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Abstract

Video camouflaged object segmentation (VCOS), aiming at
segmenting camouflaged objects that seamlessly blend into
their environment, is a fundamental vision task with various
real-world applications. With the release of SAM2, video
segmentation has witnessed significant progress. How-
ever, SAM2’s capability of segmenting camouflaged videos
is suboptimal, especially when given simple prompts such
as point and box. To address the problem, we propose
Camouflaged SAM2 (CamSAM?2), which enhances SAM2’s
ability to handle camouflaged scenes without modifying
SAM?2’s parameters. Specifically, we introduce a decam-
ouflaged token to provide the flexibility of feature adjust-
ment for VCOS. To make full use of fine-grained and high-
resolution features from the current frame and previous
frames, we propose implicit object-aware fusion (IOF) and
explicit object-aware fusion (EOF) modules, respectively.
Object prototype generation (OPG) is introduced to ab-
stract and memorize object prototypes with informative de-
tails using high-quality features from previous frames. Ex-
tensive experiments are conducted to validate the effective-
ness of our approach. While CamSAM?2 only adds negligi-
ble learnable parameters to SAM2, it substantially outper-
forms SAM2 on three VCOS datasets, especially achieving
12.2 mDice gains with click prompt on MoCA-Mask and
19.6 mDice gains with mask prompt on SUN-SEG-Hard,
with Hiera-T as the backbone. The code will be available
at github.com/zhoustan/CamSAM?2.

1. Introduction

Camouflaged object detection (COD) and video camou-
flaged object segmentation (VCOS) aim to identify ob-
jects that blend seamlessly into their surroundings. Un-
like standard object segmentation tasks, where objects typi-
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Figure 1. Illustration of SAM2 and CamSAM2. (d) SAM2’s
segmentation of the camouflaged object is suboptimal, primarily
because its feature optimization is biased toward natural videos,
and its design does not account for the unique challenges inherent
to VCOS. (e) CamSAM?2 improves SAM?2’s ability on segmenting
and tracking camouflaged objects by introducing a decamouflaged
token, IOF to enhance features with high-resolution features, and
EOF and OPG to further enhance features by exploiting informa-
tive object details across time. CamSAM?2 only adds a limited
number of parameters on SAM?2 while keeping all SAM2’s pa-
rameters fixed and fully inheriting SAM2’s zero-shot ability.

cally exhibit clear boundaries and contrast with the back-
ground, camouflaged objects are naturally indistinguish-
able from the background. These tasks have various ap-
plications in wildlife monitoring, surveillance, and search-
and-rescue operations [40, 44]. COD focuses on detect-
ing camouflaged objects in individual images, while VCOS
extends it to video sequences, adding the complexity of
modeling temporal information across frames. Despite re-
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cent advancements in COD [5, 7, 33, 34, 54, 58, 59] and
VCOS [4, 7, 15, 20, 25, 29, 33], the performance remains
far from satisfactory compared to standard segmentation
tasks.

The recently introduced vision foundation model, Seg-
ment Anything Model 2 (SAM?2) [39], marks a significant
advancement in video segmentation. SAM?2 has learned
rich and generalizable representations for natural scenes on
the SA-1B [19] (11M images, 1B masks) and SA-V [39]
(50.9K videos, 35.5M masks) datasets. Therefore, its fea-
tures are optimized for natural scenes, while SAM2’s abil-
ity of segmenting camouflaged objects is suboptimal, as
in [47, 61]. As shown in Fig. I, SAM2 segments only
part of a camouflaged animal (hedgehog) with a single-click
prompt, indicating that there is still room for performance
improvements in VCOS using SAM2.

This paper aims to develop a model for accurate segmen-
tation in camouflaged videos, requiring both natural image
understanding and effective identification of camouflaged
objects in complex environments. To achieve this, we iden-
tify the following core challenges in adapting SAM2 for
VCOS: (1) SAM2 is optimized for natural scenes rather
than camouflaged environments. (2) The architecture does
not account for the complexities of segmenting and track-
ing camouflaged objects across time. For VCOS, accurately
segmenting camouflaged objects for a frame requires: a) ex-
ploiting fine-grained and detailed features from the frame,
and b) considering the temporal evolvement of fine-grained
features from previous frames. For exploiting temporal in-
formation, SAM?2 is equipped with a memory module con-
taining a memory encoder and memory bank. However,
only low-resolution and coarse features are encoded into the
memory, which is suboptimal for accurate VCOS.

To tackle the above limitations and fully keep
SAM?2’s ability to process natural videos, we introduce
Camouflaged SAM2, dubbed as CamSAM?2, equipping
SAM?2 with the ability to effectively tackle VCOS, as de-
picted in Fig. 1. CamSAM2 includes a learnable decam-
ouflaged token, which provides flexibility to optimize fea-
tures for VCOS without modifying SAM2’s trained param-
eters. To exploit the fine-grained features of the frame, we
propose the Implicit Object-aware Fusion (I0F) module,
which enhances features with implicitly object-aware infor-
mation. To make use of detailed features from previous
frames, we further propose Object Prototype Generation
(OPG) to abstract high-quality features within the object
region into informative object prototypes through Farthest
Point Sampling (FPS) and k-means. Those object proto-
types are saved to the memory for easy usage by the Explicit
Object-aware Fusion (EOF) module that is designed to inte-
grate explicit object-aware information across the temporal
dimension. Our design avoids saving the high-resolution
features in the memory and only adds negligible computa-

tions to SAM2 while accounting for a large amount of tem-

poral information.

We conduct extensive experiments in §4 to validate the
effectiveness of CamSAM?2 on three VCOS benchmarks:
two camouflaged animal datasets, MoCA-Mask [7] and
CAD [3]; and one camouflaged medical dataset, SUN-
SEG [17]. Our experiments show that CamSAM?2 signif-
icantly outperforms SAM2 by achieving improvements of
12.2/13.0 mDice scores with click prompt on MoCA-Mask
for Hiera-T/Hiera-S backbones, and /9.6 mDice gains with
mask prompt on SUN-SEG-Hard for Hiera-T backbone.
When directly evaluating CamSAM?2 on CAD without fur-
ther finetuning, we observe strong zero-shot ability. Since
all SAM2’s weights remain unchanged, CamSAM?2 totally
inherits SAM2’s capability on segmenting natural videos.
In summary, our contributions are three-fold:

* We propose CamSAM?2 to equip SAM2 with the ability
to segment and track camouflaged objects in videos while
keeping SAM?2’s strong generalizability in natural videos.

* CamSAM?2 introduces a decamouflaged token to achieve
easy feature adjustments for the VCOS task without af-
fecting SAM2’s trained weights. To effectively exploit
the crucial fine-grained and high-resolution features from
both the current frame and previous frames, we propose
IOF, EOF, and OPG modules.

* Our approach clearly outperforms SAM?2 and sets new
state-of-the-art performance on public VCOS datasets.
Experiments also show the strong zero-shot ability of
CamSAM? in the domain of VCOS.

2. Related Work
2.1. Camouflaged Object Detection

Camouflaged Scene Understanding (CSU) focuses on inter-
preting scenes where objects blend closely with their back-
grounds, such as natural environments like forests, oceans,
and deserts. Early works in this field primarily involved the
collection of extensive image and video datasets, such as
CAMO [23], COD10K [10], NC4K [26], CAD [3], MoCA-
Mask [7], and MoCA-Mask-Pseudo [7], which laid the
foundation for CSU.

Traditional Camouflaged Object Detection (COD) meth-
ods extract foreground-background features using optical
features [2], color, and texture [18]. Deep learning has
advanced COD with CNNs and transformers. SINet [10]
and SINet-V2 [12] enhance fine-grained cues by apply-
ing receptive fields and texture-enhanced modules, while
DQNet [45] applies cross-modal detail querying to de-
tect subtle features. Transformer-based models like Camo-
Former [54] leverage multi-scale feature extraction with
masked separable attention, and WSSCOD [58] employs
a frequency transformer and noisy pseudo labels for weak
supervision. ZoomNeXt [33] further optimizes multi-scale



extraction via a collaborative pyramid network. These ad-
vancements refine COD by integrating sophisticated archi-
tectures and diverse supervision strategies.

2.2. Video Camouflaged Object Segmentation

VCOS [20, 25, 49, 57] extends COD to videos, introduc-
ing challenges from motion, dynamic backgrounds, and
temporal consistency. Former VCOS models tackle these
with motion learning, spatial-temporal attention, and ad-
vanced segmentation techniques to maintain object coher-
ence across frames. Motion-guided models enhance seg-
mentation by leveraging motion cues. IMEX [14] in-
tegrates implicit and explicit motion learning for robust
detection. TMNet [57] refines motion features with a
transformer-based encoder and neighbor connection de-
coder. Flow-SAM [50] uses optical flow as input or a
prompt, guiding SAM to detect moving camouflaged ob-
jects. Spatial-temporal attention enhances the tracking of
camouflaged objects. TSP-SAM [15] and SAM-PM [29]
improve SAM’s ability to detect subtle movements. Static-
Dynamic-Interpretability [20] quantifies static and dynamic
information in spatial-temporal models, aiding balanced
approaches. Assessing camouflage quality is also essen-
tial for VCOS. CAMEVAL [22] introduces scores evaluat-
ing background similarity and boundary visibility, refining
datasets and improving model robustness. These advance-
ments drive more accurate and effective VCOS systems.

2.3. Segment Anything Model 2

SAM?2 [39] is a vision foundation model for promotable
segmentation across images and videos. Compared to
SAM [19] which is limited to image segmentation, SAM2
offers a significant performance leap in video segmentation,
producing higher segmentation accuracy while using fewer
interactions than previous methods. SAM?2 has demon-
strated strong capabilities in many tasks, including medical
image, video and 3D segmentation [0, 13, 24, 27, 42, 51,
55, 56], video object tracking and segmentation [32, 43],
remote sensing [38], 3D mesh and point cloud segmenta-
tion [46], image camouflaged object detection and video
camouflaged object segmentation [6, 47, 51, 61]. In pre-
vious works [47, 61], although SAM2’s ability to segment
camouflaged videos has surpassed most existing methods,
there is still a significant performance gap compared to
other VOS tasks, especially when using simple prompts.

3. Method

We propose CamSAM?2, equipping SAM2 with the ability
to accurately segment camouflaged objects in videos while
retaining SAM?2’s original capabilities. §3.1 briefly reviews
the architecture of SAM2. From §3.2 to §3.5, we describe
CamSAM? tailored for VCOS. With fixing SAM2’s param-
eters, CamSAM?2 proposes a learnable decamouflaged to-

ken, Implicit and Explicit Object-aware Fusion, and Object
Prototype Generation to enhance feature representations,
thus leading to improved performance, as shown in Fig. 2.
Training and inference strategies are presented in §3.6.

3.1. Preliminaries

SAM?2 [39] is a pioneering vision foundation model de-
signed for promptable visual segmentation tasks. Differ-
ent from SAM [19], SAM2 includes a memory module that
stores information about the object from previous frames. It
contains an image encoder, memory attention, prompt en-
coder, mask decoder, memory encoder, and memory bank.
For each frame, the image encoder extracts representative
visual features, which are then conditioned on the features
and predictions of past frames. If a prompt (point, box, or
mask) is given, the prompt encoder encodes it into sparse
or dense embeddings. Exploiting memory-conditioned fea-
tures and prompt embeddings, the mask decoder outputs
the segmentation mask. The memory encoder then updates
the memory bank with the output mask and the uncondi-
tioned frame embedding to support the segmentation of sub-
sequent frames. SAM?2 is pre-trained on SA-1B [19] and
further trained on SA-V [39], achieving strong performance
across video and image segmentation tasks. For more de-
tails, please refer to [39].

3.2. Decamouflaged Token

Given a video clip containing m frames, we denote all
frames as {I; 41, , L, - - -, I; } with ground-truth seg-
mentation masks of {S; 11, --,S;,---,S:}. Espe-
cially, I; is the current frame for the purpose of easy ex-
planation. We use the image encoder to extract features for
all frames, denoted as {F;_,,41,--- ,F;,--- ,F;}. Here,
F; can be further represented as {F?,--- [ F/ ... ,Fffl},
containing feature maps extracted from L different interme-
diate layers or blocks, where Ff € R&>xhixw; ith cj, hyj,
and w; representing channels, height, and width, respec-
tively.

SAM2’s output tokens include an object score (occlu-
sion) token, an IoU token, and mask tokens. To enhance
SAM?2’s ability of segmenting camouflaged objects, we in-
troduce a new learnable decamouflaged token T € R1*256,
enabling it to optimize features for segmenting camouflaged
objects. As depicted in Fig. 2, integrated with SAM2’s out-
put tokens, the decamouflaged token undergoes the same
layers as output tokens within SAM2’s mask decoder: two
attention blocks including self-attention, followed by token-
to-image (T2I) and image-to-token (I2T) cross attention,
and the last T2I cross attention. After this, the output de-
camouflaged token is denoted as T. This token is updated
through back-propagated gradients, while SAM2’s weights
remain frozen. T’ is then passed through an MLP layer
to participate in computing CamSAM2’s final mask logits,
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Figure 2. Overall architecture of CamSAM2. CamSAM?2 effectively captures and segments camouflaged objects by leveraging implicit
and explicit object-aware information from the current or previous frames. It includes the following key components: (a) the decamouflaged
token, which extends SAM2’s token structure to learn features suitable for segmenting camouflaged objects; (b) an IOF module to enrich
memory-conditioned features with implicitly object-aware high-resolution features; (¢) an EOF module to aggregate explicit object-aware
features; and (d) an OPG module, generating informative object prototypes, which guides cross-attention in EOF. These components work
together to preserve fine details, enhance segmentation quality, and track camouflaged objects across time.

which will be explained in §3.4.
3.3. Implicit Object-aware Fusion

Early-layer features from the image encoder capture high-
resolution details, such as edges and textures, essential for
distinguishing subtle differences between the camouflaged
object and the background. In contrast, deeper layers focus
on high-level semantic information. In SAM2, memory-
conditioned features are computed by only conditioning
high-level semantic features on the memory, without using
detailed features from early layers. These early-layer fea-
tures are implicit object-aware, as features for background
and non-relevant objects also exist with similar magnitude.
To this end, we propose an IOF module that fuses these im-
plicit object-aware features with memory-conditioned fea-
tures.

For SAM2, three feature maps from the Hiera image en-
coder [41] are extracted for each frame, i.e., L = 3. We
have F?, F}, and F? for the current frame I;. We de-
note the memory-conditioned feature as F}*“*, encoded
by the memory-attention module on F?, as in [39]. The
high-resolution features FY and F} are fused with F}*¢™
via compression modules and point-wise addition to create
a refined feature representation Fiof € Reoxhoxwo where
a compression module C(-) consists of two convolutional

layers, followed by an upsampling layer, to create compact
representations. This process is given by:

Fi = Co(FY) + C1(F}) + Co(F7e™). (1)

3.4. Explicit Object-aware Fusion

After obtaining Fi"f , we further refine it by EOF, which
exploits explicit object-aware information from the current
frame and previous frames, through employing object mask
logits and object prototypes (see §3.5). We have three steps
to fuse informative features. First, feature Fiof , with shape
Reoxhoxwo from the previous IOF module, is directly con-
catenated with SAM2’s mask logits R;, which has shape
R*hoxwo  This concatenated feature is then processed
through a convolutional layer to reduce the channels back to
co, resulting in output with the original shape R¢0*hoxwo_
denoted as:

F5°/ = Conv ([Fi"f : Rt]) . )

Second, F°F goes through a cross-attention layer. Pro-
totypes generated from previous frames, representing clus-
tered camouflaged features, serve as informative priors to
help distinguish the camouflaged object from its back-
ground. A cross-attention mechanism takes Ffof as a



query, and leverages these prototypes as keys and val-
ues, effectively exploiting the information within the ob-
ject prototypes to refine Ffof . Formally, we update
F°/ by conducting cross-attention with prototypes P; =
{Py,P1,...,P;_1} from previous frames, given by:

Fi' = Atn(F;, Py, Py). 3)

Third, the attention-refined feature F$''" is combined
with the upscaled mask feature F7**** from SAM2 mask
decoder. The upscaled mask feature is first processed
through a convolutional layer and then fused with F¢*'"™ via
point-wise addition, as follows:

Ffof/ _ F?ttn + ConV(F;nask). )

Finally, we calculate the mask logits Rf of CamSAM2,
by processing the output decamouflaged token T’ through
an MLP layer, and then performing point-wise product with
the Ff(’f ' as shown below:

R¢ = MLP(T') - F{°/. (5)

This approach incorporates both implicit and explicit cam-
ouflaged information, which can enhance mask generation
for more accurate segmentation for the VCOS task.

3.5. Object Prototype Generation

To effectively represent the camouflaged features within the
mask (object) region, we employ Farthest Point Sampling
(FPS) [31] to identify k points within the predicted mask
region, which act as cluster centers. This approach en-
sures that the sampled points are well-distributed through-
out the mask, capturing diverse and important characteris-
tics of the camouflaged object. Then, we group all pixels
in the predicted mask region into k clusters by conducting
one-iteration k-means, using the sampled k points as initial
centers. The prototype of each cluster is represented as the
mean of the spatial features of the points in the cluster. This
prototype generation process is denoted as F,, as shown in:

P,={P |1<i<k}=F,F R), (6

where P; represents the camouflaged object prototypes ex-
tracted from high-resolution and detailed features for the
frame I;. The prototypes are concatenated and then saved
in the memory, which will be used by EOF (§3.4) when
segmenting the subsequent frames.

3.6. Training and Inference Strategies

Training Strategies. = We simulate interactive prompt-
ing of the model in the training process, prompting on the
first frame of the sampled sequence. Following the training
strategy of SAM2, we use three types of prompts (mask,
bounding box, 1-click point of foreground) for training,
with the probability of 0.5, 0.25, and 0.25, respectively.

To train the model, we use a combined loss of binary
cross-entropy (BCE) and dice loss for mask predictions
across the entire video. This loss applies to both SAM2’s
mask logits R; and the CamSAM?2’s mask logits R, com-
pared with the ground-truth mask S; of frame I;, as follows:

t
Z [ﬁBCE(Riv S:) + Lecr(RF, Si)],
i=t—m+1
t
Lp = Z [CDice(Ri, Si) + Lpice (RS, Si)]7
i=t—m+1

L=Lc+Lp, @

Lo

where L is the final loss for our approach, summing the
BCE loss L and the dice loss £p.

Inference. During inference, we provide a prompt at the
first frame of a video, following [29]. Our final output is the
average of the logits of SAM2 and CamSAM?2 masks for
the error correction.

4. Experiments

4.1. Experimental Setup

Datasets.  Our experiments are conducted on three video
datasets: two popular camouflaged animal datasets, MoCA-
Mask [7] and CAD [3], and one camouflaged medical
dataset, SUN-SEG [17]. The pioneering Moving Camou-
flaged Animals dataset (MoCA) [21] comprises 37K frames
from 141 YouTube video sequences. The dataset MoCA-
Mask is reorganized from the MoCA, containing 71 video
sequences with 19,313 frames for training and 16 video se-
quences with 3,626 frames for testing, respectively, with
pixel-wise ground-truth masks on every five frames. It also
generates a MoCA-Mask-Pseudo dataset, which contains
pseudo masks for unlabeled frames with a bidirectional
optical-flow-based consistency check strategy. The Cam-
ouflaged Animal Dataset (CAD) includes 9 short videos in
total that have 181 hand-labeled masks on every five frames.
SUN-SEG is the largest benchmark for video polyp seg-
mentation, derived from SUN-database [30]. It consists of a
training set with 112 clips (19,544 frames) and two test sets:
SUN-SEG-Easy, containing 119 clips (17,070 frames), and
SUN-SEG-Hard, comprising 54 clips (12,522 frames).

Implementation Details. = The proposed CamSAM?2 is
implemented with PyTorch [35]. CamSAM?2 is initialized
with the parameters of SAM2. We freeze all parameters
used in SAM2 and initialize other parameters randomly.
We set betas = (0.9, 0.999) for the optimizer Adam and
use the initial learning rate of le-3 with the StepLR of 10.
We train CamSAM?2 on 4 NVIDIA RTX 4090 GPUs for 15
epochs. For camouflaged animal segmentation, we train the
model using the MoCA-Mask-Pseudo training set and eval-



ode ackbone arams rompt 'm 'm mDice mlo
Model Backb: P: M) | Prompt | S, Fgt MAE] Fgt E,t Dice 1 IoU 1

EGNet [60] ResNet-50 111.7 - 54.7 11.0 35 13.6 574 14.3 9.6
BASNet [37] ResNet-50 87.1 - 56.1 15.4 4.2 17.3 59.8 19.0 13.7
CPD [48] ResNet-50 479 - 56.1 12.1 4.1 15.2 61.3 16.2 11.3
PraNet [11] ResNet-50 32.6 - 61.4 26.6 3.0 29.6 67.4 31.1 23.4
SINet [10] ResNet-50 48.9 - 59.8 23.1 2.8 25.6 69.9 27.7 20.2
SINet-V2 [12] Res2Net-50 27.0 - 58.8 20.4 3.1 22.9 64.2 24.5 18.0
PNS-Net [16] ResNet-50 142.9 - 52.6 5.9 35 8.4 53.0 8.4 54
RCRNet [52] ResNet-50 53.8 - 55.5 13.8 33 15.9 52.7 17.1 11.6
MG [53] VGG 4.8 - 53.0 16.8 6.7 19.5 56.1 18.1 12.7
SLT-Net-LT [7] PVTv2-B5 823 - 63.1 31.1 2.7 33.1 75.9 36.0 27.2
ZoomNeXt [33] PVTv2-B5 84.8 - 73.4 47.6 1.0 49.7 73.6 49.7 42.2
SAM?2 [39] Hiera-T 38.9 1-click | 68.2 50.7 7.7 52.5 73.6 52.1 44.8
CamSAM?2 Hiera-T 394 I-click | 75.2 61.7 7.3 63.7 82.0 64.3 54.6
SAM?2 [39] Hiera-T 389 box 81.5 69.9 0.6 70.9 89.4 72.7 62.3
CamSAM?2 Hiera-T 394 box 82.9 72.4 0.6 73.2 94.2 75.5 64.8
SAM-PM [29] ViT-L 303.0 mask 72.8 56.7 0.9 - 81.3 59.4 50.2
SAM?2 [39] Hiera-T 389 mask 84.7 76.0 0.4 76.9 91.9 77.1 67.9
CamSAM?2 Hiera-T 394 mask 86.2 78.7 0.4 79.6 96.2 80.2 70.5

Table 1. Comparisons between our method and existing approaches on MoCA-Mask. CamSAM?2 outperforms the existing method by
achieving new state-of-the-art performance. The results of all these methods (excluding SAM2) are from corresponding publications. The
best results are shown in bold. 1: the higher the better, | : the lower the better.
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Figure 3. Qualitative comparisons between SAM2 and CamSAM2 using 1-click prompt with the Hiera-T backbone on two MoCA-
Mask clips. From fop to bottom: the input frames, SAM2’s results, CamSAM?2’s results, and ground-truth masks. CamSAM?2 demonstrates
improved accuracy in segmenting camouflaged objects, especially in complex backgrounds, as shown by the circles. Best viewed in color:
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uate it on the MoCA-Mask test set and CAD. During infer- outperforms SAM-PM and SAM2; even with the 1-click
ence for SAM2 and CamSAM?2, we apply the 1-click, box, prompt, CamSAM2 still outperforms SAM-PM, which uses

and mask prompts only on the first frame of each video. mask prompt on the first frame. The promptable methods
For camouflaged polyp segmentation, we train the model clearly outperform other models on the MoCA-Mask, high-
using the SUN-SEG training set and perform inference us- lighting the strength of integrating prompt-based strategies
ing mask prompt on the first frame of each video on the for VCOS and demonstrating the potential of promptable
SUN-SEG-Easy and SUN-SEG-Hard test sets. methods to excel in scenarios where camouflaged objects

Evaluation Metrics. =~ We adopt seven evaluation metrics are particularly challenging to segment and track.

to measure the quality of predicted pixel-wise masks: S- Tab. 2 presents a detailed comparison between SAM2
measure (S,,) [8], F-measure (F}3) [1], weighted F-measure and CamSAM?2 on the MoCA-Mask dataset, across differ-

(F) [28], mean absolute error (MAE) [36], E-measure ~ ent prompt types (l-click, box, and mask) with Hiera-T

(E,,) [9], mean Dice (mDice), and mean IoU (mIoU). and Hiera-S backbones. CamSAM?2 demonstrates consis-
tent improvements over SAM?2 across all prompt types and
4.2. Experimental Results backbones. With a 1-click prompt, it achieves mDice/mloU
gains of 12.2/9.8 (Hiera-T) and 13.0/12.0 (Hiera-S), demon-
Results on MoCA-Mask.  Tab. | compares the perfor- strating its effectiveness in segmenting camouflaged objects
mance of three promptable methods. CamSAM?2 clearly with minimal input. For a box prompt, CamSAM?2 im-



Model | Prompt | mDicet | mloU?
Hiera-T
SAM2 Click 52.1 44.8
CamSAM2 1€ 64.3 (+12.2) | 54.6 (+9.8)
SAM?2 B 72.7 62.3
CamSAM?2 ox 75.5 (+2.8) | 64.8 (+2.5)
SAM2 Mask 77.1 67.9
CamSAM2 as 80.2 (+3.1) | 70.5 (+2.6)
Hiera-S
SAM2 Click 54.9 46.7
CamSAM2 1 67.9 (+13.0) | 58.7 (+12.0)
SAM?2 B 73.8 63.8
CamSAM?2 ox 755 (+1.7) | 65.4 (+1.6)
SAM?2 Mask 80.3 70.7
CamSAM?2 as 81.3(+1.0) | 71.6 (+0.9)

Table 2. Detailed comparisons between CamSAM?2 and SAM2
on MoCA-Mask. CamSAM?2 consistently outperforms SAM?2
for all considered prompt types and backbones. Improvements of
CamSAM?2 over SAM2 are shown in dark green.

flower crab spider ~ hedgehog sand cat copperhead snake

Figure 4. Visualization of the attention maps obtained from
SAM2 and CamSAM?2 using 1-click point prompt with the
Hiera-T backbone. The attention map is extracted from the last
token-to-image cross-attention in the mask decoder. From top to
bottom: the input frames, attention map of SAM2’s mask token
and the image embedding, attention map of the decamouflaged
token and the image embedding, and ground-truth masks. The
higher attention regions are indicated by warmer colors.

proves mloU by 2.5 (Hiera-T) and 1.6 (Hiera-S). With a
mask prompt, it achieves 2.6 and 0.9 mloU gains for Hiera-
T and Hiera-S, respectively.

Fig. 3 shows qualitative results for two video clips of
MoCA-Mask from SAM2 and CamSAM?2 using 1-click
prompts with the Hiera-T as the backbone. Fig. 4 presents
a comparative visualization of the attention maps generated
by SAM2 and CamSAM?2 for various objects. The atten-
tion maps are extracted from the last token-to-image cross
attention layer in the mask decoder. The token serves as

the query, and the image embedding serves as the key and
value. CamSAM?2 demonstrates superior attention preci-
sion over SAM2, with a larger activated region and stronger
activations around target objects, validating the effective-
ness of our proposed methods in enhancing VCOS quality.

Notably, CamSAM?2 introduces only a marginal increase
in parameters (0.5M). Despite this minimal increase, Cam-
SAM?2 achieves significant improvements while keeping all
of SAM2’s parameters unchanged, fully inheriting SAM2’s
capability for segmenting and tracking common objects in
natural scenes.

Results on CAD. We evaluate the zero-shot performance
of CamSAM?2 and SAM?2 on the CAD dataset using Hiera-
T and Hiera-S backbones with point and box prompts, as
shown in Tab. 3. CamSAM?2 demonstrates notable improve-
ments over SAM2, particularly in the 1-click prompt set-
ting, where it gains 3.4 and 1.8 in mDice and mloU, high-
lighting CamSAM?2’s enhanced capability when only mini-
mal guidance is available. In the box prompt setting, Cam-
SAM2 also shows clear gains, with an increase of 1.8 and
2.5 in mDice and mloU. These observations indicate that
CamSAM?2 outperforms SAM?2 in zero-shot scenarios, un-
derscoring its effectiveness and suitability for practical seg-
mentation tasks that require minimal user input.

Results on SUN-SEG. Tab. 4 presents the performance
comparison on the SUN-SEG dataset, showing that Cam-
SAM?2 consistently outperforms SAM2 across all metrics
on both SUN-SEG-Easy and SUN-SEG-Hard test sets.
Notably, CamSAM?2 achieves substantial improvements.
Specifically, mDice improves by 10.7 on SUN-SEG-Easy,
rising from 73.6 to 84.3, and by 19.6 on SUN-SEG-Hard,
increasing from 61.0 to 80.6, demonstrating its effective-
ness in segmenting camouflaged polyps. Based on the
results above, our method significantly enhances SAM2
across different camouflaged scenarios, demonstrating its
effectiveness and broad applicability in VCOS.

4.3. Ablation Studies

To understand the impact of individual components in Cam-
SAM2, we conducted ablation studies on the MoCA-Mask
test set using the Hiera-T backbone and a 1-click point
prompt. The goal is to measure the contributions of key
components, including the decamouflaged token, IOF, EOF,
and OPG, on segmentation performance. Additionally, we
evaluated the effects of different distance metrics and pro-
totype numbers in the OPG process. We analyze the results
below.

Impact of Key Components.  As shown in Tab. 5, each
main component in CamSAM?2 clearly contributes to its
high performance. Starting from baseline (SAM?2), adding
the decamouflaged token alone improves mDice from 52.1
to 54.9 and mloU from 44.8 to 47.0. Adding IOF further



Model ‘ Backbone ‘ Params (M) ‘ Prompt ‘ Snmt F§tT MAE| [zt E,1 mDicet mloU*?
EGNet [60] ResNet-50 111.7 - 61.9 29.8 4.4 35.0 66.6 32.4 24.3
BASNet [37] ResNet-50 87.1 - 63.9 34.9 5.4 39.4 773 39.3 29.3
CPD [48] ResNet-50 479 - 62.2 28.9 49 35.7 66.7 33.0 239
PraNet [11] ResNet-50 32.6 - 62.9 35.2 4.2 39.7 76.3 37.8 29.0
SINet [10] ResNet-50 48.9 - 63.6 34.6 4.1 39.5 77.5 38.1 28.3
SINet-V2 [12] Res2Net-50 27.0 - 65.3 38.2 3.9 43.2 76.2 41.3 31.8
PNS-Net [16] ResNet-50 142.9 - 65.5 32.5 4.8 41.7 67.3 38.4 29.0
RCRNet [52] ResNet-50 53.8 - 62.7 28.7 4.8 32.8 66.6 30.9 229
MG [53] VGG 4.8 - 59.4 33.6 59 37.5 69.2 36.8 26.8
SLT-Net-LT [7] PVTv2-B5 82.3 - 69.6 48.1 3.0 52.4 84.5 49.3 40.2
ZoomNeXt [33] PVTv2-B5 84.8 - 75.7 59.3 2.0 63.1 86.5 59.9 51.0
SAM2 [39] Hiera-T 38.9 1-click 75.7 58.3 33 62.2 81.4 59.2 48.9
CamSAM?2 Hiera-T 39.4 1-click 77.1 62.2 3.2 68.1 83.9 62.6 50.7
SAM2 [39] Hiera-T 38.9 box 85.4 773 1.7 79.5 95.1 77.8 66.7
CamSAM2 Hiera-T 394 box 87.2 79.5 1.3 81.4 96.3 79.6 69.2

Table 3. Comparisons between our method and existing approaches on CAD. Our approach clearly outperforms existing methods.

Model | Sm T Fg 1t E,1T mDicet?
SUN-SEG-Easy

SAM2 [39] 83.4 71.6 83.0 73.6

CamSAM?2 88.3 82.6 934 84.3
SUN-SEG-Hard

SAM?2 [39] 75.5 58.4 73.4 61.0

CamSAM?2 86.4 78.2 91.2 80.6

Table 4. Comparisons between CamSAM?2 and SAM2 on SUN-
SEG-Easy and SUN-SEG-Hard.

DTZC;‘CIE IOF EOF OPG mDicet mloU?
52.1 448
v 54.9 47.0
v v 55.2 475
v v v 55.9 47.9
v v v v 64.3 54.6

Table 5. Ablation study on the effectiveness of main compo-
nents of CamSAM2. It shows the effectiveness of each key com-
ponent of CamSAM?2.

raises mDice to 55.2 and mloU to 47.5. Using EOF brings
mDice to 55.9 and mloU to 47.9. With all components
included, the model performs the best, achieving 64.3 on
mDice and 54.6 on mloU.

Effect of Distance Metric. = We compare different dis-
tance metrics for k-means clustering in OPG, as shown in
Tab. 6. Cosine distance performs better than Euclidean dis-
tance, likely due to its effectiveness in grouping camou-
flaged features by angular relationships rather than direct
distances.

Influence of Number of Prototypes k. We examine
the impact of the number of prototypes k, as shown in
Tab. 7. The results show that both fewer or higher numbers

Distance Metric | mDicet | mloUT?
Euclidean 61.9 52.7
Cosine 64.3 54.6

Table 6. Impact of using different distance metrics for k-means
in Object Prototype Generation. Cosine distance shows superi-
ority.

# Prototypes (k) | mbDicet | mloU7
3 60.2 51.8
5 64.3 54.6
7 60.6 50.8

Table 7. Impact of using different number of prototypes in
Object Prototype Generation.

of prototypes will reduce the performance due to under-
representation or redundancy, respectively. It is observed
that k = 5 is found to be optimal for capturing essential
informative details in camouflaged features.

5. Conclusion

In this paper, we introduce the CamSAM?2, by equip-
ping SAM2 with the ability to accurately segment and
track the camouflaged objects for VCOS. While SAM2
demonstrates strong performance across general segmen-
tation tasks, its performance on VCOS is suboptimal
due to a lack of feature optimization and architectural
support for considering the challenges of VCOS. To
overcome the limitations, we propose to add a learnable
decamouflaged token to optimize SAM2’s features for
VCOS, as well as three key modules: IOF for enhancing
memory-conditioned features with implicitly object-aware
high-resolution features, EOF for refining features with
explicit object details, and OPG for abstracting high-quality
features within the object region into informative object
prototypes. Our experiments on three popular benchmarks
of two camouflaged scenarios demonstrate that Cam-



SAM2 clearly improves VCOS performance over SAM2,

especially with point prompts,

while fully inheriting

SAM?2’s zero-shot capability. By setting new state-of-
the-art performance, CamSAM?2 offers a more practical
and effective solution for real-world VCOS applications.
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