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Abstract—Multi-Head Attention (MHA) is a critical computa-
tional kernel in transformer-based AI models. Emerging scalable
tile-based accelerator architectures integrate increasing numbers
of tightly-packed processing elements (PEs) with tensor units.
MHA dataflow mapping is crucial for achieving high utilization
of the available units. We propose FlatAttention, a new dataflow
for MHA on tile-based many-PE accelerators, minimizing costly
main memory (HBM) accesses by leveraging collective primi-
tives integrated into the on-chip network fabric. FlatAttention
achieves up to 89.3% utilization, and 4.1x performance speedup
over FlashAttention-3 dataflow on tile-based accelerators whilst
reducing HBM traffic by 16x. Through algorithm-architecture
co-exploration, we identify an optimal configuration for a large
scaled-out tile-based accelerator featuring a 32x32 tile mesh with
1024 TFLOPS @ FP16 peak performance, comparable to the
state-of-the-art Nvidia H100 GPU. FlatAttention in this configu-
ration achieves up to 1.3x higher utilization over FlashAttention-
3 on the H100 GPU. Meanwhile, this tile-based accelerator
configuration requires 40% less HBM bandwidth compared to
the H100 GPU, enabling a 1.8x reduction in die size, estimated
on the same technology node.

Index Terms—Multi-Head Attention, Tile-Base Architecture,
Network on Chip, Collective Primitives.

I. INTRODUCTION

Transformer-based artificial intelligence (AI) models, such
as GPT-4, LLaMA, and DeepSeek-V3 are dominating Large
Language Models (LLMs). Among the computational kernels
in transformer-based models, Multi-Head Attention (MHA)
exhibits quadratic complexity over sequence length [1], mak-
ing it a critical factor in performance, especially for long se-
quences. Previous LLM studies [2], [3] have shown that most
operations in MHA are bottlenecked by memory accesses.

The “attention bottleneck” has driven extensive research
focused on optimizing MHA dataflows on the dominant
Al hardware platform, namely Nvidia GPUs. One of the
most widely adopted solutions is FlashAttention [4], which
efficiently fuses MHA microkernels. Over two generations
of improvements, FlashAttention-2 [5] introduced algorith-
mic optimizations, whereas FlashAttention-3 [6] additionally
leverages asynchronous execution for improved performance.

However, still no more than 75%! utilization was achieved on
the H100 GPUs [6].

Moreover, Nvidia’s state-of-the-art (SoA) H100 GPU comes
with significant cost and power requirements, featuring an 814
mm? die on TSMC’s 5nm process node, coupled with six High
Bandwidth Memory (HBM) stacks accounting for over 50%
of the total cost, and a Thermal Design Power (TDP) of 700
W. Given the suboptimal utilization of the MHA layer and
the high cost and power requirements, many competitors are
working on hardware and software to improve system cost and
energy efficiency with highly optimized accelerators designed
for strong LLM performance. The goal is to offer competitive
performance while boosting the efficiency of the system by
minimizing energy-hungry HBM accesses.

As recent application trends, linked to the “reasoning” use
of LLMs, emphasize inference as a value-added workload,
a scalable design pattern for inference accelerators targeting
scaled-up transformer-based Al models is emerging [7]-[10]:
these accelerators are constructed as large, full-reticle, or
even multi-die integrated systems [8] structured as meshes of
compute tiles containing extremely dense, large matrix units,
coupled with vector and scalar engines to accelerate all key
kernels in LLMs, and local, explicitly managed memories
for main memory data buffering and latency hiding. Several
HBMs are typically employed as main memory, positioned at
die boundaries and supported by multiple memory controllers.

Such a tile-based many-Processing Element (PE) accelerator
architectural template favors silicon efficiency and scalability,
featuring a dense compute tile placement and a software-
controlled partitioned memory hierarchy. However, mapping
LLM inference workloads onto these scalable tile-based accel-
erators presents a significant challenge. The inter-tile and tile-
to-HBM dataflow must be carefully designed to achieve high
utilization of the tiles’ matrix engines and minimize energy-
hungry off-chip access. In this work, we show that leveraging
collective communication primitives in the Network on Chip

FlashAttention-3 baseline. Numbers use arXiv vl (11 Jul 2024) [FA3-
arXiv], the newest version when experiments were run; a later NeurIPS 2024
release reports ~10 % higher throughput [FA3-NeurIPS].
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Fig. 1: Tile-Based Many-PE Architecture Template
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(NoC), such as reduction operations and multicast, can be
highly beneficial for both of these objectives.

Existing works investigating mapping and architecture co-
exploration for LLM workloads either fail to fully consider
key optimizations, such as operator fusion and overlap within
the MHA layer, falling short of FlashAttention’s highly opti-
mized SoA dataflow [11], or do not explore the use of inter-
tile collective primitives in NoCs [12], [13], or both [14].
Although some Al accelerator vendors claim to achieve high
LLM inference efficiency through optimized dataflows [7],
[8], the details of their dataflow implementations—particularly
for the MHA layer—and on-chip fabric architectures remain
confidential. Additionally, accelerator architecture design must
be co-explored alongside dataflow optimizations to determine
optimal design parameters and features.

This work takes the MHA in the prefill stage of LLM
inference as a case study, which aligns with FlashAttention
[4] and could be generalized to training. We propose a new
dataflow for scalable tile-based accelerators and present a co-
design approach for algorithm-architecture co-exploration. The
contributions of this paper are:

o A modeling and simulation framework that enables es-
timating the performance of a large set of tile-based
accelerators and the co-design of network primitives.

« An efficient workload allocation and scheduling strategy
called FlatAttention. FlatAttention leverages collective
primitives on the on-chip network fabric to achieve
up to 89.3% utilization for MHA layer on tile-based
many-PE accelerators, and 4.1x performance speedup
over FlashAttention-3 dataflow on the same tile-based
accelerator, whilst reducing HBM traffic by 16x.

o Co-exploration of accelerator architecture and FlatAtten-
tion parameters, highlighting key trends and trade-offs to
guide the selection of optimal FlatAttention parameters.

« An optimal tile-based accelerator configuration that
matches the peak performance of the current SoA Nvidia
H100 GPU. FlatAttention in our configuration achieves
up to 1.3x higher utilization over FlashAttention-3 on
H100. Meanwhile, this tile-based accelerator configura-
tion requires 40% less HBM bandwidth than the H100
while achieving a 1.8x reduction in die size, estimated
on the same technology node.

II. REFERENCE TILE-BASED MANY-PE ARCHITECTURE

This section introduces the architecture of the scalable tile-
based many-PE design pattern, prominently featured in SoA
commercial Machine Learning (ML) accelerators, e.g., Tesla’s
Dojo system [15] and Tenstorrent’s Blackhole chip [9].

As illustrated in Fig. 1, the fundamental building block of
the many-PE architecture is the “tile”. Each tile comprises
PEs, local memory (L1), a Direct Memory Access (DMA)
engine, and local interconnects. There are three main types of
PEs: scalar cores, vector engines, and matrix engines. Scalar
cores mainly handle dataflow control tasks, whereas heavy
computational tasks are offloaded to the vector and matrix
engines based on the computation type. All PEs within a
tile can directly access the local L1 memory via the local
interconnect. The DMA engine in each tile is responsible
for data movement in and out of the local L1 memory. The
tile-based many-PE system uses an on-chip 2D-mesh NoC to
connect tiles. Off-chip memory, such as HBM, is located at the
boundary of the mesh NoC, interfaced through the respective
memory controllers.

Collective communication operations [16], such as multicast
and reduction, are involved in L1 data exchange among
tiles. Traditional software-based collective primitives rely on
successive point-to-point inter-tile transfers, leading to high
communication latency. In contrast, NoCs with hardware-
supported collective communication primitives establish di-
rect, optimized communication paths, significantly reducing
communication overhead [17]. For example, consider mul-
ticasting a message of size « to a chain of N clusters,
demonstrated in Fig. 1. Given an L1-to-NoC router latency of
L, router-to-router latency of L., and a router link bandwidth
of (3, the communication latency for software-based collective
primitives is NV % +2L4 + %LJ. In contrast, NoCs with
hardware-supported collective communication primitives em-
ploy a path-based forwarding strategy. Each packet injected
from the source node is duplicated and forwarded in-flight
along the multicast-aware routing path, as illustrated in Fig.
1. This optimization reduces the communication latency to
% + 2L4 + NL,. For example, when « = 16 KB, g =
128 B/cycle, Ly = 10 cycles, L, = 4 cycles, N = 7, the
multicast latency is reduced by 6.1x.

III. FLATATTENTION DATAFLOW
A. Motivation

As both FlashAttention-2 and FlashAttention-3 share the
dataflow introduced in FlashAttention-2, we refer to it in the
following. Algorithm 1 outlines the FlashAttention-2 algo-
rithm? for each head, designed to operate directly on tile-based
many-PE architectures. The MHA workload is partitioned
over the batch, number of heads, and output sequence length
dimensions, and these blocks are distributed to the tiles where
they can be processed in parallel. With this mapping, every

2To simplify the dataflow for tile-based many-PE accelerators, we assume
the K matrix is pre-transposed in HBM while still accounting for the pre-
transposition time when comparing to FlashAttention on H100 for a fair
comparison [6].



Algorithm 1 FlashAttention on tile-based many-PE architecture

Require: Input Matrices Q € RSP KT € RP*S 'V € RS*P and output matrx O € RS*P
in HBM, block sizes B, B;.

: Divide Q,0 into T, = [£] blocks Qu,..., Qr, € RP>P and Oy, ..., Oy, € REXD,
Divide KT,V into T, = (Bi} blocks K™, ..., K'r, € RP*Be and V...,V € REXD,

-

2: for 1 <i<T, do

3: On chip, initialize OEO) =0.

4: Load Q; from HBM to tile on-chip L1.

5: for 1 <j <T.do

6: Load KTJ,VJ from HBM to tile on-chip L1.

7 tile on-chip compute S;J) = QqK;r

8: tile on-chip compute Sf.]) = %. mf” = r()wm;n;(S:j))
9: if j > 1 then

10: Tile on-chip compute mE” = ma.x(m,f‘kl), 111,7(‘7))

11: end if

12: Tile on-chip compute 151(') = exp(Szm — mf‘”),

13: Tile on-chip compute (ﬁj) = rowsum(f’gn)

14: if j > 1 then

15: Tile on-chip compute [Ej) = e’”skw””wlglil) + 15').
16: Tile on-chip compute OEJ) = diag(e""fﬁ]y’”’(r”)0577”.
17: end if )

18: Tile on-chip compute Oﬁj) = OE]) + 1351)\1]_

19: Tile on-chip update m " « m{@ (97D ¢,

20: end for

21:  On chip, compute O; = diag([ET“))"OfT‘),

22: Write O; to HBM as the i-th block of O.

23: end for

tile processes distinct data, which it can independently access
in HBM. No communication between tiles is required, but at
the same time no reuse of data across tiles is exploited.

With sequnce length S, head dimension D, number of heads
H, batch size B and block size M = B, = B,, this dataflow
results in an HBM I/O complexity of:

S
I0=2-H-B-D-S- <1+M>.

While all other parameters are fixed by the computation,
the block size parameter M can be increased to lower the
I/O complexity. Intuitively, larger blocks favor the reuse of
data in the L1 memory of a tile. However, the block size is
constrained by the L1 memory of a single tile, which must
be able to simultaneously host tensors @);, KJT, V;, O, at any
given time.

With the goal of further reducing off-chip I/O accesses,
we propose the FlatAttention dataflow, which fundamentally
redefines how MHA is parallelized on tile-based architectures.
FlatAttention leverages multiple tiles as a unified entity to
process an MHA block, as defined above, of a significantly
larger size, given that the aggregate L1 memory of a group of
tiles can now be used to collectively store the block. When
N tiles are grouped together, the resulting I/O complexity
becomes:

S
I0=2-H-B-D-S- 1+).
For example, when S = 4096, M = 128, and N = 64, this
results in a 6.6 x theoretical reduction in HBM accesses.

B. Detailed FlatAttention Dataflow

The FlatAttention dataflow is depicted in Fig. 2b. We refer
to a set of tiles collectively processing a block, as previously
introduced, as a group, demonstrated in Fig. 2a. We define the
shape of the group as G, x G,. FlatAttention applies the same
tiling and mapping scheme to groups as FlashAttention applies
to tiles but introduces a secondary level of blocking within
each group. This secondary blocking divides the {B., B,}

block dimensions into smaller slices based on the group shape
{G4,G,}, resulting in {gi ) g—;} slice sizes for every tile.
Algorithm 2 outlines the FlatAttention dataflow. At a high
level, the algorithm is conceptually similar to FlashAttention
(Algorithm 1): different groups process distinct data, so no
communication between groups is required. However, dis-
tributing the computation of an MHA block to tiles in a group
introduces distinct data movement patterns within the group:
« Loading and Multicasting: Only tiles on the west edge
of the group load @ slices from HBM (line @), followed
by multicasting Q slices row-wise @ to the other tiles in
the group. When entering the inner loop, the tiles on the
south edge load K7 and V slices from HBM @ followed
by multicasting them column-wise ©.
o Computing Attention (Q - K”) and Rowmax: Each
tile computes a segment of the attention score matrix
(10} During the computation of row-wise maxima for
Softmax, tiles compute partial row maxima locallyO
updated with the tracking maximaO, followed by a row-
wise reduction within the group to calculate the global
row maxima@. The results are then multicasted row-wise
to ensure that each tile holds the global row maxima O
« Softmax Denominator: After computing the partial Soft-
max denominator locally with global row maximal ,
the same reduction @ and multicast O procedure applies
to computing the global denominator, which is then
updated with the tracking maxima and denominator A.
o Output Matrix (O): Each tile updates local O slices and
tracking statistics in the inner loop, and computes partial
results for O slices on exit O—O FlatAttention then
performs a row-wise reduction of O slices @ followed
by storing O slices in HBM O only from west-edge tiles.
These communication requirements are a direct result of
FlatAttention’s parallelization scheme, which enables mini-
mizing costly global off-chip I/O by exploiting on-chip data
reuse across tiles through local on-chip communication. This
trade-off of global for local requirements enables FlatAttention
to achieve better scalability and performance compared to
FlashAttention methods for tile-based many-PE architectures,
as long as local on-chip communication is efficiently handled,
as will be discussed in Section V-A.

C. Asynchronous FlatAttention

In the naive version of FlatAttention (Algorithm 2), data
movement and SoftMax-related computations still account for
a significant portion of the runtime, as illustrated in Fig. 2c.
This reduces the overall utilization, as the system’s peak
performance is primarily determined by the matrix engine,
which has much higher computational power compared to
the vector engine. To further improve utilization, we propose
leveraging the asynchronous nature of DMA, vector and matrix
engine invocations to overlap the runtime of data movement
and SoftMax operations with matrix multiplications.

The optimized dataflow schedules the computation of two
heads concurrently on each group. While the matrix engine
processes matrix multiplications for one head, the DMA and
vector engine perform data movement and SoftMax operations
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Fig. 2: (a) Parametric definition of FlatAttention. (b) Detailed FlatAttention dataflow, with each step corresponding to the line numbers in Algorithm 2. (c)

FlatAttention dataflow optimization.

Algorithm 2 FlatAttention on tile-based many-PE architecture

Require: Input Matrices Q € RSP KT € RP*S 'V € RS*P and output matrx O € RS*P
in HBM, block sizes B., B, tile group sizes G, G. In the following algorithm, z,y denote
tile comdmates relative to the group.

: Divide Q, O into T; [B 1 blocks Qu, ...

Divide KT,V into T, = [~ 5| blocks K'y,...
: Further divide each Q;, O; into Gy slices Qi ..., Qic, €

.Qr, € RE-*D and 0y,....07, € REBrxD,
JKTp, € RPX*Be and Vy,..., Vyp, € REXD,

5o
e R% " and 0,0, €

S

£2xD .
R ™Y | and divide each KTFVJ into G, slices KT 11,4..7K iG. € RDX S and
Be . . . .
Vji,...,Vjg, € R P Slices are accessed according to tile coordinates z,y
3: for 1 <i<T, do
4: On chip, initialize 0(01-) =0.
5 (z =0 edge tiles in g 14»111)\ Load Q,, from HBM to tile on-chip L1
6:
7: for 1 <j <T.do
8: (y = 0 edge tiles in group) Load K ' ;,, V;, from HBM to tile on-chip L1.
9:
10: Tile on-chip compute S‘ /z) Q,,J‘K“y.
(jz) _ S ( (jz)
11: Tile on-chip compute S;; 5 s My rowmax b,,// )
12: if j > 1 then
. . (jz) G-1)  (ja
13: T'ile on-chip compute m,,// max(my, 'm0
14: end if
15: (z = 0 edge tiles in group) Row-wise reduce m,‘//J um\fm”/ ’) in tile group.
16:
17: Tile on-chip compute P”H o.\';ws,//"frrr:,f“u
18: Tile on-chip compute /_f;' = rowsum(PY"))
19: (2 = 0 edge tiles in group) Row-wise reduce 1”/ Z(/“/ ') in tile group.
20:
21: if j > 1 then
! —-1) ()

22: Tile on-chip compute /H//‘ =i My /‘M"/ Yy Gy

. ja L mlTD L, 1)a
23: Tile on-chip compute 0‘,][ ! = diag(e™ ! JOH// 4
24: end if .
25: l'ile on-chip compute O‘“/‘” (o) ,/’ '+ PH//‘ 'V
26: Tile on-chip update m;; Doeml N2 Dy ).
27: end for . -
28: Tile on-chip compute ()‘“l " = di g4y, ! "()HI/ "

. . . (A (Te)x . .

29: (z = 0 edge tiles in group) Row-wise H(hw ()H/ Z(O,‘U ") in tile group.
30: (z = 0 edge tiles in group) Write O;, to HBM as the y-th slice in i-th block of O
31: end for

for the other®. Fig. 2c demonstrates this optimization, show-
casing how it can ensure the matrix engine remains nearly
fully active, provided that the matrix multiplications runtime
overlaps completely with data movement and SoftMax opera-
tions. Notably, FlashAttention-3 employs the same technique
to improve over FlashAttention-2.

IV. MODELING AND ANALYSIS METHODOLOGY

We developed a modeling and simulation framework for
tile-based many-PE accelerators on the GVSoC event-based

3The same optimization can be applied with two output row blocks O;
instead of two heads, reducing memory requirements as the K7 and V;
blocks are shared. To simplify the evaluation, where sufficient row blocks are
not available in all configurations, we adopt the presented implementation.

simulator [18] for functional and performance simulation.
GVSoC is open source and released with models for the Snitch
[19] single-issue RISC-V core, the Spatz [20] vector engine
supporting the RISC-V Vector (RVV) extension, the iDMA
[21] engine, and tile-local L1 memory and interconnect. To ex-
tend these capabilities, we developed and calibrated new mod-
els for the RedMulE [22] matrix engine and the FlooNoC [23]
fabric according to their open-source RTL implementations.
The NoC model incorporates both software and hardware-
supported collective communication primitives, as presented
in Section II, for design space exploration. Specifically, we
can simulate hardware support for row-wise and column-
wise multicast, sum-reduction, and max-reduction operations.
We also extended Spatz with a custom RVV instruction for
exponential operations and a dedicated exponential unit within
the FPU. Furthermore, we integrated the DRAMSys [24]
simulator into GVSoC for HBM modeling. i.e., we used the
HBM2e specification with 64 GB/s bandwidth per channel.

Using these building blocks, we constructed the SoftHier
model and analysis framework: a flexible, parameterizable
tile-based many-PE accelerator simulator with functionality
and performance models calibrated on cycle-accurate simu-
lations of open-source RTL. SoftHier is configurable using
architecture configuration files, enabling the instantiation of
specific accelerator designs, e.g. to explore different numbers
of Compute Elements (CEs) in the RedMulE units.

In the SoftHier framework, we implemented the FlashAtten-
tion and FlatAttention dataflows in C, incorporating APIs for
matrix engine offload and DMA engine inter-tile communica-
tion, along with NoC collective primitives. The software was
compiled using the GNU RISC-V GCC compiler with -03
optimization. We assume a 1 GHz clock frequency, and preheat
every tile’s instruction cache at the start of the simulation.
For FlashAttention, we parallelize across the batch, number of
heads and output sequence length dimensions to ensure that
all tiles are utilized. For both implementations, we select the
slice size per tile to maximize local L1 memory occupancy
while maintaining a square configuration, i.e., g—; = g;




TABLE I: System Specifications

System  32x32 Tiles, 1024-bit NoC link width
HBM 16x2 Channels, equally divided over west and south edges
Tile RedMulE Matrix Engine: 32x16 CE array, 1 TFLOPS@FP16

Spatz Vector Engine: 16 FPU, 128 GFLOPS @FP16
Local Memory: 384 KB, 512 GB/s
Summary 1024 TFLOPS Peak Performance, 2 TB/s Peak HBM Bandwidth
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Fig. 3: Runtime breakdown (bars) and average HBM BW utilization (star
markers) for different MHA implementations and layer sizes. ~Runtime not
overlapped with RedMulE. T+Runtime not overlapped with either Spatz or
RedMulE. *Implementations without double buffering.

V. EXPERIMENTAL RESULTS
A. FlashAttention vs. FlatAttention

We first compare different MHA implementations and layer
sizes on a given tile-based many-PE accelerator configuration,
as specified in Table 1. We evaluate both FlashAttention-2
(FA-2) and FlashAttention-3 (FA-3) implementations on tile-
based many-PE accelerators, where FA-3 introduces a similar
scheduling mechanism as presented in Section III-C. For
FlatAttention, we set the group size to include all tiles in
the system, ie. G, = Gy, = 32. We evaluate a naive
implementation without (Flat) and with (FlatColl) hardware
support for efficient collective primitives on the NoC, as
well as the optimized FlatAttention dataflow (FlatAsyn) de-
scribed in Section III-C with NoC collective primitives. We
evaluate multiple MHA layers, varying the sequence length
S € {1024,2048,4096} and head dimension D € {64,128},
while fixing batch size B = 2 and heads H = 32.

Fig. 3 presents the runtime breakdown and average HBM
bandwidth utilization. We observe that FlashAttention exhibits
a highly memory-bound behavior on the target tile-based
many-PE system, with HBM bandwidth utilizations reaching
up to 80% on average. HBM access is the dominant runtime
component, limiting overall compute utilization. Even with
FA-3’s optimized dataflow for overlapping matrix multiplica-
tion and Softmax operations, the saturated HBM bandwidth
prevents further speedup. Additionally, FA-3 introduces an
overhead for more complex scheduling.

Flat significantly reduces HBM access time compared to
FA-3 due to the decreased I/O complexity. However, software-
based collective primitives used in Flat rely on successive
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Fig. 4: Runtime breakdown for different (square) flattening scales and layer
sizes. Percentage labels above the bars indicate the average utilization of
the RedMulE units when active. TRuntime not overlapped with RedMulE.
++Runtime not overlapped with either Spatz or RedMulE.

point-to-point inter-tile transfers. For instance, a row-wise
multicast in this configuration requires 31 sequential unicast
transmissions, incurring substantial on-chip communication
overhead and resulting in worse performance than FlashAt-
tention. Instead, with efficient collective primitives enabled
on the NoC (FlatColl), on-chip inter-tile communication is
significantly accelerated, leading to better performance than
FlashAttention across most MHA layers. The FlatAsyn im-
plementation shows that we can further improve performance
by overlapping SoftMax, data movement, and matrix multi-
plication operations. Overall, our optimizations result in up to
4.1x speedup and 16x HBM traffic reduction over FA-3 (D128,
S4096).

B. Tile Group Scale Trade-offs for FlatAttention

Although FlatAsyn achieves the best performance across all
MHA layers in Fig. 3, it does not fully optimize utilization
for shorter sequence lengths such as 2048 and 1024, where
RedMulE runtime cannot completely overlap with other op-
erations. To determine the optimal performance configuration
for FlatAttention, we analyze the impact of different (square)
group sizes G, G, € {4,8, 16,32}, on the specific tile-based
many-PE accelerator configuration defined in Table I.

We evaluate multiple MHA layers, varying the sequence
length S € {512,1024,2048,4096}, while fixing D = 128,
H =32 and B =4.

Fig. 4 presents the runtime breakdown and MHA workload
slice size per tile, i.e. (% = g; across different group
scales. For long sequence lengths such as 4096, the slice
size per tile remains constant due to L1 memory capacity.
In this case, increasing the group size reduces overall HBM
I/O complexity, as demonstrated in Section III-B, leading to
reduced HBM access runtimes and improved overlap with
matrix multiplication on RedMulE. The 16x16 and 32x32
group scales achieve 88% and 87% utilization, respectively,
for a sequence length of 4096.

However, for shorter sequence lengths such as 512, the
situation is different. As the group scale increases, the slice




size per tile decreases due to the fixed sequence length,
introducing two performance overheads:

¢ Reduced RedMulE utilization: Smaller slices per tile
lead to lower RedMulE utilizations. For example, in a
32x32 group with a sequence length of 512, every tile’s
RedMulE achieves only 23% utilization when active.

« Increased synchronization overhead: Smaller slices per
tile result in shorter RedMulE runtimes. As a result,
constant overheads associated with synchronization and
data movement, such as HBM access latency (~200
cycles), constitute a larger fraction of the overall runtime.

We refer to this effect as over-flattening. For moderate
sequence lengths, both effects occur simultaneously: larger
group scales effectively reduce I/O complexity but also in-
troduce the risk of over-flattening. For every sequence length,
there exists an optimal group scale balancing the two effects.

C. Co-exploration of Architecture and Algorithm Parameters

Lastly, we demonstrate how the SoftHier framework can be
used to identify an optimal tile-based many-PE architecture
configuration. Our goal is to design a tile-based accelerator
with comparable peak performance to Nvidia’s H100 (989
TFLOPS FP16/BF16 without sparsity) while improving uti-
lization and reducing overall HBM bandwidth requirements on
MHA workloads. We evaluated a set of candidate architecture
configurations with varying NoC fabric granularity and HBM
channel connectivity. Table II presents the tile specifications
as a function of fabric granularity, ensuring constant peak
system performance (1024 TFLOPS) and on-chip memory
capacity. For every accelerator candidate, we evaluate multiple
MHA layers, searching for optimal performance across differ-
ent dataflow implementations, including FlashAttention-3 and
FlatAttention with varying square-shaped group sizes.

Based on the results shown in Fig. 5a, we can select
a configuration (BestArch) that optimizes for performance
over cost, featuring a 32x32 fabric granularity and 16x2
HBM channels. We then compare its performance directly
against FlashAttention-3, based on the H100 performance
numbers in Shah et al. [6], using the same MHA layers
while also accounting for the K matrix pre-transposition
time in FlatAttention for fair comparison. In Fig. 5b, the
BestArch configuration with FlatAttention achieves up to 1.3x
higher utilization while requiring 40% less HBM bandwidth
compared to the H100 GPU. Beyond MHA, common GEMM
kernels utilizing the collective-based SUMMA dataflow [25]
on BestArch also achieve up to 1.2x higher utilization over
H100 [26] in Fig. 5c. Using the Gate Equivalent (GE) reported
for the individual components [19]-[23], we estimated the die
size of BestArch in TSMC 5nm technology, the same used by
the H100. Considering 4 transistors per GE, a transistor density
of 138.2 MTr/mm?, an SRAM bit-cell size of 0.021 um?, and
assuming 66% area utilization, BestArch features a die size of
457 mm?, enabling a 1.8x reduction to H100 GPU.

VI. CONCLUSION
We propose FlatAttention, an optimized dataflow for MHA
on tile-based many-PE accelerators, co-designed with NoC

TABLE II: Fabric Granularity and Tile Specifications

Fabric Granularity 32x32 16x16 8x8
RedMulE CE Array 32x16 64x32 128x64
Spatz FU Count 16 64 256
Local Memory Size (KB) 386 1526 6144
Local Memory Bandwidth (GB/s) 512 2048 8192
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Fig. 5: (a) Heatmap of utilization with best group size. (b) Comparison with
FlashAttention-3 on H100 solutions, with absolute performance in TFLOPS
labeled above the bar. (c) Comparison of GEMMs, including FEN layer in
Meta’s LLaMA 70B [26], between BestArch and H100.

collective primitives, achieving up to 89.3% utilization while
reducing HBM traffic by 16x compared to FlashAttention-
3 dataflow, on tile-based accelerators. Through algorithm-
architecture co-exploration, an optimal accelerator configura-
tion matching the peak performance of Nvidia’s H100 GPU is
selected, which requires 40% less HBM bandwidth than H100
and 1.8x reduction in die size, with FlatAttention achieving
up to 1.3x higher utilization compared to FlashAttention-3 on
H100, and its GEMM reaching up to 1.2x higher utilization
over H100. Future work includes end-to-end LLM inference
on multi-chiplet systems with 3D-stacked memory.
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