAE time cost since this is a shared cost for
all methods. All experiments are conducted on one single
NVIDIA RTX 3090 GPU with 24GB memory.

4.2. Main Results

Comparison on GenEval. We first evaluate the quality-
efficiency trade-off on 1024 × 1024 text-to-image genera-
tion using the GenEval benchmark [20]. We compare our
FastVAR against various state-of-the-art methods, includ-
ing Diffusion, AR, and VAR models. The results are shown
in Tab. 1. Compared with traditional AR models, our In-
finity+FastVAR can achieve even 39.7× speedup than Lla-
maGen [48], while achieving 125% performance boosts on
the GenEval. Moreover, our FastVAR achieves accelera-
tion almost without performance loss, e.g., 1.5× speedup
on the HART with the same GenEval score as the unpruned
baseline. Our approach also reduces the inference GPU
memory. For example, FastVAR achieves 22.2% reduc-
tion to 14.7GB on top of FlashAttention of 18.9GB, to pro-
duce a 1024×1024 image in 0.95s, facilitating generation
on consumer-level GPUs. The above results demonstrate
the generality and effectiveness of our method.

5

Table 1. Quantitative comparison on efficiency and quality on 1024×1024 GenEval benchmarks. The marks •, ◦, and ⋄ denote the Diffu-
sion, AR, and VAR-based methods, respectively. Note that the efficiency of HART and Infinity baselines are tested under FlashAttention.

Methods Inference Efficiency Generation Quality

#Steps↓ Speedup↑ Latency↓ Throughput↑ #Param↓ two object↑ position↑ color attr↑ Overall↑
•SDXL [41] 40 - 4.3s 0.23it/s 2.6B 0.74 0.15 0.23 0.55
•PixArt-Sigma [8] 20 - 2.7s 2.50it/s 0.6B 0.62 0.14 0.27 0.55
•SD3-medium [16] 28 - 4.4s 3.45it/s 2.0B 0.74 0.34 0.36 0.62
◦LlamaGen [48] 1024 - 37.7s 0.03it/s 0.8B 0.34 0.07 0.04 0.32
◦Show-o [61] 1024 - 50.3s 0.02it/s 1.3B 0.80 0.31 0.50 0.68
⋄HART [49] 14 1.0× 0.95s 1.05it/s 0.7B 0.62 0.13 0.18 0.51
⋄+ FastVAR 14 1.5× 0.63s 1.59it/s 0.7B 0.57 0.16 0.24 0.51
⋄Infinity [22] 13 1.0× 2.61s 0.38it/s 2.0B 0.85 0.44 0.53 0.73
⋄+ FastVAR 13 2.7× 0.95s 1.05it/s 2.0B 0.81 0.45 0.52 0.72

In
fi

n
it

y
+

 F
as

tV
A

R

(2
.7

x
 S

p
ee

d
u

p
)

H
A

R
T

+
 F

as
tV

A
R

(1
.5

x
 S

p
ee

d
u

p
)

Figure 5. Qualitative comparison between the original baselines and our proposed FastVAR on 1024×1024 image generation. Our FastVAR
achieves significant speedups, e.g., 2.7× on Infinity [22], while keeping high-quality results similar to the original model.

Comparison on MJHQ30K. In Tab. 2, we further validate
the perceptual quality on the MJHQ30K [29] benchmark.
It can be seen that our FastVAR achieves a reasonable per-
formance while maintaining a high speedup ratio. For in-
stance, on the well-known challenging “people” category,
our HART+FastVAR even achieves a FID reduction of 2.42
with 1.5× acceleration. In other categories, our method also
maintains good performance with significant acceleration.
We also give a qualitative visualization in Fig. 5, and one
can see that the generated images from FastVAR maintain
exceptionally high quality and accurate semantic informa-
tion, indicating the effectiveness of the proposed method.

Difference from ToMe. Token Merging (ToMe) [3], which
merges multiple tokens into one token for efficient forward
followed by token unmerging to restore the 2D shape, ap-
pears applicable to accelerate VAR backbones due to its to-

Table 2. Quantitative comparisons of FID and CLIP score with
different generation categories on the MJHQ30K dataset.

Methods Speedup landscape people food

FID↓ CLIP↑ FID↓ CLIP↑ FID↓ CLIP↑
SDXL [41] - 30.78 26.35 35.56 28.01 35.26 27.98
HART [49] 1.0× 25.43 26.82 30.61 28.47 30.37 28.03
+ FastVAR 1.5× 22.52 26.51 28.19 28.34 30.97 28.25
Infinity [22] 1.0× 24.68 26.62 30.27 27.82 31.55 26.66
+ FastVAR 2.7× 24.68 26.62 30.55 28.28 32.54 27.08

ken number invariance. In Tab. 3, we set different FastVAR
and ToMe variants using varying pruning ratios. One can
see that ToMe fails to achieve high speedup. For example,
even the 1.36× speedup can lead to noticeable FID degra-
dation since it is difficult to compress the whole token map
into limited tokens. In contrast, our FastVAR can achieve
1.7× higher speedup with better FID performance.

6

60% 80%70% 90%0 (w/o FastVAR)Runtime of different pruning ratios

40% 50% 60% 70% 80% 90%
550

575

600

625

650

675

700

725

750

550

575

600

625

650

675

700

725

750 0.512

0.510

0.508

0.504

0.502

0.500

0.498

0.496

0.506

GenEval score of different pruning ratios

40% 50% 60% 70% 80% 90%

R
u

n
ti

m
e

(m
s)

Pruning Ratios Pruning Ratios

G
en

E
v
a
l

S
co

re

Figure 6. Quantitative and qualitative ablation experiments on different pruning ratios. We set varying pruning ratios on the last scale step
of the HART model while keeping the other scale steps as the original setup.

Table 3. Quantitative comparison results with ToMe [2] under dif-
ferent speedup settings.

Methods Speedup↑ Latency↓ Throughput↑ FID↓ CLIP↑ GenEval↑
HART [49] 1.00× 0.95s 1.05it/s 30.61 28.47 0.51
+ ToMe [2] 1.19× 0.80s 1.25it/s 29.07 28.33 0.48
+ ToMe [2] 1.36× 0.70s 1.43it/s 35.22 27.99 0.46
+ FastVAR 1.51× 0.63s 1.59it/s 28.19 28.34 0.51
+ FastVAR 1.70× 0.56s 1.79it/s 28.97 28.24 0.50

Table 4. Ablation experiments on the scale-wise sensitivity. We
focus on the scale range [16,21,27,36,48,64] with every two con-
secutive scales as a pruning group. The FastVAR is applied to the
selected group while keeping the others unpruned.

scales ratio Speedup↑ Latency↓ FID↓ CLIP↑ GenEval↑
baseline 0 1.00× 0.95s 30.61 28.47 0.51
[16, 21] 75% 1.01× 0.94s 34.27 28.43 0.48
[27, 36] 50% 1.09× 0.87s 27.92 28.49 0.51
[27, 36] 75% 1.14× 0.83s 29.38 28.56 0.50
[48, 64] 50% 1.30× 0.73s 27.13 28.43 0.51
[48, 64] 75% 1.64× 0.58s 28.56 28.36 0.50

4.3. Ablation Studies
Different Pruning Ratios. The pruning ratio plays an im-
portant role in balancing between efficiency and perfor-
mance. Here, we conduct ablation experiments to investi-
gate the impact of different pruning ratios. Both the quanti-
tative and qualitative results are given in Fig. 6. Intuitively,
increasing the pruning ratio leads to a stable runtime reduc-
tion since the model only needs to process fewer tokens.
However, an over-large pruning ratio can also bring perfor-
mance degradation due to the information loss of pivotal
high-frequency tokens. Furthermore, the quantitative visu-
alization suggests that increasing the pruning ratio makes
certain textures and details discontinuous since the cache
from the previous scale is not always an optimal approxi-
mation of the pruned tokens. Therefore, a moderate prun-
ing ratio, e.g., 40%-75%, is adopted for HART+FastVAR to
strike a sweet spot between performance and efficiency.
Scale-wise Sensitivity. As discussed in Sec. 3.2, we only
focus on the token pruning of the last few scale steps. Here,
we conduct ablation experiments in Tab. 4 to justify the ra-
tionality. It can be seen that the acceleration from pruning
at an early scale steps is very limited due to the small token

50% 70%60% 80%0 (w/o FastVAR)

Figure 7. Visualization of pruned tokens with different ratios.

map size. For example, even reducing 50% tokens at the 48
and 64 scale steps is significantly faster than that of 75% at
16 and 21 scale steps. In addition, pruning at early scales
also leads to a noticeable performance drop on both percep-
tual quality and semantic consistency. For instance, pruning
at 48 and 64 scale steps brings 5.71 lower FID compared to
that of 16 and 21 scale steps. This is because token reduc-
tion at small-scale steps disrupts the structure construction
stage, and the inaccurate subject structure can exacerbate
errors in subsequent scale steps.
Visualization of Pruned Slots. In Fig. 7, we visualize the
selected TopK pivotal tokens under different pruning ratios.
For a given pruning ratio, e.g., 50%, our FastVAR priori-
tizes the retention of high-frequency edges or texture slots,
and removes tokens from flat regions that have already con-
verged at early scale steps. Furthermore, the importance
order within the selected tokens is also meaningful. For
example, in the first row, when increasing the pruning ra-
tio from 50% to 90%, the human eyes, hair and mouth
regions, which are the most detailed, are consistently pre-
served while the low-frequency cheek regions are gradually
pruned. Given that our FastVAR is gradient-free, this quan-
titative result confirms that the proposed frequency-based
pivotal token selection is a reasonable heuristic.

4.4. Discussion
In Conjunction with FlashAttention. Existing token
pruning methods [18, 19, 60, 66, 68] often depend on the
attention map for token importance, leading to difficulties
in combination with FlashAttention [13] in which the at-
tention map is inaccessible. In comparison, our FastVAR

7

1344×13441344×1008

960×1920 1344×1344

1920×960

1344×1344

1344×1344

Figure 8. We extend the scale schedule of pre-trained VAR model [22] for zero-shot larger resolution generation. We chose a modest
extended scale since a larger one is observed quality drop due to the resolution gap. The images are re-scaled for better presentation.

can be seamlessly integrated with FlashAttention to facil-
itate more efficient inference. In Tab. 5, we show that us-
ing the FastVAR-only can obtain even 2.1× speedup against
FlashAttention only, with 20.4% GPU memory reduction.
After combining both, the resulting version leads to 2.7×
speedup than FlashAttention only. This experiment vali-
dates that our FastVAR can be orthogonally combined with
other methods for further acceleration.

Towards Larger Resolution. As presented in Sec. 3.2, the
original VAR struggles to scale to higher-resolution due to
the increasing token numbers. Our FastVAR can facilitate
efficient resolution scaling, offering the potential to gener-
ate images at a larger resolution. To this end, we apply
our FastVAR to the Infinity [22] for zero-shot larger reso-
lution synthesis by appending additional steps. The results
are shown in Fig. 8. It is noteworthy that even the FlashAt-
tention accelerated baseline is out of memory on a 24GB
NVIDIA 3090 GPU. In contrast, our FastVAR costs only
15GB memory and 1.3s runtime to generate a 1344×1344
image. Moreover, the generated images are of high quality,
suggesting that our FastVAR can facilitate production-level
image generation on consumer-level GPUs.

Table 5. Efficiency comparison with FlashAttn on 1024×1024
image generation.

setups Speedup↑ Latency↓ Throughput↑ Memory↓
SlowAttn [54] - - - OOM
FlashAttn only [13] 1.0× 2.61s 0.38it/s 16.1GB
SlowAttn+FastVAR 2.1× 1.25s 0.80it/s 12.8GB
FlashAttn+FastVAR 2.7× 0.95s 1.05it/s 11.9GB

5. Conclusion

This work presents FastVAR to advance high-resolution im-
age synthesis with VARs by addressing the resolution scal-
ing challenge. We reveal that the main latency bottleneck
is the large-scale steps at which the low-frequency tokens
have almost converged. To this end, we develop the cached
token pruning technique to allow only process pivotal high-
frequency tokens and use caches from the previous scale
steps to restore the original token numbers. Thanks to the
reduced forwarded tokens, our FastVAR approximates lin-
ear complexity, further enabling generation at a larger reso-
lution such as 2K. Extensive experiments validate our Fast-
VAR as an effective and generic solution for efficient reso-
lution scaling of VAR models.

8

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah-

mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida,
Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
GPT-4 technical report. arXiv preprint arXiv:2303.08774,
2023. 2

[2] Daniel Bolya and Judy Hoffman. Token merging for fast
stable diffusion. In CVPR, pages 4599–4603, 2023. 2, 7

[3] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao
Zhang, Christoph Feichtenhofer, and Judy Hoffman. To-
ken Merging: Your ViT but faster. arXiv preprint
arXiv:2210.09461, 2022. 6, 12

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. NeurIPS, 33:1877–
1901, 2020. 2

[5] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Ja-
son D Lee, Deming Chen, and Tri Dao. Medusa: Simple
LLM inference acceleration framework with multiple decod-
ing heads. arXiv preprint arXiv:2401.10774, 2024. 2

[6] Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot,
Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Mur-
phy, William T Freeman, Michael Rubinstein, et al. Muse:
Text-to-image generation via masked generative transform-
ers. arXiv preprint arXiv:2301.00704, 2023. 2

[7] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze
Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo,
Huchuan Lu, et al. PixArt-Alpha: Fast training of diffusion
transformer for photorealistic text-to-image synthesis. arXiv
preprint arXiv:2310.00426, 2023. 2

[8] Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei
Yao, Xiaozhe Ren, Zhongdao Wang, Ping Luo, Huchuan
Lu, and Zhenguo Li. PixArt-Sigma: Weak-to-strong train-
ing of diffusion transformer for 4k text-to-image generation.
In ECCV, pages 74–91. Springer, 2024. 2, 6

[9] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In ICML, pages 1691–1703. PMLR,
2020. 2

[10] Zigeng Chen, Xinyin Ma, Gongfan Fang, and Xinchao
Wang. Collaborative decoding makes visual auto-regressive
modeling efficient. arXiv preprint arXiv:2411.17787, 2024.
2, 5, 12

[11] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph,
Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa
Dehghani, Siddhartha Brahma, et al. Scaling instruction-
finetuned language models. Journal of Machine Learning
Research, 25(70):1–53, 2024. 3

[12] Tri Dao. FlashAttention-2: Faster attention with better par-
allelism and work partitioning. In ICLR, 2024. 5

[13] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. Flash Attention: Fast and memory-efficient
exact attention with IO-awareness. In NeurIPS, 2022. 1, 5,
7, 8

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-

formers for language understanding. In ACL, pages 4171–
4186, 2019. 2

[15] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In CVPR,
pages 12873–12883, 2021. 2

[16] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim
Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik
Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling recti-
fied flow transformers for high-resolution image synthesis.
In ICML, 2024. 6

[17] Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural
pruning for diffusion models. In NeurIPS, 2023. 2

[18] Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta, Mo-
hammad Rastegari, and Mahyar Najibi. LazyLLM: Dynamic
token pruning for efficient long context llm inference. arXiv
preprint arXiv:2407.14057, 2024. 7

[19] Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei
Han, and Jianfeng Gao. Model tells you what to discard:
Adaptive KV cache compression for LLMs. arXiv preprint
arXiv:2310.01801, 2023. 7

[20] Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt.
GenEval: An object-focused framework for evaluating text-
to-image alignment. NeurIPS, 36, 2024. 5, 12

[21] Hang Guo, Yawei Li, Tao Dai, Shu-Tao Xia, and Luca
Benini. Intlora: Integral low-rank adaptation of quantized
diffusion models. arXiv preprint arXiv:2410.21759, 2024. 2

[22] Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan
Yuan, Bingyue Peng, and Xiaobing Liu. Infinity: Scaling bit-
wise autoregressive modeling for high-resolution image syn-
thesis. arXiv preprint arXiv:2412.04431, 2024. 1, 2, 3, 5, 6,
8, 13, 14

[23] Yefei He, Feng Chen, Yuanyu He, Shaoxuan He, Hong Zhou,
Kaipeng Zhang, and Bohan Zhuang. ZIPAR: Accelerat-
ing autoregressive image generation through spatial locality.
arXiv preprint arXiv:2412.04062, 2024. 2

[24] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen,
Christopher Hesse, Jacob Jackson, Heewoo Jun, Tom B
Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws
for autoregressive generative modeling. arXiv preprint
arXiv:2010.14701, 2020. 2

[25] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. NeurIPS, 33:6840–6851, 2020.
2

[26] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for
neural language models. arXiv preprint arXiv:2001.08361,
2020. 2

[27] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and
Wook-Shin Han. Autoregressive image generation using
residual quantization. In CVPR, pages 11523–11532, 2022.
2

[28] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast
inference from transformers via speculative decoding. In
ICML, pages 19274–19286. PMLR, 2023. 2

[29] Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Lin-
miao Xu, and Suhail Doshi. Playground v2.5: Three insights

9

towards enhancing aesthetic quality in text-to-image genera-
tion. arXiv preprint arXiv:2402.17245, 2024. 5, 6, 12, 13

[30] Senmao Li, Taihang Hu, Fahad Shahbaz Khan, Linxuan
Li, Shiqi Yang, Yaxing Wang, Ming-Ming Cheng, and Jian
Yang. Faster Diffusion: Rethinking the role of unet encoder
in diffusion models. NeurIPS, 2023. 2

[31] Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and
Kaiming He. Autoregressive image generation without vec-
tor quantization. arXiv preprint arXiv:2406.11838, 2024. 1,
2

[32] Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen
Dong, Daniel Kang, Shanghang Zhang, and Kurt Keutzer.
Q-Diffusion: Quantizing diffusion models. In ICCV, pages
17535–17545, 2023. 2

[33] Dongyang Liu, Shitian Zhao, Le Zhuo, Weifeng Lin,
Yu Qiao, Hongsheng Li, and Peng Gao. Lumina-mgpt:
Illuminate flexible photorealistic text-to-image generation
with multimodal generative pretraining. arXiv preprint
arXiv:2408.02657, 2024. 1, 2

[34] Haozhe Liu, Wentian Zhang, Jinheng Xie, Francesco Fac-
cio, Mengmeng Xu, Tao Xiang, Mike Zheng Shou, Juan-
Manuel Perez-Rua, and Jürgen Schmidhuber. Faster diffu-
sion via temporal attention decomposition. arXiv preprint
arXiv:2404.02747, 2024. 2

[35] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. Roberta: A robustly optimized
bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019. 2

[36] Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao
Wang. Learning-to-Cache: Accelerating diffusion trans-
former via layer caching. arXiv preprint arXiv:2406.01733,
2024. 2

[37] Xinyin Ma, Gongfan Fang, and Xinchao Wang. DeepCache:
Accelerating diffusion models for free. In CVPR, pages
15762–15772, 2024. 2

[38] Yue Ma, Yingqing He, Xiaodong Cun, Xintao Wang, Siran
Chen, Xiu Li, and Qifeng Chen. Follow your pose: Pose-
guided text-to-video generation using pose-free videos. In
AAAI, pages 4117–4125, 2024. 2

[39] Yue Ma, Hongyu Liu, Hongfa Wang, Heng Pan, Yingqing
He, Junkun Yuan, Ailing Zeng, Chengfei Cai, Heung-Yeung
Shum, Wei Liu, et al. Follow-your-emoji: Fine-controllable
and expressive freestyle portrait animation. In SIGGRAPH
Asia, pages 1–12, 2024. 2

[40] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik
Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans.
On distillation of guided diffusion models. In CVPR, pages
14297–14306, 2023. 2

[41] Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. SDXL: Improving latent diffusion mod-
els for high-resolution image synthesis. arXiv preprint
arXiv:2307.01952, 2023. 2, 6

[42] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Gener-
ating diverse high-fidelity images with VQ-VAE-2. NeurIPS,
32, 2019. 2

[43] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10684–
10695, 2022. 2

[44] Tim Salimans and Jonathan Ho. Progressive distillation
for fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022. 2

[45] Andrea Santilli, Silvio Severino, Emilian Postolache,
Valentino Maiorca, Michele Mancusi, Riccardo Marin,
and Emanuele Rodolà. Accelerating transformer infer-
ence for translation via parallel decoding. arXiv preprint
arXiv:2305.10427, 2023. 2

[46] Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and
Yan Yan. Post-training quantization on diffusion models. In
CVPR, pages 1972–1981, 2023. 2

[47] Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral
Kumar. Scaling test-time compute optimally can be more
effective than scaling LLM parameters. In ICLR, 2025. 13

[48] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue
Peng, Ping Luo, and Zehuan Yuan. Autoregressive model
beats diffusion: Llama for scalable image generation. arXiv
preprint arXiv:2406.06525, 2024. 1, 2, 5, 6

[49] Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong
Chen, Junyu Chen, Zhuoyang Zhang, Han Cai, Yao Lu, and
Song Han. HART: Efficient visual generation with hybrid au-
toregressive transformer. arXiv preprint arXiv:2410.10812,
2024. 1, 2, 3, 5, 6, 7, 13

[50] Yao Teng, Han Shi, Xian Liu, Xuefei Ning, Guohao Dai,
Yu Wang, Zhenguo Li, and Xihui Liu. Accelerating auto-
regressive text-to-image generation with training-free spec-
ulative jacobi decoding. arXiv preprint arXiv:2410.01699,
2024. 2

[51] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Li-
wei Wang. Visual autoregressive modeling: Scalable image
generation via next-scale prediction. NeurIPS, 2024. 1, 2, 3,
5, 12

[52] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt,
Oriol Vinyals, Alex Graves, et al. Conditional image gen-
eration with pixelcnn decoders. NeurIPS, 29, 2016. 2

[53] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. NeurIPS, 30, 2017. 2

[54] A Vaswani. Attention is all you need. NeurIPS, 2017. 1, 3,
8

[55] Hongjie Wang, Difan Liu, Yan Kang, Yijun Li, Zhe Lin, Ni-
raj K Jha, and Yuchen Liu. Attention-driven training-free ef-
ficiency enhancement of diffusion models. In CVPR, pages
16080–16089, 2024. 2

[56] Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan
Sun, Yufeng Cui, Jinsheng Wang, Fan Zhang, Yueze Wang,
Zhen Li, Qiying Yu, et al. EMU3: Next-token prediction is
all you need. arXiv preprint arXiv:2409.18869, 2024. 1, 2

[57] Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma,
Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai
Yu, Chong Ruan, et al. Janus: Decoupling visual encoding
for unified multimodal understanding and generation. arXiv
preprint arXiv:2410.13848, 2024. 1

10

[58] Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng
Zhu, Rui Zhao, and Hongsheng Li. Human preference score
v2: A solid benchmark for evaluating human preferences of
text-to-image synthesis. arXiv preprint arXiv:2306.09341,
2023. 12

[59] Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang,
Dacheng Li, Yunhao Fang, Ligeng Zhu, Enze Xie, Hongxu
Yin, Li Yi, et al. VILA-U: A unified foundation model inte-
grating visual understanding and generation. arXiv preprint
arXiv:2409.04429, 2024. 1

[60] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han,
and Mike Lewis. Efficient streaming language models with
attention sinks. arXiv preprint arXiv:2309.17453, 2023. 7

[61] Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang,
Weihao Wang, Kevin Qinghong Lin, Yuchao Gu, Zhijie
Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One
single transformer to unify multimodal understanding and
generation. arXiv preprint arXiv:2408.12528, 2024. 1, 2,
6

[62] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai
Li, Ming Ding, Jie Tang, and Yuxiao Dong. Imagere-
ward: Learning and evaluating human preferences for text-
to-image generation. Advances in Neural Information Pro-
cessing Systems, 36:15903–15935, 2023. 12

[63] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo
Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang,
Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024. 3

[64] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang,
James Qin, Alexander Ku, Yuanzhong Xu, Jason Baldridge,
and Yonghui Wu. Vector-quantized image modeling with
improved VQGAN. arXiv preprint arXiv:2110.04627, 2021.
2

[65] Evelyn Zhang, Bang Xiao, Jiayi Tang, Qianli Ma, Chang
Zou, Xuefei Ning, Xuming Hu, and Linfeng Zhang. Token
pruning for caching better: 9 times acceleration on stable
diffusion for free. arXiv preprint arXiv:2501.00375, 2024. 2

[66] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen,
Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian,
Christopher Ré, Clark Barrett, et al. H2O: Heavy-hitter ora-
cle for efficient generative inference of large language mod-
els. NeurIPS, 36:34661–34710, 2023. 7

[67] Chuanxia Zheng, Tung-Long Vuong, Jianfei Cai, and Dinh
Phung. MOVQ: Modulating quantized vectors for high-
fidelity image generation. NeurIPS, 35:23412–23425, 2022.
2

[68] Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Lin-
feng Zhang. Accelerating diffusion transformers with token-
wise feature caching. arXiv preprint arXiv:2410.05317,
2024. 2, 7

11

FastVAR: Linear Visual Autoregressive Modeling via Cached Token Pruning

Supplementary Material

A. Results on ImageNet with VAR
In the main paper, we focus on the performance of our Fast-
VAR on high-resolution image generation tasks. As stated
in Section 3.2, applying token pruning on early small scale
steps can lead to performance degradation due to the in-
terference of the structure construction. Given that prun-
ing on small token maps can not bring significant speedups,
we thus do not design over-complex algorithms to further
accelerate small-scale steps. However, for the sake of ex-
perimental completeness, we give the results of our Fast-
VAR on the 256×256 class conditional generation on Im-
ageNet in Tab. A.1. It can be seen that our FastVAR
can achieve very competitive performance against existing
methods, while maintaining a high speedup ratio. Since the
VAE in the existing VAR methods adopts a high compres-
sion rate, e.g., 16× downsample, the token map resolution
at the largest scale in the VAR model [51] is only 16×16 for
the 256×256 image generation. As a result, token pruning
on this small-scale generation is much less robust compared
to the larger resolution, e.g., 1024×1024 resolution. We
leave it for future work to design more generalized strate-
gies to further include token maps at small scales.

B. Further Efficiency Profiling
As demonstrated in the experiments, our FastVAR can
achieve significant speedup without performance degrada-
tion, e.g., 1.5× speedup for the HART backbone. How-
ever, this speedup ratio still shares some similar latencies as
the unpruned benchmark, such as the forward pass at small
scale steps. Here, we give a more fine-grained speedup
comparison by directly comparing the attention and FFN
under the condition of with and without the proposed Fast-
VAR. As illustrated in Fig. A.1, FastVAR (ratio=75%) can
bring even a 4.6× speedup for the attention and a 3.8×
speedup for the FFN. This result demonstrates a promising
speedup upper bound of our FastVAR.

Furthermore, compared to the runtime of the standard
benchmark, our FastVAR adds additional token importance
calculation, as well as token number restoration, which may
introduce additional time. Here, we give experimental re-
sults to validate the efficiency of our FastVAR. As shown
in Fig. A.1, the additional computational cost accompany-
ing our FastVAR is almost negligible. For example, the pro-
posed PTS occupies only 0.59 ms, while the CTR occupies
0.24 ms. Thus the total additional latency from our Fast-
VAR, i.e., 0.63 ms, occupies only 5% of the original atten-
tion module, which is significantly lower than the speedup
brought from FastVAR.

Table A.1. Quantitative comparison on 256×256 generation on
ImageNet.

Methods #param runtime memory IS↑ FID↓ Precision↑ Recall↑
VAR(d=24) [51] 1.0B 1.2s 14GB 313.7 2.29 82.50 57.45
VAR(d=30) [51] 2.0B 2.2s 22GB 306.6 2.05 81.76 58.20
CoDe(N=8) [10] 2.3B 1.7s 15GB 300.4 2.26 81.31 58.63
CoDe(N=9) [10] 2.3B 2.2s 16GB 297.2 2.16 81.07 59.03
FastVAR(d=24) 1.0B 1.1s 13GB 287.4 2.64 79.76 58.22
FastVAR(d=30) 2.0B 1.9s 15GB 288.7 2.30 80.72 58.64

Attn Attn+FastVAR FFN FFN+FastVAR PTS CTR

10

8

6

4

2

0
0.24ms

0.59ms

1.34ms

5.10ms

2.41ms

10.97ms

Attn Attn+FastVAR FFN FFN+FastVAR PTS CTR

10

8

6

4

2

0
0.24ms

0.59ms

1.34ms

5.10ms

2.41ms

10.97ms

4.6x

3.8x

Figure A.1. Efficiency Profiling of different modules in one Trans-
former layer. Note that the runtime of the Attn and FFN baseline
is evaluated using FlashAttention.

Table A.2. More evaluation results on HPSv2.1 [58] and ImageRe-
ward [62] benchmarks.

benchmark HART ToMe Ours Infinity ToMe Ours
Latency↓ 950ms 800ms 630ms 2600ms 1130ms 950ms
Speedup↑ 1.0× 1.2× 1.5× 1.0× 2.3× 2.7×
HPSv2.1↑ 28.75 27.04 27.85 30.36 29.85 30.03
ImageReward↑ 0.5658 0.4988 0.5370 0.9245 0.8992 0.9129

C. Comparison on More Benchmarks

In the main paper, we compare our FastVAR with dif-
ferent methods on the Geneval [20] and MJHQ30K [29]
datasets. In order to provide a systematic evaluation, we
further compare different methods on more benchmarks in-
cluding HPSv2.1 [58], and ImageReward [62]. The exper-
imental results are given in Tab. A.2. It can be seen that
our FastVAR maintains consistently favorable performance
than other competitive token pruning baseline, while allow-
ing for significant speedup than the original backbones. For
instance, FastVAR achieves 0.81 higher HPSv2.1 score than
ToMe [3] while being more efficient. The above results on
more evaluation benchmarks further demonstrate the effec-
tiveness of our FastVAR.

12

Table A.3. Ablation experiments of applying extreme pruning ra-
tios to other VAR backbone HART [49]. We set N = 2 in all
setups, i.e., only the last two scale steps are pruned with FastVAR.

ratios Speedup↑ Latency↓ Throughput↑ FID↓ CLIP↑ GenEval↑
no pruning 1.0× 0.95s 1.05 30.61 28.47 0.51
{50%,75%} 1.5× 0.63s 1.59 28.19 28.34 0.51
{50%,100%} 1.9× 0.51s 1.96 48.54 28.46 0.48

D. Ablation on Caching Step
In the proposed Cached Token Restoration (CTR), we use
the token map from the last scale step of the Structure Con-
struction Stage S, i.e., the (N − K)-th step, as the cache,
which will be used to restore the original token numbers
during token pruning. Here, we conduct ablation exper-
iments to justify the rationality by setting different scale
steps as the caching step. The results are shown in Tab. A.4.
It can be seen that setting the last element in S as the
caching step achieves consistently the best results on all
evaluation metrics. Notably, this setup has almost no per-
formance degradation compared to the unpruned baseline
models. In addition, we observe a steady performance drop
when the caching step gradually moves small. This is be-
cause we use the cached token map to approximate the
pruned tokens, so the gap between the last element in S
and the steps in T is the smallest. Therefore, using the step
that is closer to the pruned scale steps as the caching step
can achieve better performance.

E. Discussion on Extreme Pruning Ratios
In the main paper, we mentioned that different backbones
exhibit different levels of tolerance for the pruning ratio.
For example, we used an even 100% ratio for the last two
scale steps of the Infinite model [22]. However, we point
out that this extreme pruning ratio does not apply to HART
model [49]. Specifically, we apply the N = 2 and {50%,
100%} FastVAR to the HART model. The experimental re-
sults are shown in Tab. A.3. It can be seen that the extreme
pruning ratio produces serious performance degradation for
HART. We argue that this is due to the difference in the pre-
trained model size. Specifically, the size of Infinite 2B is
significantly larger than the 700M of HART. The stronger
capabilities of the larger model allow for modeling more
challenging textures in the earlier scale steps. As a con-
trast, the smaller model relies on test-time scaling [47] to
use longer scale steps to produce complex details, and thus
suffers from severe degradation when extreme pruning is
applied on the last few steps.

F. Limitation and Future Work
Our FastVAR can effectively alleviate the quadratically in-
creasing complexity with scales, benefiting from the pro-

Table A.4. Ablation experiments of different caching scale steps.

cached steps GenEval MJHQ30K

two object↑ position↑ color attr↑ Overall↑ FID↓ CLIP↑
no pruning 0.62 0.13 0.18 0.51 30.61 28.47
K-N-3 0.53 0.11 0.15 0.47 40.61 27.36
K-N-2 0.60 0.13 0.19 0.50 32.39 27.94
K-N-1 0.57 0.13 0.20 0.49 29.83 28.25
K-N 0.57 0.16 0.24 0.51 28.19 28.34

posed cached token pruning. Nonetheless, our work can
be further improved in the future in the following aspects.
First, the proposed FastVAR focuses mainly on the acceler-
ation of the large-scale step which occupies the main in-
ference time. Therefore, our method can be further im-
proved in accelerating small-resolution image generation
tasks by designing more generalized pruning strategies to
include pruning small-scale token maps as well. Second,
we have revealed the scale-wise sensitivity of pre-trained
VAR models, i.e., large-scale steps are more robust to small-
scale steps for pruning, which inspires us to adopt a pro-
gressive pruning ratio schedule. Therefore, utilizing more
fine-grained pruning prior, e.g., layer-wise or even develop-
ing adaptive pruning ratios, is promising to achieve higher
speedup ratios. Third, we show that the current FastVAR
can be combined with Flash Attention to achieve combined
speedup. As other potential work on accelerating VAR
models emerges, such as network quantization or fewer de-
coding steps, our FastVAR could potentially integrate with
these approaches to achieve further acceleration.

G. Algorithm of FastVAR
In Algo. 1, we give the Pytorch-like pseudocode of the pro-
posed FastVAR. Thanks to the simplicity and generality, our
proposed FastVAR can be seamlessly integrated into vari-
ous VAR models using a few code lines.

H. More Visual Results
In this section, we provide more visual results, which are
organized as follows:
• In Fig. A.2, we give more visualization results about the

intermediate outputs of the pre-trained VAR model at dif-
ferent scale steps.

• In Fig. A.3, we give more qualitative results of Infi-
nite [22] on the MJHQ30K dataset.

• Fig. A.4 gives more qualitative results of the HART [49]
model on the MJHQ30K [29] dataset.

• In Fig. A.5, Fig. A.6, and Fig. A.7, we give more gen-
eration results on the zero-shot higher-resolution image
synthesis tasks.

13

Algorithm 1: The pseudo-code of FastVAR algorithm, Pytorch-like
def pivotal token selection(x, topk):

calculate the direct-through component
pool x = rearrange(x, ’b (h w) c -> b c h w’)
pool x = adaptive avg pool2d(x, (1, 1))
pool x = rearrange(pool x, ’b c 1 1 -> b 1 c’)
score = sum((x - pool x)**2, dim=-1)
select the topK high frequency tokens
pivotal idx = argsort(score, dim=1, descending=True)[:, :topk, :]
return gather(x, dim=1, index=pivotal idx)

def cached token restoration(x, cache):
up-sample cache features to the size of x
restored x = interpolate(cache)
restored x = rearrange(restored x, ’b c h w -> b h w c’)
fuse the cached and the current tokens
restored x.scatter (dim=1, index=pivotal idx, src=x)
return restored x

16x16 32x32 64x64 96x96 128x128 192x192 256x256 320x320 384x384 512x512 640x640 768x768 1024x1024

Figure A.2. More visualization results of the intermediate outputs at different scale steps of pre-trained VAR model [22].

14

In
fi

n
it

y
+

 F
as

tV
A

R

(2
.7

x
 S

p
ee

d
u
p
)

In
fi

n
it

e
+

 F
as

tV
A

R

(2
.7

x
 S

p
ee

d
u
p
)

In
fi

n
it

y
+

 F
as

tV
A

R

(2
.7

x
 S

p
ee

d
u
p
)

In
fi

n
it

y
+

 F
as

tV
A

R

(2
.7

x
 S

p
ee

d
u
p
)

Figure A.3. More qualitative comparison with the Infinite model on the MJHQ30K dataset.

15

H
A

R
T

+
 F

as
tV

A
R

(1
.5

x
 S

p
ee

d
u
p
)

H
A

R
T

+
 F

as
tV

A
R

(1
.5

x
 S

p
ee

d
u
p
)

H
A

R
T

+
 F

as
tV

A
R

(1
.5

x
 S

p
ee

d
u
p
)

H
A

R
T

+
 F

as
tV

A
R

(1
.5

x
 S

p
ee

d
u
p
)

Figure A.4. More qualitative comparison with the HART backbone on the MJHQ30K dataset.
16

960×1920

1344×1008 1344×1344 1344×1008 1920×960

1344×1344

960×19201344×1008 1920×960

1344×1344

Figure A.5. Moreover generation results of the high-resolution image synthesis with Infinite+FastVAR. The images are scaled for better
presentation.

17

Figure A.6. Moreover generation results of the high-resolution image synthesis with Infinite+FastVAR.

18

Figure A.7. Moreover generation results of the high-resolution image synthesis with Infinite+FastVAR.

19

	Introduction
	Related Work
	Method
	Preliminary
	Motivation
	Efficient Resolution Scaling for VARs

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies
	Discussion

	Conclusion
	Results on ImageNet with VAR
	Further Efficiency Profiling
	Comparison on More Benchmarks
	Ablation on Caching Step
	Discussion on Extreme Pruning Ratios
	Limitation and Future Work
	Algorithm of FastVAR
	More Visual Results

