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Abstract

Electroencephalography (EEG) offers a non-invasive lens into human brain activity,
but building large-scale models is hampered by topological heterogeneity: each
public EEG data defines its own electrode layout, limiting generalization. We intro-
duce LUNA (Latent Unified Network Architecture), a self-supervised foundation
model that reconciles disparate electrode geometries while scaling linearly—not
quadratically—with channel count. LUNA compresses multi-channel EEG into a
fixed-size, topology-agnostic latent space via learned queries and cross-attention.
Downstream transformer blocks then operate exclusively on this latent represen-
tation using patch-wise temporal self-attention, decoupling computation from
electrode count. Pre-trained on TUEG and Siena (> 21,000 hours of raw EEG
across diverse montages) using a masked-patch reconstruction objective, LUNA
transfers effectively to four downstream tasks: abnormality detection, artifact re-
jection, slowing classification, and emotion recognition. It demonstrates highly
competitive performance across several benchmarks, achieving state-of-the-art
results on TUAR and TUSL, e.g., 0.921 AUROC on TUAR, while reducing FLOPs
by 300 and trimming GPU memory use by up to 10x. Critically, these gains
are consistent across all evaluated electrode configurations. Code and pre-trained
models will be released upon publication.

1 Introduction

Electroencephalography (EEG) provides deep insight into brain activity without requiring invasive
procedures, and plays a crucial role in clinical diagnostics, cognitive neuroscience, and human-
computer interaction. In recent years, deep neural networks have significantly advanced EEG
analysis, shifting from handcrafted pipelines to end-to-end learning systems [1]]. Transformer-based
models now rival traditional signal processing techniques by jointly modelling long-range temporal
dynamics and cross-channel correlations [2} 3]].

Despite this progress, a fundamental bottleneck remains: EEG corpora exhibit significant topological
heterogeneity. Electrode count and placement vary widely across public and private datasets, making
it difficult to transfer models across montages. This limitation manifests in pronounced performance
degradation during cross-dataset evaluation. For example, motor-imagery decoders lose up to 14
percentage points (pp) in accuracy when transferring from PhysioNet to KU datasets [4], while state-
of-the-art emotion-recognition models such as BIOT and MMM exhibit 13—15 pp drops between
SEED and DEAP montages [} 6]]. Similarly, patient-to-patient transfer in stereotactic EEG (sEEG)
remains an unsolved challenge, with naive models performing near chance without explicit spatial
encoding [[7].

Existing approaches offer limited solutions to this problem. Some train bespoke models for each
montage, while others retain only shared electrodes—discarding up to 80% of available data []].
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More general approaches that flatten channels and time into long sequences incur quadratic self-
attention complexity, O((S -C )2) where S is the number of time segments and C' is the number of
electrodes (channels), rapidly exhausting memory on dense caps [5]. These challenges underscore
the need for a single, montage-agnostic architecture that scales efficiently with electrode count.

LUNA (Latent Unified Network Architecture) directly addresses this gap. Our key innovation is a
topology-invariant encoder that maps arbitrary electrode layouts into a fixed latent space via learned
queries and cross-attention. Temporal self-attention layers then operate exclusively on this latent
space, decoupling computational cost from the number of electrodes. We pre-train LUNA using a
masked-patch reconstruction objective on TUEG [9]] and STENA [10] (over 21,000 hours of raw EEG
data), and fine-tune on four downstream benchmarks spanning abnormality and artifact detection,
slowing classification, and emotion recognition.

The key contributions of this work are the following:

* Topology-invariant encoder. A learnt query / cross-attention module that projects arbitrary-sized
channel sets into a fixed latent space.

* Linear-in-channels complexity. Patch-wise temporal attention that decouples FLOPs and memory
from electrode count.

 State-of-the-art accuracy-efficiency trade-off. LUNA achieves strong results across a range of
EEG benchmarks, demonstrating significant capabilities with balanced accuracies of 81.57% on
TUAB and 39.18% on SEED-V [11]], and AUROC scores of 0.921 on TUAR and 0.802 on TUSL,
while reducing FLOPs by 300x and GPU memory footprint by up to 10x on high-density EEG
recordings. Crucially, these gains hold across diverse electrode configurations, confirming LUNA’s
generalization capability.

2 Related Work

To contextualize our contributions, this section discusses relevant state-of-the-art methodologies that
we will compare against. We focus on advancements in self-supervised learning for time series, the
emergence of foundation models for physiological signals, and existing approaches to managing
variable input structures, especially concerning topological heterogeneity in the EEG domain and
computational efficiency.

2.1 Self-Supervised Learning Strategies in EEG

Foundation models for EEG primarily rely on self-supervised learning (SSL) to leverage large
unlabeled datasets. Masked signal modeling is a dominant paradigm. BENDR [[12]] pioneered this for
EEG by adapting masked prediction concepts from speech, applying a contrastive objective to predict
masked convolutional features. Subsequent models refined this: BrainBERT [[13]] performs masked
prediction on channel-independent spectrograms for intracranial electroencephalography GEEG);
EEGFormer [[14] and LaBraM [[15]] predict vector-quantized (VQ) representations of masked patches,
learning discrete codebooks; CBraMod [[16]] directly reconstructs masked raw signal patches. LUNA
employs a similar masked reconstruction objective but applies it after projecting channel information
into a unified latent space, requiring the decoder to reconstruct channel-specific details from this
compressed representation.

2.2 Modeling Spatial Structure and Topology Variation in EEG

Capturing the spatial relationships between EEG channels is vital but complicated by varying elec-
trode counts and layouts across datasets. Several strategies have been explored in the literature:
Channel Independence: Early approaches and models like BrainBERT [13]] and EEGFormer [14]
process each channel’s data independently before potentially combining them later. While inherently
handling varying channel numbers, this neglects early modeling of cross-channel interactions.
Fixed-Topology Spatial Modeling: Models like Brant [17] use dedicated spatial encoders alongside
temporal ones but assume a consistent channel configuration, limiting cross-dataset generalization.
Graph Neural Networks (GNNs) [18] explicitly model spatial relationships using a predefined ad-
jacency graph, but require mechanisms to handle dynamically changing graph structures when
topologies vary. LUNA avoids pre-defined graphs or fixed structures.



Joint Spatio-Temporal Attention: LaBraM [[15] flattens channel and patch dimensions into one long
sequence, allowing a standard Transformer to learn spatio-temporal dependencies simultaneously.
However, this incurs O((SC)?) complexity, scaling quadratically with both sequence length/patches
(S) and channels (C). CBraMod [[16] and CEReBrO [[19] use alternating or parallel spatial and tempo-
ral attention mechanisms, reducing complexity to O(maz(S?, C?)) but still scaling quadratically
with the dominant dimension. BIOT [5]] uses linear attention after flattening, improving efficiency but
potentially limiting modeling capacity. LUNA differs significantly by performing channel unification
first before applying temporal attention with quadratic complexity only on the patch dimension and
the much smaller latent dimension Q.

Explicit Topology Mapping: Some methods explicitly map varying topologies to a canonical repre-
sentation. MMM [6] maps channels to predefined anatomical regions but relies on hand-engineered
features (Differential Entropy) rather than raw signals. PopT [20] aggregates pre-computed channel-
independent temporal features using 3D electrode coordinates. While achieving topology invariance,
these methods are not fully end-to-end or rely on external information (regions). LUNA learns an
end-to-end mapping from raw signals using learned queries without requiring pre-defined structures.

2.3 Learned Queries and Efficient Attention for Set Abstraction

LUNA’s core mechanism for topology unification draws inspiration from architectures designed for
permutation-invariant processing of set-structured data. Set Transformer [21]] introduced the concept
of using a small set of learnable inducing points (queries) and an Induced Set Attention Block to
summarize information from a larger input set via cross-attention, reducing the complexity from
O(N?)to O(M - N). PerceiverlO [22] further developed this mechanism, demonstrating its power
in creating a fixed-size latent bottleneck capable of handling diverse, variable-sized inputs across
different modalities (images, text) and enabling flexible decoding via task-specific output queries.

LUNA adapts this principle specifically for EEG topology invariance. We treat the set of EEG channel
features at a given time interval (patch) as the input set. By applying cross-attention between the
channel features (as keys/values) and a small number (Q) of learned queries, LUNA projects the
variable-channel input onto a fixed-size latent space (R?*¥). This projection is permutation-invariant
with respect to the input channels, thus achieving topology agnosticism. Furthermore, it improves
computational efficiency, as the complexity of this step scales linearly with the number of channels.

3 Methodology

Developing generalizable foundation models for EEG is hindered by two primary obstacles: the topo-
logical heterogeneity of EEG montages (varying channel counts and layouts) and the computational
complexity of attention mechanisms. Standard models struggle with diverse input channel configu-
rations, limiting data aggregation and generalizability. Furthermore, transformer-based approaches
often face prohibitive O((C - 5)?) or O(max(C?, 5?)), as discussed in the section complexity
when processing C' channels and S' temporal patches. This limits their applicability to high-density
EEG or long recordings.

LUNA addresses these challenges using a smaller latent space. Firstly, Channel-Unification Module
(Sec .[3.T) employs learned queries and cross-attention to project variable-channel features into a fixed-
dimension latent space, achieving topology invariance. Secondly, by unifying channel information
into a compact set of @) queries (@) < C') before temporal processing, LUNA significantly reduces
computational demands. This design enables efficient and scalable processing of heterogeneous EEG
data, paving the way for more robust foundation models. LUNA adopts an encoder-decoder architec-
ture that transforms EEG signals from heterogeneous montages into a unified latent representation,
enabling topology-agnostic modeling and efficient downstream decoding (Figure|[I).

3.1 Encoder

The encoder comprises three key modules that transform the input EEG into a topology-agnostic
latent representation: patch feature extraction, channel unification, and patch-wise temporal modeling.
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Figure 1: Overview of LUNA. EEG signals (B x C' x T') are segmented into patches and embedded.
Channel-Unification Module maps channel-wise features into a fixed-size latent space using learned
queries (Q). Patch-wise Temporal Attention processes this latent sequence. The decoder generates
task-specific outputs.
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Patch Feature Extraction Given raw EEG z € RE*¢*T (Batch B, Channels C, Time T'), we
segment each channel into S = T'/ P non-overlapping temporal patches of size P. These patches are
embedded via two parallel pathways:

Temporal Embedding: A 1D convolutional network (with GroupNorm [23]], GELU [24]) encodes
local temporal features similar to state-of-the-art methods such as LaBraM[15] and CBraMod [16]],
Frequency Embedding: The magnitude and phase from each patch’s Fourier transform are projected
through an MLP. These representations are summed to obtain patch features = feqtures-

Channel Positional Encoding To encode electrode locations, we apply NeRF-inspired sinusoidal

encoding [25] to normalized 3D electrode coordinates, followed by an MLP projection. This yields
Eyos € REXCXE which is added to Zfeaures.

During pre-training, a random subset of tokens is masked using a learnable embedding.

Channel-Unification Module To handle varying channel counts (C') across recordings, we intro-
duce a cross-attention module that maps patch-wise features into a fixed latent space. Specifically, Q
learned queries Qiean € R®P*E  which are learnable parameters of the model, initialized orthogo-
nally to encourage diverse representations and optimized through backpropagation during training,
cross-attend to patch features.

Let the input to this module be the tensor Xopen € REX(CS)XE representing the spatially-aware
features for B samples, S patches per channel, and feature dimension E. We first reshape this tensor
to X’ € R(E$)XCxE o treat each patch instance across the batch independently while isolating
the channel dimension for attention. The cross-attention mechanism then computes the output
representation A g, € R(B-S)x@xE,

Ay = MultiHeadAttention(Q, X', X') )]

A feed-forward network (FFN) with residual connection refines the outputs, followed by L Trans-
former encoder layers operating on the query dimension Q.

Xunified = TransformerEncoder(A oy + FFN(Aoy)) 2)

The result Xypifiea € R(B S *Q@XE decouples further processing from the original electrode layout.

Patch-wise Temporal Encoder The unified representations are reshaped into temporal sequences
X nified € REX5X (@E)_ These are processed by a stack of Transformer encoder blocks with Rotary



Positional Embeddings (RoPE) [26]] to capture temporal dependencies efficiently. A key advantage
of this encoding approach is that each of the S temporal tokens in X/ ..., now encapsulates richer,
aggregated information from multiple input channels, rather than representing a single channel’s
segment. Furthermore, by not tokenizing each channel independently for temporal processing, the
effective sequence length for the temporal Transformers is reduced from .S - C to just .S, leading to

significant reductions in computational complexity and memory requirements.

Eou = TemporalEncoder (X ieq)

3.2 Decoder

LUNA supports two decoding strategies depending on the task: reconstruction (pre-training) and
classification (fine-tuning).

Reconstruction Head (Pre-training) For masked patch reconstruction, C' learned decoder queries
Eje. € REXCXE attend to E,,,; via cross-attention, producing channel-specific representations Fge.
A linear projection recovers the patch values & € RE*(C-5)x P,

Classification Head (Fine-tuning) For downstream tasks, a single aggregation query E,q, €

REX1x(QE) attends to E,,; to produce a pooled representation, which is passed to an MLP for
classification.

3.3 Training Objectives

LUNA is pre-trained with a masked reconstruction loss and an auxiliary query specialization loss.

Reconstruction Loss A Smooth L1 loss is applied to both masked and visible patches:

1 1
Lrec = Ni Z SmOOthLl(xorigi; xreconsi) +a-
masked p

N E SmoothL1(Zorig, , Trecons; )
cM visible igM

and SmoothL1(z, %) = 0.5(z — #)? if |z — 2| < 3, else Blz — &| — 0.55%, with 8 = 1.

Query Specialization Loss To promote diversity among queries, we penalize similarity in query-
channel affinity matrices by minimizing the mean value of off-diagonal elements:

A B Q Q 9
Lopec = WP(Q—I) Z Z Z ((Aafﬁ“ityA'Z;ﬁ“i‘y)b/’i’j)

b'=1i=1 j=1,j#i

4 Results
4.1 Experimental Setup

Datasets We pre-train LUNA on a combined corpus of Temple University Hospital EEG Corpus
(TUEG) [9]] and the Siena Scalp EEG Database [[10], spanning recordings with 20, 22, and 29 channels
amounting to over 21,900 hours of EEG data (see Table EI) Downstream evaluations cover four
diverse benchmarks: TUAB [9]]: Abnormal EEG detection (binary classification), TUAR [9]: Artifact
detection (multi-class classification) TUSL [9]]: Slowing event classification (4-class classification).
SEED-V [11]]: Emotion recognition (5-class classification), with unseen 62-channel topology. All
subjects and recordings from the downstream evaluation datasets (TUAB, TUAR, TUSL, SEED-V)
were strictly excluded from this pre-training set to ensure fair evaluation of generalization. For LUNA,
the input EEG is segmented into patches, consisting of 40 timestamps. For most datasets, EEG
recordings are sliced into non-overlapping 5-second segments to form individual training/evaluation
samples. SEED-V dataset uses its default 1-second sample duration.

Fine-tuning and Data Splits For the TUAB dataset, we use the official train-test split. As the
TUSL and TUAR datasets lack official test splits, we implement an 80%/10%/10% randomized
split for training, validation, and testing. For SEED-V, fifteen trials are divided equally into train,



validation, and test sets for each session. For the TUAR dataset, we adopt a multiclass classification
approach, restricting to 5 distinct artifact types in a single-label setting, similar to EEGFormer [14].
We optimize binary cross-entropy loss for TUAB and cross-entropy loss for other datasets. We report
the mean and standard deviation of results obtained across three different random seeds.

Preprocessing We apply a minimal, standardized preprocessing pipeline to all EEG data. Signals
are first bandpass filtered between 0.1 Hz and 75 Hz. A notch filter (SOHz or 60Hz) is applied to
remove power-line interference. All signals are then resampled to 256 Hz. For TUEG, TUAB, TUAR,
and TUSL datasets, signals are converted to a bipolar montage; Siena and SEED-V are processed in
unipolar format. Finally, each channel within each sample is normalized using z-score normalization.

Computational Environment All experiments were conducted on a cluster of eight NVIDIA A100
GPUs, using Python 3.11.6 and PyTorch 2.4.1 with CUDA 12.1. Training utilizes ‘bf16‘ mixed-
precision. Detailed hyperparameters for pre-training and fine-tuning are provided in Appendix[A.3]

Baselines and Variants We compare against state-of-the-art supervised and self-supervised meth-
ods, including transformer-based architectures such as LaBraM [[15]], CBraMod [[16], EEGFormer [14]],
and BIOT [5]. LUNA is evaluated in three configurations: Base (7M), Large (43M), and Huge (311M
parameters). Model size is increased by expanding the depth of the Patch-wise Temporal Encoder,
the hidden embedding dimension F, and the number/size of queries () in the Channel-Unification
Module. Key architectural settings are detailed in Appendix[A.1]

4.2 Downstream Task Performance

Abnormal EEG Detection (TUAB) LUNA demonstrated competitive performance on TUAB
(Table[I). LUNA-Huge achieves AUROC of 0.8957 and AUPR of 0.9029, surpassing most self-
supervised baselines and approaching large-scale models like LaBraM and CBraMod. Notably,
LUNA maintains strong performance despite being significantly smaller, highlighting its efficiency.

Table 1: Performance comparison on TUAB abnormal EEG detection.

Model Size Bal. Acc. (%) 1 AUC-PR 1 AUROC t
Supervised Models
SPaRCNet [27] 0.8M 78.96 + 0.18 0.8414 £ 0.0018  0.8676 + 0.0012
ContraWR [28]] 1.6M 77.46 + 0.41 0.8421 £0.0140  0.8456 + 0.0074
CNN-Transformer [29] 3.2M 77.77 £ 0.22 0.8433 £ 0.0039 0.8461 +£ 0.0013
FFCL [30] 2.4M 78.48 + 0.38 0.8448 £ 0.0065 0.8569 + 0.0051
ST-Transformer [31]] 3.2M 79.66 + 0.23 0.8521 £ 0.0026  0.8707 &+ 0.0019
Self-supervised Models

BENDR [12] 0.39M 76.96 + 3.98 - 0.8397 £ 0.0344
BrainBERT [[13] 43.2M - 0.8460 + 0.0030  0.8530 + 0.0020
EEGFormer-Base [[14] 2.3M - 0.8670 £ 0.0020  0.8670 % 0.0030
BIOT [5] 3.2M 79.59 4+ 0.57 0.8692 + 0.0023  0.8815 % 0.0043
EEG2Rep [32] - 80.52 £2.22 - 0.8843 £ 0.0309
FEMBA-Huge [33] 386M 81.82 £0.16 0.9005 + 0.0017  0.8921 4 0.0042
CEReBrO [19] 85.15M 81.67 £0.23 0.9049 £ 0.0026  0.8916 % 0.0038
LaBraM-Base [15] 5.9M 81.40 £0.19 0.8965 + 0.0016  0.9022 + 0.0009
LaBraM-Huge [135] 369.8M 82.58 + 0.11 0.9204 £ 0.0011  0.9162 + 0.0016
CBraMod [16] 69.3M 82.49 £0.25 0.9221 + 0.0015  0.9156 + 0.0017
LUNA-Base ™ 80.63 +0.08 0.8953 £ 0.0016  0.8868 +£ 0.0015
LUNA-Large 43M 80.96 +0.10 0.8986 £ 0.0005  0.8924 + 0.0010
LUNA-Huge 311.4M 81.57 £0.11 0.9029 £ 0.0014  0.8957 £ 0.0011

Artifact and Slowing Detection (TUAR and TUSL) LUNA delivers state-of-the-art results on
TUAR and TUSL (Table[2). LUNA-Huge achieves AUROC 0.921 on TUAR, outperforming FEMBA-
Large and other methods. On TUSL, LUNA-Huge reaches AUROC 0.802, the highest among all
compared models.



Table 2: Performance comparison on TUAR (artifact detection) and TUSL (slowing event classifica-

tion).
Model Size TUAR TUSL
AUROC 1 AUC-PR 1 AUROC t AUC-PR 1
Supervised Models
EEGNet [34] - 0.752 £0.006 0.433 +£0.025 0.635+£0.015 0.351 £ 0.006
EEG-GNN [18] - 0.837 £ 0.022 0.488 £0.015 0.721 £ 0.009 0.381 £ 0.004
GraphS4mer [35]] - 0.833 £0.006 0.461 +0.024 0.632£0.017 0.359 £ 0.001
Self-supervised Models
BrainBERT [[13]] 432M  0.753 £0.012 0.350 +0.014 0.588 £0.013 0.352 £ 0.003
EEGFormer-Base [[14] 23M  0.847 £0.014 0.483+0.026 0.713 £0.010 0.393 £ 0.003
EEGFormer-Large [14] 3.2M  0.852 +0.004 0.483 £0.014 0.679 +0.013 0.389 £ 0.003
FEMBA-Base [33] 47.7M  0.900 £ 0.010 0.559 +0.002 0.731 +0.012 0.289 £ 0.009
FEMBA-Large [33] 77.8M 0915+ 0.003 0.521 £0.001 0.714 +0.007 0.282 £ 0.010
LUNA-Base ™ 0.902 £0.011 0.4954+0.010 0.767 £0.023 0.301 £ 0.003
LUNA-Large 43M 0918 £ 0.003 0.505 £0.010 0.771 £ 0.006  0.293 £0.021
LUNA-Huge 311.4M  0.921 £0.011 0.528 +0.012 0.802 £ 0.005 0.289 +0.008

Emotion Recognition on Unseen Montage (SEED-V) The SEED-V benchmark tests generaliza-
tion to a novel 62-channel montage, distinct from pre-training data. Results in Table[3|show that while
LUNA effectively operates on this unseen topology, its performance (e.g., Bal. Acc.) lags behind
leading methods like CBraMod by 2-3 pp. This suggests a trade-off inherent in LUNA’s design: while
its query-based unification enables efficient, topology-agnostic processing across common montage
variations (as demonstrated on TUAB/TUAR/TUSL), generalizing zero-shot to vastly different,
high-density layouts remains challenging, possibly due to positional encoding constraints. Despite
this gap, LUNA shows positive scaling from Base to Large models, underscoring its potential.

Table 3: Performance comparison on SEED-V emotion recognition (5-classes).

Model Size Bal. Acc. (%) 1 Cohen’s Kappa T  Weighted F1 1
Supervised Models
SPaRCNet [27] 0.79M  0.2949 £ 0.0078  0.1121 £0.0139  0.2979 + 0.0083
ContraWR [28]] 1.6M 0.3546 £0.0105  0.1905 £ 0.0188  0.3544 £ 0.0121
CNN-Transformer [29] 3.2M 0.3678 £ 0.0078  0.2072 £ 0.0183  0.3642 £ 0.0088
FFCL [30] 2.4M 0.3641 £0.0092  0.2078 £ 0.0201 0.3645 £ 0.0132
ST-Transformer [31]] 3.5M 0.3052 £0.0072  0.1083 £ 0.0121 0.2833 £ 0.0105
Self-supervised Models
BIOT [5] 3.2M 0.3837 £0.0187  0.2261 £ 0.0262  0.3856 £ 0.0203
LaBraM-Base [15] 5.8M 0.3976 £ 0.0138  0.2386 £ 0.0209  0.3974 £ 0.0111
CBraMod [16] 14M 0.4091 £ 0.0097  0.2569 + 0.0151  0.4101 + 0.0108
LUNA-Base ™ 0.3730 £0.0098  0.1831 £0.0103  0.3389 £ 0.0091
LUNA-Large 43M 0.3918 £ 0.0066  0.2073 £ 0.0045  0.3586 £ 0.0013
LUNA-Huge 311.4M  0.3900 £ 0.0096  0.2037 & 0.0103  0.3506 % 0.0047

4.3 Computational Efficiency

LUNA achieves substantially better calling efficiency compared to full and alternating attention
models. As shown in Figure Za] LUNA’s patch-wise attention enables thousands of temporal patches
without the quadratic cost faced by LaBraM. Likewise, Figure [2b] shows that LUNA maintains
near-constant compute cost when channel count increase, outperforming CBraMod’s O(C?) scaling
for dense EEG recordings. These results confirm that LUNA decouples inference cost from input
montage, making it well-suited for long recordings or high-density EEG scenarios.

4.4 Ablation Studies
We validate the impact of LUNA’s key design choices on TUAB and TUAR (Table f).
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Figure 2: Computational cost scaling of LUNA and baseline models. (a) FLOPs and Memory usage
vs. number of patches. (b) FLOPs and Memory usage vs. number of channels. LUNA demonstrates
significantly better efficiency and scalability, especially compared to full attention (LaBraM), and
favorable scaling compared to alternating attention (CBraMod) due to the fixed latent query space.

Learned Queries vs. Fixed Regions Replacing learned queries with predefined spatial regions
(similar to what MMM [6] does) slightly reduces AUROC (-0.004 to -0.006), confirming that learned
queries offer flexibility and adaptiveness beyond anatomical priors.

Query Specilization Loss Removing the specialization loss results in modest AUROC declines
(-0.003 to -0.006), showing that query diversity improves robustness, especially for complex artifacts.

Frequency Features Ablating frequency embeddings leads to the largest drop (up to -0.012
AUROC), showing their complementary role to temporal features in enhancing representation quality.

Table 4: Ablation study results (LUNA-Base) on TUAB and TUAR datasets.

Model Configuration TUAB AUROC TUAB AUC-PR TUAR AUROC TUAR AUC-PR
LUNA-Base (Full Model) 0.887 £ 0.002 0.895 £ 0.002 0.902 £ 0.011 0.495 £ 0.010
Unification Module:

- Region-based Attention 0.883 £ 0.001 (] 0.004) 0.892 % 0.002 ({ 0.003) 0.896 £ 0.001 (/. 0.006) 0.509 4 0.006 (1 0.014)

Other Components:
- w/o Query Specialization Loss 0.884 4 0.003 (] 0.003) 0.892 % 0.002 ({ 0.003) 0.895 = 0.005 ({. 0.007) 0.498 =+ 0.010 (1 0.003)
- w/o Frequency Features 0.876 4+ 0.012 (/. 0.011) 0.883 + 0.005 ({ 0.012) 0.893 £ 0.011 (] 0.009) 0.490 4 0.011 (] 0.005)

4.5 Latent Space Analysis

Pre-trained Representations t-SNE visualizations (Figure[3) reveal that even before fine-tuning,
LUNA’s encoder captures task-relevant structure. Normal and abnormal EEGs form separate clusters
in TUAB, while artifact classes are partially separated in TUAR, demonstrating effective pre-training.
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Figure 3: t-SNE of LUNA-Base embeddings on downstream datasets before fine-tuning.
4.6 Learned Query Specialization Visualization

Query Specialization Visual analysis of the learned queries (Figure f) highlights their role in
topology-agnostic representation. Queries exhibit distinct spatial profiles: some are localized (e.g.,
frontal regions), while others aggregate broader signals. This emergent specialization confirms that
cross-attention learns flexible, data-driven basis functions for spatial unification.

Query 1 Query 2 Query 3 Query 4

Figure 4: Visualization of the attention patterns of queries in LUNA-Base on Siena [[10] topology.

5 Conclusion

We introduced LUNA, a self-supervised foundation model designed to address the challenge of
topological heterogeneity in EEG analysis. By leveraging learned queries and cross-attention, LUNA
unifies recordings with diverse electrode layouts into a fixed latent space, enabling montage-agnostic
modeling. Through extensive experiments across abnormality detection, artifact recognition, slowing
classification, and emotion recognition, we demonstrate that LUNA matches or surpasses state-of-the-
art performance while offering substantial efficiency gains in FLOPs and memory usage. Critically,
these benefits hold across all evaluated electrode configurations.

While LUNA achieves strong results, especially on heterogeneous montages, our analysis also
reveals limitations. Performance on SEED-V suggests sensitivity to unseen channel topologies,
likely stemming from reliance on positional encodings learned during pre-training. Addressing this
limitation, through enhanced spatial generalization strategies or hybrid learned/geometric embeddings,
is an important direction for future work.

More broadly, this work highlights the promise of topology-agnostic latent representations for
scalable EEG modeling. Future extensions include exploring unified models across EEG and
invasive modalities (e.g., SEEG, ECoG), integrating domain-specific priors (e.g., neurophysiological
constraints), and adapting LUNA for real-time inference scenarios. Beyond technical advancements,
the development of efficient, topology-invariant EEG models like LUNA could enhance neurological
diagnostics and research accessibility. However, careful attention must be paid to mitigating risks
such as algorithmic bias and ensuring patient data privacy for deployment. Future work should
integrate ethical concerns alongside technical improvements.
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A Appendix

This appendix provides supplementary details regarding the model architecture, datasets, experimental
settings, and additional results supporting the findings presented in the main paper.

A.1 Model Architecture Details

The following tables show the hyperparameter setup for the pre-training and the downstream fine-
tuning for LUNA.

A.1.1 Hyperparameters for pre-training

Table 5: Hyperparameters for EEG pre-training.

Hyperparameters LUNA-Base LUNA-Large LUNA-Huge
Input channels {1,8,8} {1,16,16} {1,32,32}
Output channels  {16,16,16} {24,24,24} {32,32,32}
Temporal Encoder Kernel size {20,3,3}
Stride {10,1,1}
Padding {9.1,1}
Patch size 40
Transformer encoder layers 8 10 24
Number of queries 4 6 8
Query size 64 96 128
Hidden size 256 576 1024
MLP size 1024 2304 4096
Attention head number 8 12 16
Batch size per GPU 2040 2040 720
Total batch size 8160 8160 11520
Peak learning rate 1.25e-4
Minimal learning rate 2.5e-7
Learning rate scheduler Cosine
Optimizer AdamW
Adam g3 (0.9,0.98)
Weight decay 0.05
Total epochs 60
Warmup epochs 10
Loss type Smooth-L1
Non-masked region loss coefficient 0.05
Query specialization loss coefficient 0.8
Gradient clipping 1
Mask ratio 0.5
Precision bf16-mixed
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Al.2

Hyperparameters for downstream fine-tuning

Table 6: Hyperparameters for downstream fine-tuning.

Hyperparameters Values
Batch size per GPU 512
Peak learning rate le-4
Minimal learning rate Se-6
Learning rate scheduler Cosine
Optimizer AdamW
Adam g3 (0.9,0.999)
Weight decay 0.05
Total epochs 50
Early stopping patience 10
Warmup epochs 5

Layer-wise learning rate decay
Label smoothing (multi-class classification)

Drop path

0.1 (B/L) 0.2 (H)
0.5 (B) 0.8 (L/H)
0.1

A.1.3 Complexity Analysis

The computational complexity of key attention stages and a comparison with alternatives are shown

in[Zland 8

Table 7: Complexity Breakdown of LUNA Encoder Stages.

Stage

Input Shape

Complexity

Channel-Unification Module (Cross-Attn)

(B-S)xCxFE OB-5S-Q-C-E)

Query Self-Attention (B-SYxQxE O(B-S-Q% FE)
Patch-wise Attention Encoder (Self-Attn) B x Sx (Q-E) O(B-S?-Q-FE)
Table 8: Attention Complexity Comparison.
Method Bottleneck Complexity

LUNA (Latent Space Attention)
Full-Attention (e.g., LaBraM)
Alternating Attention (Patches, e.g., CBraMod)

Alternating Attention (Channels, e.g., CBraMod)

O(B-S2-Q-E)orOB-S-Q-C-E)
O(B-S8%-C?-E)
O(B-S8*-C-E)
O(B-S-C? E)

A.2 Dataset and Preprocessing Details

Datasets Used We use publicly available EEG datasets, provided in[9]

Table 9: Summary of Datasets Used.

Dataset # Subjects # Samples (Train/Val/Test or Total) Hours of Recordings # Channels Montage Used
TUEG (Pre-train) 14,987 15,686,874 (Total) 21,787.32 20 or 22 Bipolar
Siena (Pre-train) 14 101,520 (Total) 141.0 29 Unipolar
TUAB 2,329 591,357 /154,938 / 74,010 1,139.31 22 Bipolar
TUAR 213 49,241/5,870/5,179 83.74 22 Bipolar
TUSL 38 16,088 / 1,203 / 2,540 27.54 22 Bipolar
SEED-V 15 43,328 /43,360 / 31,056 32.70 62 Unipolar

A.3 Experimental Settings

Pre-training LUNA is pre-trained using a masked patch reconstruction task. Key hyperparameters

are listed in[3
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Computational Resources Experiments were conducted using NVIDIA A100 GPUs. Pre-training
took approximately 1 day on 8 GPUs for the base and large models and 16 GPUs for the huge model.

A.4 Additional Quantitative Results

Training Curves The pre-training loss curves for LUNA-Base are shown in[5] The reconstruction
loss drops shows and initial plateau then drops slowly over the epochs, while the query specialization
shows a jump and then a slow decrease, indicating more orthogonal query usage over time. The
initial drop of the query specialization might be due to a trivial case where a query attends to only
one channel. The queries learn to attend to their own specialized areas afterwards while covering all
the channels in the input.

Reconstruction Loss over Epochs

» 0.451 —— Train Reconstruction Loss
é ’ Validation Reconstruction Loss
5040+
£
£ 0.351
3
8
~ 0.301
0 5 10 15 20 25 30 35 40 45 50 55 60 65
Epochs
Query Specialization Loss over Epochs
o 0.0015
=
£0.00101
j::
8
0.00051 —— Train Query Specialization Loss
Validation Query Specialization Loss

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Epochs

Figure 5: Loss curves during pre-training for LUNA-Base (Reconstruction and Query Specialization
Loss).

A.5 Additional Visualizations

Reconstruction Examples Figures [f] [7] [§] show examples of the model reconstructing masked
patches (gray regions) for inputs with 20, 22, and 29 channels, respectively. The reconstructions
capture the underlying signal trend and demonstrate robustness across different topologies seen
during pre-training.
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Reconstruction for random batch with 20 channels
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Figure 6: Example reconstruction on input with 20 channels (masked regions in gray).

Reconstruction for random batch with 22 channels
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Figure 7: Example reconstruction on input with 22 channels (masked regions in gray).

Reconstruction for random batch with 29 channels
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Figure 8: Example reconstruction on input with 29 channels (masked regions in gray).
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