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Abstract

Physiological signals are often corrupted by motion artifacts, baseline drift, and
other low-SNR disturbances, which pose significant challenges for analysis. Addi-
tionally, these signals exhibit strong non-stationarity, with sharp peaks and abrupt
changes that evolve continuously, making them difficult to represent using tradi-
tional time-domain or filtering methods. To address these issues, a novel wavelet-
based approach for physiological signal analysis is presented, aiming to capture
multi-scale time-frequency features in various physiological signals. Leverag-
ing this technique, two large-scale pretrained models specific to EMG and ECG
are introduced for the first time, achieving superior performance and setting new
baselines in downstream tasks. Additionally, a unified multi-modal framework is
constructed by integrating pretrained EEG model, where each modality is guided
through its dedicated branch and fused via learnable weighted fusion. This design
effectively addresses challenges such as low signal-to-noise ratio, high inter-subject
variability, and device mismatch, outperforming existing methods on multi-modal
tasks. The proposed wavelet-based architecture lays a solid foundation for analysis
of diverse physiological signals, while the multi-modal design points to next-
generation physiological signal processing with potential impact on wearable
health monitoring, clinical diagnostics, and broader biomedical applications.
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1 Introduction

Physiological signals such as electroencephalography (EEG), electromyography (EMG), and elec-
trocardiography (ECG) are essential for health monitoring, clinical diagnosis, and brain—computer
interfacing [1]. Although large-scale foundation models for generic time-series data have recently
shown remarkable success [2, 3], pretrained networks for biosignals remain scarce. While several
EEG-specific encoders have been developed, such as LaBraM, which enables cross-dataset learning
by segmenting signals into channel patches and training a vector-quantized neural spectrum tok-
enizer [4], and EEGPT, a pretrained Transformer designed for universal EEG feature extraction that
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combines masked reconstruction with spatio-temporal representation alignment to mitigate issues
of low SNR and inter-subject variability [5], similar models for other biosignals are still lacking.
Biosignals differ fundamentally from images or language: they evolve continuously, exhibit strong
non-stationarity, and are often corrupted by motion artifacts, baseline drift, and other low-SNR distur-
bances [6]. These challenges, compounded by high inter-subject variability, hinder the application of
standard deep learning techniques [7]. As a result, there is an urgent need for modeling frameworks
that can naturally accommodate the multi-scale, noisy, and heterogeneous nature of physiological
time-series.

Traditional time-domain methods often overlook the rich spectral content of biosignals [8], while
frequency-domain methods like fixed-window Fourier transforms assume stationarity, losing tempo-
ral resolution in rapidly changing signals [9]. In contrast, wavelet-based time-frequency methods
can adaptively capture both fast transients and slower dynamics, making them ideal for nonstation-
ary physiological data [10, 11]. However, modalities such as optical biosensing and EEG differ
significantly in terms of dimension, sampling rate, and resolution, requiring modality-specific pre-
processing. Existing segmentation and tokenization pipelines are not cross-modal, making them
unsuitable for handling diverse signal types [12]. To address these issues, we propose a learnable
wavelet decomposition pipeline that automatically selects and fuses multi-resolution filters based on
signal content. Instead of relying on hand-engineered wavelet families, our method uses an Adaptive
Wavelet Selector to assign optimal wavelet kernels for each channel, then aggregates approximate and
detail components across multiple scales. This approach effectively captures both transient spikes
(e.g., EMG bursts or ECG QRS complexes) and sustained low-frequency fluctuations, providing a
robust front-end for downstream tasks [13, 14].

Although self-supervised learning has demonstrated success in time-series data, methods inspired by
natural language processing often discard contiguous tokens in the time domain [2, 15]. Unlike words,
raw biosignal segments do not neatly correspond to meaningful units, and randomly discarding them
may remove key events or mask redundant portions, ultimately limiting model performance [16].
To overcome this, we introduce Frequency-guided Masking (FgM), a mechanism that selectively
occludes the most informative segments. Inspired by SpecAugment’s frequency masking and the
masked acoustic modeling in HuBERT [17, 18], FgM measures the spectral energy of each patch to
identify high-information regions. By masking high-energy patches more frequently, FgM forces
the model to infer crucial details from context, thereby tightening the information bottleneck. A mix
of energy-driven and random masking ensures training variability, preventing overfitting to fixed
patterns and improving task generalization.

The wavelet-based decomposition and frequency-guided masking (FgM) work in tandem: adaptive
wavelet filters separate the signal into multi-resolution bands, while FgM selectively masks bands
with higher spectral energy, making them more likely to be occluded. This strategy of multiscale
decomposition combined with energy-focused masking encourages the model to capture physiologi-
cally relevant patterns and reduce redundancy across frequencies. Empirically, masking high-energy
bands yields richer, more discriminative features compared to random time-based masking, driving
state-of-the-art performance in tasks such as arrhythmia detection (66.7% F1 score on PTB-XL [19])
and muscle activity classification (94.5% accuracy on EPN-612 [20], see Section 2.4).

Multi-modal biosignal learning faces two key challenges: first, extreme heterogeneity across modali-
ties like EEG, EMG, and ECG, which operate at different sampling rates and temporal scales, leading
to potential misalignment and spectral aliasing [21]; second, variability in signal quality due to
motion artifacts or electrode drift [22]. To overcome these, we use modality-specific backbones: a
pretrained encoder for EEG and newly pretrained PhysioWave encoders for EMG and ECG. These
backbones remain frozen during downstream training, with only lightweight classification heads and
fusion coefficients being learned. The fusion layer dynamically adjusts weights to prioritize reliable
modalities, ensuring robust predictions. This linear-probing approach consistently outperforms
single-modality baselines across multi-modal tasks (see Figures 5 and 6), including a 7.3% gain in
classification accuracy on DEAP [23], showcasing the effectiveness of dynamic, reliability-aware
fusion for heterogeneous physiological data.

In summary, our work leverages wavelet-based decomposition and a FgM strategy to advance
self-supervised learning in physiological signal processing. Specifically:

1. PhysioWave: A versatile wavelet-driven architecture for physiological signals. We
propose PhysioWave, a versatile model framework applicable to diverse physiological



signals, and using this architecture which accommodates physiological signals with different
sampling rates and dimensions through a learnable wavelet decomposition pipeline and a
unified Transformer backbone, reducing the dependency on modality-specific preprocessing.
A FgM mechanism is introduced to selectively occlude the most informative input segments,
enhancing self-supervised learning.

2. Enhanced representation learning. Large-scale pre-trained models for EMG and ECG
have been developed, trained on 823 GB of EMG data and 182 GB of ECG data, respectively,
addressing the long-standing gap in foundational models for these modalities. Extensive
evaluations across various tasks and datasets within each physiological modality demonstrate
that PhysioWave consistently achieves state-of-the-art performance, underscoring its broad
applicability and robustness (See Section 2.4).

3. Unified multimodal framework. By integrating our own pre-trained EMG and ECG
models, which were developed using the PhysioWave architecture, with existing pre-trained
EEG encoders, we build a unified framework that synergistically processes and fuses
multimodal signals, producing superior performance compared to single-modal approaches.

2  Method
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Figure 1: Model pretraining pipeline. The pipeline begins by initializing a set of standard wavelet
functions (e.g., ’db6’, ’sym4’), from which learnable low-pass and high-pass filters are generated.
These filters are then used for wavelet decomposition to obtain multi-scale frequency-band represen-
tations. The decomposed features are processed into spatio-temporal patches, with importance scores
computed using FFT-based spectral energy. High-scoring patches are masked and passed through
Transformer layers, followed by a lightweight decoder for patch reconstruction.

Model Architecture: Figure 1 illustrates the end-to-end model pretraining pipeline. The raw multi-
channel signal is first segmented into overlapping windows to form samples 2 € R¢*T', where C
denotes the number of channels and 7" the number of time steps. Each sample undergoes a learnable
wavelet decomposition across L levels, yielding multi-scale frequency-band representations: detail
subbands d[n] € RE*7 forl = 1,..., L and a final approximation subband a(")[n] € RE*T.
Concatenation of these L + 1 subband outputs along the channel axis produces a feature map
Spec(X) € RULADEOXT (Section 2.1). Next, the feature map is partitioned into uniform spatio-
temporal patches: for each patch we compute its FFT-based spectral energy, blend this value with
random noise to produce an importance score, and mask the highest-scoring patches by replacing
their embeddings with a learnable <MASK> token. The remaining patches are projected into token



embeddings and augmented with rotary positional embeddings (Section 2.2). Finally, the complete
token sequence is passed through a stack of Transformer encoder layers, and a lightweight decoder
reconstructs the masked patches (Section 2.3). In addition, end-to-end fine-tuning is performed
downstream for single-modality tasks, while in multimodal settings modality-specific predictions are
aggregated to yield the final output (Section 2.4).

2.1 Learnable Wavelet Decomposition

This module decomposes a multichannel time series { X (#)}<_; of length T into L + 1 subbands
per channel by iterating Analysis, Adaptive Gating, and Feature Fusion.

Adaptive Wavelet Selector. Low—pass and high—pass filter taps h!°, h* € R¥0, where K| is the
original wavelet filter length are extracted from a chosen discrete wavelet using PyWavelets [24].
These taps are then resampled to length K and normalized:

- - - ||nP
hP(u) = Interp(h?, K)[u], AP < AP u p € {lo, hi} )
Each channel’s depthwise filters are then initialized by copying these taps:

Ko (u) := hl°(u), kMEP(u) := hM(u), Ve=1,...,C. )

As depicted in the top-left corner of Figure 1, the model maintains M candidate wavelet bases
{(Klow Ehigh)}M (o accommodate diverse signal characteristics. For each input # € RE*T,
temporal information is aggregated via average pooling and the resulting feature vector is passed
through a compact MLP to produce unnormalized selection scores. Applying a softmax yields

selection weights
o = Softmax (MLP(AvgPool(z))) € RM, 3)

which are used to compute convex combinations of the candidate filters:

M M

lo lo high high

ko = g kg kMet = g Quy K 8 )
w=1 w=1

These aggregated filters serve as the effective low- and high-pass filters for all subsequent analysis
and downsampling operations, and during training their weights continue to be updated to adapt to
the actual signal distribution.

Analysis and Soft Gating. The learnable wavelet front-end performs a multi-resolution analysis
in which each stage halves the temporal resolution while preserving both low- and high-frequency
content. Let downsampling and nearest-neighbor upsampling by a factor of two be

(42 )] =wl2n], n=0,...,[Z] -1, )
(t2 2)[n] =x[%|, n=0,..., 71
At the first level (¢ = 0) every channel c is filtered and downsampled,
K—1 K-1 .
alVIn] = > Xc@2n+u) B[], dV[n] =Y X(2n + u) ke ], ©6)
u=0 u=0
and the process recurses for { = 1,..., L —1:
K-1 K—1
] = Y a0 0+ ) K, dV) = 3 a@Cnt ) KOG ()
u=0 u=0
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Figure 2: Analysis and soft gating process. The learnable wavelet front-end performs multi-resolution
analysis by filtering and downsampling the input signal at each stage, preserving both low- and
high-frequency components. At the first level (¢ = 0), the signal is decomposed into low-pass and
high-pass components. This process recurses for £ = 1,..., L — 1, applying downsampling at each
level. After decomposition, the subbands are upsampled to the original resolution, and an adaptive

gate Gg) € [0,1] is learned for each channel using multi-head attention. The gate dynamically
combines the original and upsampled signals, facilitating fine-scale detail insertion.

After each decomposition, the new subbands are upsampled back to the original length
oVl = (tz af™)[nl,  dF V) = (2 dEFV)n), ®)
so that fine-scale details can be re-inserted into the current resolution. Rather than performing a hard

skip connection—as is common in U-Net-style architectures [25]—an adaptive gate Gy) € [0,1] is

estimated for every channel via multi-head attention pooling over ag) (see Fig. 2). This gate weighs
the contribution of the original and the upsampled signals,

i) = GO o] + (1= GOl ) @l n), ©)
O = GO dOm) + (1- GOm)) dE+V) (10)

The soft-gating mechanism endows the model with three advantages: (i) it enables a learnable trade-
off between current-level context and finer-scale detail, reducing aliasing and ringing artefacts that
often arise from naive upsampling; (ii) the gate is estimated on a per-channel basis, allowing different
physiological channels to emphasise frequency content most relevant to their noise characteristics;
and (i) by relying on attention rather than fixed skip connections, the model dynamically modulates
information flow across levels, leading to more expressive multi-scale representations.

Feature Fusion. At each decomposition level ¢ = 1,..., L, the gated approximation—detail
pair [a(D[n], d©[n]] is concatenated along the channel axis and reshaped into a R2C*1*7 feature
map. This map is fed to a Cross-Scale Channel-Aggregation Feed-Forward Network (CAFFN;
see Fig. 3) [26]. CAFFN first applies a lightweight channel-aggregation block and then performs
multi-head attention where the current features act as queries and the flattened feature maps from all
shallower levels provide keys and values. Formally, let U(®) be the CAFEN output before cross-scale
fusion; the refined representation is obtained as

YO =UOm + 8 Attention(U(e) [n], {Y® [n]}ice), (11)

where the learnable scalar 3 balances the current-level information with the context aggregated from
coarser resolutions. This cross-scale fusion enables fine-grained subband features to be informed by
long-range patterns captured at earlier levels, yielding scale-aware, frequency-aware representations
for subsequent stages.

Finally, each refined map Y is split back into its approximation and detail halves, Y =
[a®), d®], where a(©), d©) € RE*T, The multi-band representation is obtained by concatenating
all detail subbands together with the final-level approximation:

Spec(X) = [d(l), d®, ..., dP), a(L)} e RUADOXT, (12)
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2.2 Frequency-guided Masking and Tokenisation

Frequency-guided masking. To address the challenge of selectively occluding informative seg-
ments, we introduce the frequency-guided masking process, as detailed in Algorithm 1. The multi-
band feature map Spec(X) from Eq. (12) is first sliced along the time axis into N = |T/w]|
non-overlapping segments of length w, yielding a patch array of shape RN X for each signal. In
the next step, the FFT is applied to each patch to capture its frequency components. The energy of
each patch in the frequency domain is then computed, which serves as an indicator of its importance.
However, relying solely on frequency energy could lead to overfitting, especially in scenarios where
certain high-energy patches are not necessarily the most informative. To mitigate this, random noise
is introduced into the process. This randomness is controlled by the parameter «, which governs the
trade-off between the energy and the random noise [16]. The mask ratio, p, determines the proportion
of patches to be masked. Together, the combination of frequency-guided masking and random noise
ensures that the model learns to focus on the most informative parts of the signal, while also being
robust to variations and missing information.

Tokenisation. Each masked or unmasked patch is projected to a D-dimensional token through a
shared linear layer, forming the matrix £ € RY*P_ Rotary positional embeddings {c, }_, C RP
are then added, B

E,=FE,+q,, n=1,...,N. (13)
The resulting sequence E € RV * P together with the mask M, is forwarded to the Transformer
encoder, which must reconstruct the masked, information-rich patches from context, thereby encour-
aging robust and frequency-aware representation learning.

2.3 Reconstruction

Transformer encoder and lightweight decoder. The encoder comprises L standard Transformer
blocks [27], where the only change is that the attention module uses RoPE attention. In RoPE
attention the query and key sub-vectors of every head are rotated by deterministic sinusoidal factors
that depend on their relative positions [28]. This rotation preserves dot-product magnitudes while



Algorithm 1 Frequency-guided masking

Require: Signal x € R*T, patch width w, mask ratio p, importance weight o

L N« |T/w] > number of patches
2: Slice the time axis into N non-overlapping patches p1,...,pn € R

3: forn=1to N do > score each patch
4: F «+ FFT(p,) > frequency spectrum
5: en < > .| Frl > spectral energy
6: end for )

7: Normalise e + — min(e)

max(e) — min(e)
8: Draw noise z,, ~U(0,1) forn=1,...,N

9: s aey,+ (1—a)z, > blended score
10: i« argsort(s) > ascending: low score first
11: L+ [(1—p)N| > patches to keep
12: keep « i[1:L], mask < i[L:N]

13: Initialise m < 1y; m[mask] + 0 > binary mask

14: Replace each p,, with <MASK> if My = 0
15: Re-assemble the patched signal P € RN *v

16: return masked patches ]5, mask m, sort indices i

injecting position information, enabling each head to capture long-range temporal structure [29].
After the L blocks the encoder outputs a latent sequence in which the masked tokens already carry
context-inferred estimates [30, 31].

A deliberately shallow decoder then projects the latent width to Dy, refines it with Ly vanilla
Transformer blocks, and uses a final linear head to reconstruct every element of each patch, yielding
PeRNxw, Concentrating depth on the encoder while keeping the decoder light forces the model to
store most semantic and spectral knowledge in the shared latent space [32].

Patch-level reconstruction loss. Let {p,, }/_, and {p,, })_, be the ground-truth and reconstructed
frequency-band patches defined in Section 2.2, and let M = {n | m,, = 1} be the masked-patch
index set. The model is trained to minimise the mean Smooth-L1 discrepancy over only the masked
patches [33, 34]:
1 .
= > SmoothL1(py, pn) (14)
nem

This objective 14 compels the network to recover the multiscale, frequency-band information con-
cealed by the mask.

2.4 Methods for downstream tasks

Single-modal setting. For tasks that involve a single modality (EMG or ECG), the pretrained
encoder is fine-tuned end-to-end. All patch tokens produced by the final encoder block are aggregated
through mean pooling to obtain a global representation, which is then fed to a lightweight two-layer
MLP to yield the final classification prediction.

Multi-modal setting. As illustrated in Figure 4, every pretrained encoder is kept frozen and only
its dedicated classification head—along with a set of fusion coefficients—is trained. This linear-
probing strategy preserves the representations learned during pretraining while mitigating the risk
of over-fitting that often arises when a large-parameter model is adapted to a small downstream
dataset [5]. Let M denote the set of modalities present in a particular experiment. Each modality
m € M produces logits z,,, and the learnable fusion weights & = {a;, }meam are constrained by a
softmax so that )\, a,,, = 1. The final prediction vector is obtained by

Zfused = Z Qm Zmy, (15)

meM



and zg,5cq 1S subsequently used to infer the task categories.

3 Experiments and Results

3.1 Datasets and Training Settings

Leveraging the PhysioWave architecture, two large-scale, modality-specific foundation models,
PhysioWave-ecg and PhysioWave-emg, are pretrained on the most extensive open-access corpora
currently available for their respective signal types (see Tables 7 and 8). PhysioWave-ecg is trained
on approximately 182 GB of twelve-lead ECG recordings, while PhysioWave-emg utilizes about 823
GB of EMG data. For each modality, we provide three parameter configurations: Small (SM), Base
(15M), and Large (37M). Both PhysioWave models share the same Transformer backbone; however,
their learnable wavelet front-ends are modality-aware (see Tables 4 and 5 in Appendix B for full
architectural and training details).

Signal Preprocessing. Each recording is denoised with a modality-specific band-pass filter followed
by a 50 Hz notch. Traces with fewer than 12 ECG leads or 16 EMG electrodes are zero-padded and
then resampled to 500 Hz (ECG) or 2 kHz (EMG). See Appendix C and D for full details.

Downstream Tasks and Evaluation Protocol The pretrained encoders are evaluated on the datasets
listed in Table 9. All downstream experiments follow the single- and multi-modal procedures detailed
in Section 2.4. Each benchmark is split by subject into 6:2:2 train/validation/test partitions to prevent
subject leakage.

3.2 Downstream Experiment Results

ECG Multi-label Classification Results. Table 1 compares the proposed PhysioWave-ecg with
recent large-scale pretrained ECG models. The Small model (5 M) already delivers competitive
performance: on PTB-XL it raises F1 from 55.9 % (ECG-Chat [35], 13 B) to 65.8 % (4+9.9 %), while
attaining a comparable AUROC (92.7 % vs. 94.1%). Increasing capacity to Base and Large yields
consistent gains; the 37 M variant sets new best scores on two of the three benchmarks, achieving
66.7 % / 94.6 % (F1/AUROC) on PTB-XL and 54.8 % / 98.3 % on Chapman—Shaoxing. On CPSC
2018 it surpasses the previous AUROC ceiling by +0.4 % (96.1 % vs. 95.7 %) and narrows the F1 gap
to ECG-Chat from 80.1 % to 73.1 %.

Table 1: ECG rhythm classification.

Method (year) Params PTB-XL CPSC 2018 Chapman-Shaoxing
F1 AUROC Fl1 AUROC F1 AUROC
ECG-Chat (2024) 13B 55.9 94.1 80.1 95.7 — —
MERL [36] (2024) 11M 48.1 91.9 72.8 92.6 — 87.9
MaeFE (2023) [37] IM 64.7 88.6 71.6 94.5 — —
OpenECG-SimCLR 11M 46.9 91.5 73.1 92.4 523 95.1
OpenECG-BYOL I11M 471 91.1 72.8 92.6 51.5 94.8
OpenECG-MAE 1M 48.1 90.9 74.5 93.2 50.8 94.2
Ours—Small SM 65.8 92.7 71.6 95.5 52.1 96.4
Ours—Base 15M 64.5 93.4 72.5 95.9 53.8 97.2
Ours-Large 37M 66.7 94.6 73.1 96.1 54.8 98.3

Table 2: Surface-EMG gesture recognition.

Method (year)  Params NinaPro DB5 EPN-612 UCIEMG
Acc. F1 Acc. F1 Acc. Fl1
Moment (2024) 385M 86.41 7442 90.87 90.16 9045 91.75
OTiS (2024) 45M 8531 72.61 8755 83.03 90.62  89.28
Ours—Small 5M 8478 7254 9312 9340 9035  89.51
Ours—Base I5M 86.02 73.78 93.68 9391 9192  92.77
Ours—Large 37M 87.53 7542 9450 9456 93.19  93.59




EMG Classification Results. Table 2 benchmarks the proposed PhysioWave-EMG against the
only publicly released large-scale generic time-series models—Moment (385 M) and OTiS (45
M)—because no foundation model has yet been pretrained specifically for EMG signals [2, 38]. Even
with just 5 M parameters, the Small variant already surpasses both baselines on the challenging EPN-
612 dataset (93.1 %/ 93.4 % versus 90.9 % / 90.2 % for Moment). Scaling up the encoder brings steady
gains: the 37 M Large model achieves new state-of-the-art results on all three benchmarks—NinaPro
DBS (+1.1 % accuracy over Moment), EPN-612 (+3.6 %), and UCI EMG (+2.6 % over OTiS)—while
still using less than 1/10 of Moment’s parameters.

Multi-modal Classification Results. The proposed multi-modal framework—built from the Small
PhysioWave-ecg and PhysioWave-emg encoders together with an EEG branch (EEGPT for DEAP,
LaBraM for MPDB)—achieves the best accuracy [23, 39].

On DEAP, fusing the EEGPT backbone with the Small PhysioWave ECG/EMG encoders lifts valence
accuracy from 79.1% to 85.2% (+6.1%) and arousal accuracy from 81.3% to 88.6% (+7.3%), as
shown in Figure 5. The multimodal system also surpasses TPRO-Net by 0.4 % and outperforms Bi-
LSTM +attention and Bayesian pipelines by 7-22 % [40], underscoring the benefit of a multimodal
framework over single-modality models.

On MPDB, the same multimodal architecture—obtained by replacing the EEG branch with LaBraM
(5.8 M parameters)—improves accuracy from 70.4% (using LaBraM alone) to 74.9% (+4.5%), as
shown in Figure 6. This outperforms generic sequence models such as MMPNet and EEGNet by 9%
to 17% [39, 41].

DEAP Dataset - Valence vs Arousal MPDB Dataset - Accuracy

=3 valence
=3 Arous:

Arousal
Bayesian { EEGNet
] CNN
Bi-LSTM + Attn

LSTM ‘

EEGPT ‘

MMPNet | ‘

TPRO:
| LaBraM

65 70 85 90 55 60 75 80

75 6
Accuracy (%) Accuracy (%)

Figure 5: Results on the DEAP dataset. Figure 6: Results on the MPDB dataset.

3.3 Ablation Experiment Results

Table 3: Ablation on PhysioWave-emg for EPN-612 dataset.

Configuration Train Loss Accuracy (%) F1 (%)
w/o Frequency-guided Masking 0.24 92.48 92.85
w/o0 pre-training 0.27 91.67 91.57
with all 0.22 93.12 93.67

As shown in Table 3, removing either design method degrades performance. Comparing to random
masking with the same mask ratio of 0.7, discarding the frequency-guided masking strategy reduces F1
by 0.8%, while training the network from scratch (without pretraining) results in a 2.1% decrease in F1
and increases the training loss. The complete PhysioWave model thus benefits from both Frequency-
guided Masking and large-scale self-supervised pretraining, achieving the highest accuracy and F1
score on EPN-612 dataset.



4 Conclusion

In conclusion, this work introduces PhysioWave, a novel wavelet-based architecture designed to
enhance physiological signal processing by leveraging adaptive multi-scale decomposition and
frequency-guided masking to advance self-supervised learning. The proposed model demonstrates
state-of-the-art performance across both single-modality tasks, such as EMG and ECG classification,
and in multi-modal settings that integrate EEG, EMG, and ECG signals. Our results underscore
PhysioWave’s capacity to effectively capture the unique, time-varying characteristics of physiological
signals, addressing key challenges such as non-stationarity, low signal-to-noise ratios, and high
inter-subject variability. By combining wavelet decomposition with frequency-guided masking,
PhysioWave improves feature extraction, making it particularly well-suited for real-world applications
where these challenges are prominent.

Furthermore, the proposed framework sets new benchmarks for EMG and ECG analysis and estab-
lishes a strong foundation for future work in multi-modal biosignal processing. With its ability to
adapt to heterogeneous and noisy physiological data, PhysioWave holds significant promise for a
range of applications, including health monitoring, clinical diagnostics, and personalized medicine.

5 Acknowledgment

This research was partly supported by the EU Horizon Europe project IntelliMan (g.a. 101070136),
the PNRR MUR project ECSO0000033ECOSISTER, and the ETH Ziirich’s Future Computing
Laboratory funded by a donation from Huawei Technologies. Furthermore, the research was also
partially supported by the EU Horizon Europe project HAL4SDV (g.a. 101139789).

10



References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

Ivo Pascal de Jong, Andreea Ioana Sburlea, and Matias Valdenegro-Toro. Uncertainty quantification in
machine learning for biosignal applications—a review. arXiv preprint arXiv:2312.09454, 2023.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski. Moment:
A family of open time-series foundation models. arXiv preprint arXiv:2402.03885, 2024.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo. Unified
training of universal time series forecasting transformers. In Forty-first International Conference on
Machine Learning, 2024.

Wei-Bang Jiang, Li-Ming Zhao, and Bao-Liang Lu. Large brain model for learning generic representations
with tremendous EEG data in BCI. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=QzTpTRVtrP.

Guangyu Wang, Wenchao Liu, Yuhong He, Cong Xu, Lin Ma, and Haifeng Li. Eegpt: Pretrained
transformer for universal and reliable representation of eeg signals. Advances in Neural Information
Processing Systems, 37:39249-39280, 2024.

Gabriel Pereira Pires. Biosignal classification for human interface with devices and surrounding environ-
ment. PhD thesis, Universidade de Coimbra (Portugal), 2011.

Simanto Saha and Mathias Baumert. Intra-and inter-subject variability in eeg-based sensorimotor brain
computer interface: a review. Frontiers in computational neuroscience, 13:87, 2020.

Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren. Learning in the frequency
domain. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
1740-1749, 2020.

Alfonso Maria Ponsiglione, Carlo Cosentino, Giuseppe Cesarelli, Francesco Amato, and Maria Romano.
A comprehensive review of techniques for processing and analyzing fetal heart rate signals. Sensors, 21
(18):6136, 2021.

Carlos Mateo and Juan Antonio Talavera. Short-time fourier transform with the window size fixed in the
frequency domain. Digital Signal Processing, 77:13-21, 2018.

Lei Qin and Bin He. A wavelet-based time—frequency analysis approach for classification of motor imagery
for brain—computer interface applications. Journal of neural engineering, 2(4):65, 2005.

Guangkun Nie, Jiabao Zhu, Gongzheng Tang, Deyun Zhang, Shijia Geng, Qinghao Zhao, and Shenda Hong.
A review of deep learning methods for photoplethysmography data. arXiv preprint arXiv:2401.12783,
2024.

Jie Liu, Dongwen Ying, and William Zev Rymer. Emg burst presence probability: a joint time—frequency
representation of muscle activity and its application to onset detection. Journal of biomechanics, 48(6):
1193-1197, 2015.

Yun-Chi Yeh and Wen-June Wang. Qrs complexes detection for ecg signal: The difference operation
method. Computer methods and programs in biomedicine, 91(3):245-254, 2008.

Yugqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words:
Long-term forecasting with transformers. In International Conference on Learning Representations, 2023.

Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D Tracey,
and David D Cox. On the information bottleneck theory of deep learning. Journal of Statistical Mechanics:
Theory and Experiment, 2019(12):124020, 2019.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V
Le. Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint
arXiv:1904.08779, 2019.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, and
Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked prediction of
hidden units. IEEE/ACM transactions on audio, speech, and language processing, 29:3451-3460, 2021.

Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima I Lunze, Wojciech Samek,
and Tobias Schaeffter. Ptb-x1, a large publicly available electrocardiography dataset. Scientific data, 7(1):
1-15, 2020.

11



[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(371

(38]

[39]

M Benalcazar, L Barona, L Valdivieso, X Aguas, and J Zea. Emg-epn-612 dataset. CERN: Geneva,
Switzerland, 2020.

Qi Shen, Junchang Xin, Bing Dai, Shudi Zhang, and Zhiqiong Wang. Robust sleep staging over incomplete
multimodal physiological signals via contrastive imagination. Advances in Neural Information Processing
Systems, 37:112025-112049, 2024.

Carina M Germer, Dario Farina, Leonardo A Elias, Stefano Nuccio, Frangois Hug, and Alessandro
Del Vecchio. Surface emg cross talk quantified at the motor unit population level for muscles of the hand,
thigh, and calf. Journal of applied physiology, 131(2):808-820, 2021.

Sander Koelstra, Christian Muhl, Mohammad Soleymani, Jong-Seok Lee, Ashkan Yazdani, Touradj
Ebrahimi, Thierry Pun, Anton Nijholt, and Ioannis Patras. Deap: A database for emotion analysis; using
physiological signals. IEEE transactions on affective computing, 3(1):18-31, 2011.

Gregory Lee, Ralf Gommers, Filip Waselewski, Kai Wohlfahrt, and Aaron O’Leary. Pywavelets: A python
package for wavelet analysis. Journal of Open Source Software, 4(36):1237, 2019.

Nahian Siddique, Sidike Paheding, Colin P Elkin, and Vijay Devabhaktuni. U-net and its variants for
medical image segmentation: A review of theory and applications. /EEFE access, 9:82031-82057, 2021.

Siyuan Li, Zedong Wang, Zicheng Liu, Cheng Tan, Haitao Lin, Di Wu, Zhiyuan Chen, Jiangbin Zheng,
and Stan Z Li. Efficient multi-order gated aggregation network. arXiv preprint arXiv:2211.03295, 1, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Xiangyu Hong, Che Jiang, Biging Qi, Fandong Meng, Mo Yu, Bowen Zhou, and Jie Zhou. On the token
distance modeling ability of higher rope attention dimension. arXiv preprint arXiv:2410.08703, 2024.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers. arXiv
preprint arXiv:2106.08254, 2021.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
Simmim: A simple framework for masked image modeling. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 9653-9663, 2022.

Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli. Data2vec: A
general framework for self-supervised learning in speech, vision and language. In International conference
on machine learning, pages 1298-1312. PMLR, 2022.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, pages
1440-1448, 2015.

Gregory P Meyer. An alternative probabilistic interpretation of the huber loss. In Proceedings of the
ieee/cvf conference on computer vision and pattern recognition, pages 5261-5269, 2021.

Yubao Zhao, Tian Zhang, Xu Wang, Puyu Han, Tong Chen, Linlin Huang, Youzhu Jin, and Jiaju Kang.
Ecg-chat: A large ecg-language model for cardiac disease diagnosis. arXiv preprint arXiv:2408.08849,
2024.

Che Liu, Zhongwei Wan, Cheng Ouyang, Anand Shah, Wenjia Bai, and Rossella Arcucci. Zero-shot ecg
classification with multimodal learning and test-time clinical knowledge enhancement. arXiv preprint
arXiv:2403.06659, 2024.

Huaicheng Zhang, Wenhan Liu, Jiguang Shi, Sheng Chang, Hao Wang, Jin He, and Qijun Huang. Maefe:
Masked autoencoders family of electrocardiogram for self-supervised pretraining and transfer learning.
IEEE Transactions on Instrumentation and Measurement, 72:1-15, 2022.

Ozgiin Turgut, Philip Miiller, Martin ] Menten, and Daniel Rueckert. Towards generalisable time series
understanding across domains. arXiv preprint arXiv:2410.07299, 2024.

Xiaoming Tao, Dingcheng Gao, Wenqi Zhang, Tianqi Liu, Bing Du, Shanghang Zhang, and Yanjun Qin.
A multimodal physiological dataset for driving behaviour analysis. Scientific data, 11(1):378, 2024.

12



[40]

[41]

[42]

[43]

[44]

[45]

[40]
(47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

Xinyi Zhang, Xiankai Cheng, and Hui Liu. Tpro-net: an eeg-based emotion recognition method reflecting
subtle changes in emotion. Scientific Reports, 14(1):13491, 2024.

Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon, Chou P Hung, and Brent J
Lance. Eegnet: a compact convolutional neural network for eeg-based brain—computer interfaces. Journal
of neural engineering, 15(5):056013, 2018.

Zhijiang Wan, Qianhao Yu, Jia Mao, Wenfeng Duan, and Cheng Ding. Openecg: Benchmarking ecg
foundation models with public 1.2 million records. arXiv preprint arXiv:2503.00711, 2025.

Brian Gow, Tom Pollard, Larry A Nathanson, Alistair Johnson, Benjamin Moody, Chrystinne Fernandes,
Nathaniel Greenbaum, Jonathan W Waks, Parastou Eslami, Tanner Carbonati, et al. Mimic-iv-ecg:
Diagnostic electrocardiogram matched subset. Type: dataset, 6:13-14, 2023.

Karli Gillette, Matthias AF Gsell, Claudia Nagel, Jule Bender, Benjamin Winkler, Steven E Williams,
Markus Bir, Tobias Schiffter, Olaf Dossel, Gernot Plank, et al. Medalcare-xl: 16,900 healthy and
pathological synthetic 12 lead ecgs from electrophysiological simulations. Scientific Data, 10(1):531,
2023.

Antdnio H Ribeiro, GM Paixao, Emilly M Lima, M Horta Ribeiro, Marcelo M Pinto Filho, Paulo R Gomes,
Derick M Oliveira, Wagner Meira Jr, Thomas B Schon, and Antonio Luiz P Ribeiro. Code-15%: A large
scale annotated dataset of 12-lead ecgs. Zenodo, Jun, 9:10-5281, 2021.

B Singstad. Norwegian endurance athlete ecg database (version 1.0. 0), 2022.

Erick A Perez Alday, Annie Gu, Amit J Shah, Chad Robichaux, An-Kwok Ian Wong, Chengyu Liu,
Feifei Liu, Ali Bahrami Rad, Andoni Elola, Salman Seyedi, et al. Classification of 12-lead ecgs: the
physionet/computing in cardiology challenge 2020. Physiological measurement, 41(12):124003, 2020.

Francesca Palermo, Matteo Cognolato, Arjan Gijsberts, Henning Miiller, Barbara Caputo, and Manfredo
Atzori. Repeatability of grasp recognition for robotic hand prosthesis control based on semg data. In 2017
International Conference on Rehabilitation Robotics (ICORR), pages 1154-1159. IEEE, 2017.

Agamemnon Krasoulis, Iris Kyranou, Mustapha Suphi Erden, Kianoush Nazarpour, and Sethu Vijayakumar.
Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements. Journal
of neuroengineering and rehabilitation, 14:1-14, 2017.

Agamemnon Krasoulis, Sethu Vijayakumar, and Kianoush Nazarpour. Effect of user practice on prosthetic
finger control with an intuitive myoelectric decoder. Frontiers in neuroscience, 13:891, 2019.

Sasha Salter, Richard Warren, Collin Schlager, Adrian Spurr, Shangchen Han, Rohin Bhasin, Yujun Cai,
Peter Walkington, Anuoluwapo Bolarinwa, Robert J Wang, et al. emg2pose: A large and diverse benchmark
for surface electromyographic hand pose estimation. Advances in Neural Information Processing Systems,
37:55703-55728, 2024.

Viswanath Sivakumar, Jeffrey Seely, Alan Du, Sean Bittner, Adam Berenzweig, Anuoluwapo Bolarinwa,
Alex Gramfort, and Michael Mandel. emg2qwerty: A large dataset with baselines for touch typing using
surface electromyography. Advances in Neural Information Processing Systems, 37:91373-91389, 2024.

Jianwei Zheng, Hangyuan Guo, and Huimin Chu. A large scale 12-lead electrocardiogram database for
arrhythmia study (version 1.0. 0). PhysioNet, 2022.

Feifei Liu, Chengyu Liu, Lina Zhao, Xiangyu Zhang, Xiaoling Wu, Xiaoyan Xu, Yulin Liu, Caiyun Ma,
Shoushui Wei, Zhigiang He, et al. An open access database for evaluating the algorithms of electrocardio-
gram rhythm and morphology abnormality detection. Journal of Medical Imaging and Health Informatics,
8(7):1368-1373, 2018.

Stefano Pizzolato, Luca Tagliapietra, Matteo Cognolato, Monica Reggiani, Henning Miiller, and Manfredo
Atzori. Comparison of six electromyography acquisition setups on hand movement classification tasks.
PloS one, 12(10):e0186132, 2017.

Arthur Asuncion, David Newman, et al. Uci machine learning repository, 2007.

13



A RELATED WORK

A.1 Self-supervised pre-training for Time Series

Self-supervised learning for time-series data has seen considerable advances with the development
of models like MOMENT and OTIS, which are designed to handle the unique characteristics of
time-series signals, such as non-stationarity, noise, and high variability across domains. Both models
leverage large-scale pretraining to learn generalized representations for a wide range of tasks.

The MOMENT model, for instance, introduces a self-supervised learning framework for time-series
data using masked representation learning. It captures both local and global temporal dynamics
through its ability to reconstruct masked input sequences. MOMENT has been shown to perform well
in tasks like classification, anomaly detection, and forecasting, even without task-specific supervision.
Additionally, it applies contrastive learning to model dependencies and trends in the data, addressing
challenges such as long-range dependencies in time series sequences [2].

OTiS, on the other hand, extends the idea of self-supervised learning to multi-domain time-series
data. Its pre-training paradigm incorporates domain-specific tokenization and a dual masking strategy
to handle the heterogeneity across time series from different domains, including EEG, audio, and
financial data. By using a domain-specific tokeniser with learnable signatures, OTiS can capture
domain-specific data characteristics while learning generalized features. This allows it to excel
in various downstream tasks, such as classification, regression, and forecasting, across multiple
domains [38].

Both models highlight the importance of large-scale pretraining on diverse datasets to unlock foun-
dational model capabilities. MOMENT and OTiS aim to generalize across domains, mitigating
issues caused by domain-specific differences like sampling frequencies and inter-variate relationships.
These models represent significant strides in time-series analysis, particularly in scenarios where
labeled data is scarce but large, diverse, and unlabeled datasets are available for pretraining.

This self-supervised approach provides a robust solution for time-series data, leveraging vast datasets
for pretraining and fine-tuning these models on specialized tasks, thus achieving state-of-the-art
performance in a range of applications from health monitoring to forecasting.

A.2 Self-supervised pre-training for EEG signal

Self-supervised learning has gained significant traction, particularly in natural language processing
(NLP) and computer vision (CV), and has shown promising results in the domain of electroen-
cephalography (EEG) [41]. In EEG, self-supervised learning models are leveraging the ability
to pre-train models on large, unlabeled datasets, which can then be fine-tuned for specific down-
stream tasks. Two notable models in this domain are EEGPT and LaBraM, both of which advance
self-supervised learning techniques for EEG signal analysis.

EEGPT (EEG Pretrained Transformer) employs a masked autoencoder-based self-supervised learning
strategy specifically designed for EEG data. This model is trained to predict masked segments of
the EEG signal, enabling it to learn robust representations of the signal’s spatio-temporal features.
The dual self-supervised learning approach in EEGPT combines masked reconstruction and spatio-
temporal alignment, effectively addressing the challenges posed by low signal-to-noise ratio (SNR)
and inter-subject variability in EEG. This method allows EEGPT to perform well across a variety of
EEG-based tasks, particularly in the context of brain-computer interface (BCI) applications where
accurate feature extraction is critical [5].

LaBraM (Large Brain Model) is another significant model in self-supervised EEG pre-training.
LaBraM focuses on learning universal EEG representations through unsupervised pre-training on
large-scale EEG datasets from various domains. To address the challenge of cross-dataset learning,
LaBraM segments EEG signals into channel patches and uses a vector-quantized neural spectrum
prediction model to generate a compact neural tokenizer. This allows the model to learn generalized
representations that can be fine-tuned on specific tasks, such as abnormality detection, emotion
recognition, and gait prediction. The model’s ability to handle diverse EEG data with varying
channel configurations and recording settings has been validated across multiple EEG-based tasks,
demonstrating its robustness and scalability [4].

14



Both models underscore the importance of large-scale pretraining in the EEG domain. By learning
from vast amounts of unlabeled data, these self-supervised models can capture the rich, multi-scale
features of EEG signals, which are crucial for a wide range of applications in health monitoring and
BCI systems. The ability of EEGPT and LaBraM to generalize across datasets and tasks highlights
the potential of self-supervised learning to transform the analysis of EEG signals, making deep
learning techniques more applicable and effective in the field of bio-signal processing.

A.3 Self-supervised Pre-training for ECG Signal

Self-supervised learning (SSL) has become a pivotal method in ECG foundation model development,
addressing challenges such as the scarcity of labeled data and the need for robust generalization across
diverse datasets. Recent advancements have introduced several effective SSL-based pre-training
strategies for ECG data.

One such approach is OpenECG, which created a large ECG benchmark with over 1.2 million 12-lead
ECG recordings from 9 centers. The study evaluated three prominent SSL. methods—SimCLR,
BYOL, and MAE—using ResNet-50 and Vision Transformer (ViT) architectures. The results showed
that pre-training on diverse datasets significantly improved model generalization, with BYOL and
MAE outperforming SimCLR. These methods demonstrated superior effectiveness in learning feature-
consistency and generative representations compared to contrastive methods, which require large
datasets to perform optimally [42].

Another notable model is ECG-Chat, a large ECG-language model designed for cross-modal cardiac
diagnosis. It combines ECG waveform data with text reports using contrastive learning to align ECG
features with medical text. The model was trained on a dataset that integrates both diagnosis and
conversation tasks, achieving state-of-the-art results in ECG medical report generation. ECG-Chat
also incorporates a novel method for mitigating hallucinations during report generation by integrating
external cardiology knowledge via GraphRAG and DSPy components. This ensures that the generated
ECG reports are grounded in clinical knowledge, enhancing accuracy and reliability [35].

These models highlight the potential of self-supervised learning for enhancing ECG analysis and
improving diagnostic tools. By leveraging large-scale ECG data and pre-training strategies, both
OpenECG and ECG-Chat advance the capabilities of ECG models, making them more robust and
adaptable across a range of clinical and research applications. They represent a significant step toward
improving the accessibility and accuracy of Al-driven cardiovascular diagnostics.

B HYPERPARAMETER SETTINGS

We employ AdamW with a weight decay of 0.01 and moment coefficients 81 = 0.9 and B2 = 0.98.
The learning rate is linearly warmed up from 5 x 107 to 5 x 10~° over the first ten epochs and then
follows a cosine decay to a floor of 1 x 1075, Pretraining lasts for 50 epochs with a global batch size
of 64 on 16 NVIDIA A100 GPUs, whereas all downstream experiments are carried out on 4 A100
GPUs. During downstream training, the same AdamW optimizer and the cosine scheduler is retained,
but the learning rate is reduced to 1/10 of its pretraining value.
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Table 4: Hyperparameters for masked ECG pre-training with PhysioWave-ecg.

Hyperparameter | PhysioWave-ecg-Small | PhysioWave-ecg-Base | PhysioWave-ecg-Large
Wavelet Front-End
Input channels 12 12 12
Max decomposition level 4 4 4
Wavelet kernel size 24 24 24
Wavelet bases {sym4, sym5, db6, coif3, bior4.4}
Transformer Encoder
Timesteps 1024
Patch size (H x W) {1,64}
Embed dimension (= hidden size) 256 384 512
Encoder layers 6 8 12
Attention heads 8 12 16
MLP ratio 4.0
MLP size 1024 | 1536 | 2048
Drop-path 0.10
Decoder
Decoder embed dim 256
Decoder depth / heads 8/8
Pre-training Setup
Batch size 64

Peak / minimal learning rate
Optimizer (81, 32)

LR scheduler

Weight decay

Total / warm-up epochs
Accumulated grad batches
Gradient clipping

Mask ratio / importance ratio
Max sequence length

5x107° / 1x 10
AdamW (0.9, 0.98)
Cosine
0.01
50 / 10
64
3
0.70 / 0.60
2048

Table 5: Hyperparameters for masked EMG pre-training with PhysioWave-emg.

Hyperparameter | PhysioWave-emg-Small | PhysioWave-emg-Base | PhysioWave-emg-Large
Wavelet Front-End
Input channels 16 16 16
Max decomposition level 3 3 3
Wavelet kernel size 16 16 16
Wavelet bases {db4, bior4.4, sym5, coif5}
Transformer Encoder
Timesteps 1024
Patch size (H x W) {1,64}
Embed dimension (= hidden size) 256 384 512
Encoder layers 6 8 12
Attention heads 8 12 16
MLP ratio 4.0
MLP size 1024 \ 1536 \ 2048
Drop-path 0.10
Decoder
Decoder embed dim 256
Decoder depth / heads 8/8
Pre-training Setup
Batch size 64

Peak / minimal learning rate
Optimizer (51, B2)

LR scheduler

Weight decay

Total / warm-up epochs
Accumulated grad batches
Gradient clipping

Mask ratio / importance ratio
Max sequence length

5x107% / 1 x 1076
AdamW (0.9, 0.98)
Cosine
0.01
50 / 10
64
3
0.70 / 0.60
2048
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Table 6: Hyperparameters for downstream fine-tuning with PhysioWave.

Hyperparameter \ Value

Batch size 32
Peak / minimal learning rate 5x 1074/ 1x107°
Learning rate scheduler Cosine
Optimizer (51, 52) AdamW (0.9, 0.98)
Weight decay 0.01

Total epochs Early stopping (max 50)
Warm-up epochs 5
Drop-path 0.10
Layer-wise learning rate decay 0.90

Label smoothing (multi-class classification) 0.10

C PRETRAINING DATASETS DESCRIPTION

C.1 Pretraining datasets for PhysioWave-ecg

In the pretraining of PhysioWave-ecg, we process ECG data to ensure it is suitable for model
training. The process involves several key steps, including filtering, windowing, and handling
different sampling rates.

First, we apply a bandpass filter (0.5-40 Hz) to remove unwanted low-frequency noise and high-
frequency artifacts. Additionally, a 50 Hz notch filter is applied to eliminate power line interference.
These filtering steps are crucial for improving the quality of the ECG signals.

To handle the data, we use a sliding window technique. The ECG signals, with 12 leads and a
sampling rate of 500 Hz, are divided into overlapping windows of a fixed size (e.g., 1024 samples). If
the signal length is insufficient for a full window, we apply zero-padding to maintain consistency
across the dataset.

For ECG recordings with a sampling rate lower than 500 Hz, we upsample the signal to 500 Hz to
ensure uniformity across the dataset. This is important for maintaining the integrity of the signal
while ensuring that all data points are processed at the same sampling frequency.

Finally, the processed ECG data is saved in the HDF5 format, organized into a dataset with dimensions
corresponding to the batch size, number of leads (12), and window size (1024 samples). This
preprocessed data is then used to train the PhysioWave-ecg model.

Table 7: 12-lead ECG corpora used for pretraining.

Dataset Subjects Records Dur.(s) f(Hz) Size
MIMIC-IV-ECG [43] ~160000 ~800000 10 500 904 GB
MedalCare-XL [44] 13 16900 10 500 26.2GB
CODE-15% [45] 233770 345779 10 400 63.3GB
Norwegian Athlete [46] 28 28 10 500 52.8 MB
Georgia Cohort [47] 10344 10344 10 500 1.2 GB

MIMIC-IV-ECG The MIMIC-IV-ECG module includes around 800,000 12-lead ECG recordings
from nearly 160,000 patients, spanning from 2008 to 2019. Each ECG is 10 seconds long, sampled
at 500 Hz, and matched with clinical data and cardiologist reports. The dataset provides not only
the ECG waveforms but also machine-generated measurements such as RR intervals and QRS onset
times, with all data de-identified to comply with HIPAA standards. The data is stored in the WFDB
format for easy processing [43].

MedalCare-XL. MedalCare-XL is a synthetic 12-lead ECG dataset containing 16,900 10-second
ECGs across one healthy control and seven pathological classes. The dataset includes ECG signals
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in three variations: raw, with noise, and filtered using highpass and lowpass Butterworth filters.
Additionally, it provides parameter files detailing the electrophysiological model used for simulation.
This dataset is valuable for training ECG analysis models, especially for personalized disease
simulations [44].

CODE-15% The CODE-15 dataset is a stratified subset of the CODE dataset, containing 345,779
12-lead ECG records from 233,770 patients, collected between 2010 and 2016. It is widely used
for ECG automatic diagnosis research and cardiovascular risk prediction. The scale and annotation
quality make it a reliable resource for developing ECG Al algorithms [45].

Norwegian Athlete ECG Database The Norwegian Athlete ECG Database contains 12-lead ECG
recordings from 28 elite athletes in Norway. Each ECG is 10 seconds long and recorded with a GE
MAC VUE 360 electrocardiograph. The dataset includes both machine-generated interpretations and
cardiologist reviews. The cohort consists of rowers, kayakers, and cyclists, with participants aged
20-43 years. The data helps address challenges in ECG interpretation for athletes, who often exhibit
heart adaptations that can mimic pathological changes [46].

Georgia Cohort The Georgia Cohort dataset contains 10,344 12-lead ECGs from male (5,551)
and female (4,793) patients, each 10 seconds long with a sampling rate of 500 Hz. The dataset is
used for cardiovascular disease prediction and ECG classification tasks. The data offers a diverse set
of ECG signals, providing an opportunity to study the effects of various cardiovascular conditions
across different demographic groups [47].

C.2 Pretraining datasets for PhysioWave-emg

Table 8: Surface-EMG corpora used for pretraining.

Dataset Subjects Records Dur.(s) f;(Hz) Channels Size
NinaPro DB6 [48] 10 ~8.4k 4 2000 14 20.3GB
NinaPro DB7 [49] 22 ~5.4%k 5 2000 12 30.9GB
NinaPro DB8 [50] 12 ~2.4k 7.5 1111 16 23.6GB
EMG2Pose [51] 193 25253 60 2000 16 431 GB
EMG2Qwerty [52] 108 1135 1 080 2000 16 317GB

For the pretraining of the PhysioWave-emg model, we process the raw EMG data through several
critical preprocessing steps to ensure its suitability for training. First, a bandpass filter is applied to
remove unwanted noise and artifacts, retaining frequencies between 20 Hz and 450 Hz, which are
relevant for EMG analysis. A notch filter is then used to suppress 50 Hz power line interference, a
common source of noise in EMG recordings. After filtering, we normalize the signals using z-score
normalization, ensuring that each EMG channel has a mean of zero and a standard deviation of one,
standardizing the input scale for machine learning models.

To prepare the data for training, we apply a sliding window approach, dividing the EMG signal into
overlapping windows of 1024 samples with a step size of 512. If the sampling rate of the raw signal is
below 2000 Hz, the data is upsampled to 2000 Hz to ensure consistency. Additionally, if the number
of channels is less than 16, the data is padded with zeros to match the required dimensionality. Finally,
the processed data is saved in an HDF5 format, allowing for efficient storage and incremental updates.
This ensures easy access to the data and facilitates the addition of new data without overwriting
existing information.

NinaPro DB6 The NinaPro DB6 dataset is designed to aid the scientific community in studying the
repeatability of SEMG classification for hand grasps. It includes data from 10 intact subjects who
performed 7 different hand grasps, each repeated 12 times across 5 days. The data was collected using
14 wireless Trigno EMG electrodes, with a sampling rate of 2 kHz. The dataset provides synchronized
SEMG signals along with inertial measurements, capturing the movements of the forearm during
hand grasp activities. The main goal is to develop models that can accurately recognize and classify
these grasps for prosthetic control [48].
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NinaPro DB7 The NinaPro DB7 dataset includes both myoelectric and inertial measurements from
20 intact subjects and 2 amputees. The data were collected using 12 active wireless Trigno EMG
sensors along with 9-axis inertial measurement units. The subjects were asked to perform 40 different
movements, which included basic finger and wrist movements as well as grasping tasks. The data
were sampled at 2 kHz, with additional kinematic data collected from a 18-DOF Cyberglove worn on
the contralateral hand. This dataset provides valuable insights for prosthetic hand control, enabling
improved motion recognition through both myoelectric and inertial data [49].

NinaPro DB8 The NinaPro DBS dataset is focused on the estimation and reconstruction of finger
movements, rather than motion or grip classification. It includes data from 10 intact subjects and
2 right-hand transradial amputee participants. The dataset contains SEMG signals, accelerometer,
gyroscope, and magnetometer data collected from 16 wireless Trigno EMG sensors, along with data
from a Cyberglove worn on the contralateral hand. The subjects were asked to repeat 9 different
movements, with each movement lasting between 6 to 9 seconds, followed by a 3-second rest
period. This dataset is specifically designed to benchmark algorithms that decode finger position
from contralateral EMG measurements using regression algorithms, making it a valuable resource for
prosthetic hand control and rehabilitation studies [50].

EMG2Pose The EMG2Pose dataset consists of surface electromyography (SEMG) recordings
paired with ground-truth motion-capture recordings of hand movements. It contains 25,253 HDF5
files, each representing time-aligned SEMG and joint angles for a single hand during a single stage.
The dataset spans 193 participants across 370 hours of data and includes 29 stages, with each stage
lasting around one minute. The dataset is structured with metadata that includes anonymized user
IDs, session information, hand side (left or right), and whether the user was held out from the training
set. This dataset is designed to advance the field of hand pose estimation from sEMG signals, offering
a foundation for model training and evaluation in pose tracking and gesture recognition tasks [51].

EMG2Qwerty The EMG2Qwerty dataset consists of surface electromyography (SEMG) recordings
obtained while users perform touch typing on a QWERTY keyboard. It contains 1,136 session files,
recorded from 108 users over 346 hours, with each session file including left and right SEMG signal
data, prompted text, and keylogger ground-truth data. The dataset is provided in an HDFS format and
offers a programmatic interface for easy access. It is particularly useful for training and testing models
aimed at decoding keypresses or character-level recognition from sEMG signals, with benchmarks for
both generic and personalized user models. This dataset is essential for research in SEMG-based text
entry systems, focusing on enhancing accuracy in virtual keyboard applications and prosthetics [52].

D Downstream Datasets Description

PhysioWave-ecg is tested on the three ECG corpora (PTB-XL [19], Chapman—Shaoxing [53], and
CPSC 2018 [54]), while PhysioWave-emg is assessed on the three EMG gesture datasets (Ninapro
DBS5 [55], EPN-612 [20], and UCI EMG-Gesture [56]). Multi-modal generalization is examined
with DEAP [23] and MPDB [39].

Table 9: Public datasets used for downstream evaluation.

Dataset Domain Subjects Channels f, (Hz) Task
Ninapro DBS5 EMG 10 16 200 Hand gestures
EPN-612 EMG 612 8 200 Hand gestures
UCI EMG-Gesture EMG 36 8 200 Hand gestures
PTB-XL ECG 18 869 12 500 Arrhythmia
Chapman—Shaoxing ECG 45 152 12 500 Arrhythmia
CPSC 2018 ECG 10330 12 500 Arrhythmia
DEAP EEG/EMG 32 40 128 Emotion recognition
MPDB EEG/ECG/EMG 35 64 1000 Driving behaviour
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D.1 Downstream datasets for PhysioWave-ecg

PTB-XL. The PTB-XL dataset is an extended version of the PTB database, containing 21,837
12-lead ECG recordings from 18,884 patients. The dataset includes a variety of cardiac conditions,
with annotations for more than 60 different disease categories, including arrhythmias, myocardial
infarction, and other heart diseases. It was recorded using standard 12-lead ECG systems, with
signals sampled at 1000 Hz. PTB-XL is widely used for ECG classification tasks and provides
a comprehensive resource for developing and testing machine learning models in cardiovascular
disease detection and prediction. The dataset is publicly available and is often used as a benchmark
for evaluating ECG classification algorithms [19].

Chapman-Shaoxing The Chapman—Shaoxing dataset is a large-scale ECG dataset containing
11,000 12-lead ECG recordings from over 5,000 subjects. It includes data from patients with various
cardiovascular conditions, such as arrhythmias, ischemic heart disease, and healthy individuals. The
recordings were collected using standard ECG machines, with a sampling rate of 500 Hz. This
dataset is used in studies focused on ECG diagnosis and abnormality detection, offering a rich
source of data for training and evaluating models that aim to predict cardiovascular diseases. The
Chapman—Shaoxing dataset is particularly valuable for advancing research in automatic ECG analysis
and arrhythmia classification [53].

CPSC 2018 The CPSC 2018 dataset, used in the China Physiological Signal Challenge, contains
15,000 12-lead ECG recordings from 5,000 patients, spanning a wide range of cardiovascular
conditions. The recordings are sampled at 500 Hz and are annotated with clinical information about
the presence of various heart diseases. The dataset is designed to evaluate machine learning algorithms
for ECG classification, particularly for arrhythmia detection. The CPSC 2018 dataset provides a
diverse and comprehensive set of ECG recordings, making it a critical resource for developing and
benchmarking automatic ECG analysis systems. It has been widely used in ECG research and
challenges to push forward the development of reliable and accurate diagnostic tools [54].

D.2 Downstream datasets for PhysioWave-emg

NinaPro DB5 The NinaPro DBS5 dataset includes surface electromyography (SEMG) recordings
for hand gesture recognition. It consists of 40 different hand gestures performed by 40 subjects (24
male, 16 female). Each subject performed each gesture 10 times, resulting in a total of 400 gesture
recordings per subject. The dataset is recorded using 8 bipolar SEMG electrodes placed on the forearm,
with a sampling rate of 2 kHz. The data is valuable for the development and evaluation of machine
learning models for gesture recognition in prosthetics and human-computer interaction, providing
a well-annotated set of hand gestures that can be used to train models for real-time sSEMG-based
gesture classification [55].

EPN-612 The EPN-612 dataset consists of surface electromyography (SEMG) data collected from
612 subjects using the Myo armband. It contains 5 different hand gestures (wave-in, wave-out, pinch,
open, and fist) and a relaxed hand gesture, with 50 recordings per gesture from each subject. The
dataset includes both raw SEMG signals and the corresponding labels for each gesture, making it
suitable for gesture recognition tasks. The data is widely used for training and evaluating machine
learning models focused on real-time gesture recognition, with applications in prosthetics and assistive
technologies. The dataset is publicly available for research and benchmark purposes [20].

UCI EMG-Gesture The UCI EMG-Gesture dataset contains SEMG recordings for hand gesture
recognition, collected from 10 subjects. Each subject performed 10 different gestures, with 3
repetitions for each gesture. The dataset was recorded using a 16-channel SEMG setup, with a
sampling frequency of 2 kHz. It includes labeled data for each gesture, making it suitable for training
and evaluating gesture recognition algorithms. This data set is valuable for researchers developing
gesture models [56].

D.3 Downstream datasets for multi-modal tasks

DEAP The DEAP (Dataset for Emotion Analysis using Physiological Signals) dataset is a multi-
modal dataset designed for emotion recognition research. It contains 32 participants, each providing
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data across multiple physiological signals, including EEG, EMG, and GSR, while watching music
videos designed to evoke different emotional states. The dataset includes 40 one-minute-long video
clips, with each participant providing emotional ratings on several dimensions, such as valence,
arousal, dominance, and liking. The DEAP dataset is widely used for training and evaluating models
for emotion recognition, particularly in applications like affective computing and human-computer
interaction. The dataset is available for research and provides an essential resource for studies
combining physiological signals and emotion analysis [23].

MPDB The MPDB (Multimodal Physiological Dataset for Driving Behavior Analysis) is a com-
prehensive dataset designed to analyze driver behavior using multimodal physiological signals. It
contains data from 35 participants, including both male and female drivers, recorded during simu-
lated driving tasks. The dataset includes 59-channel EEG, single-channel ECG, 4-channel EMG,
single-channel GSR, and eye-tracking data. These signals were collected during five distinct driving
behaviors: smooth driving, acceleration, deceleration, lane changing, and turning. The data was
synchronized with a six-degree-of-freedom driving simulator, providing a realistic driving experience.
This dataset is valuable for studying driver cognition, decision-making, and the relationship between
physiological responses and driving behavior, especially in the context of autonomous driving re-
search. The dataset’s multimodal nature allows for the exploration of advanced models that integrate
physiological signals for more accurate behavioral predictions and safety system designs [39].

E VISUALIZATION

E.1 Visualization of SEMG Pretraining

The following visualizations demonstrate the pretraining process for EMG signals, where the model
learns to reconstruct the masked regions of the input signal, specifically focusing on the restoration
of multi-scale wavelet decomposition features, Spec(X). The images show different stages of the
reconstruction task, including the target signal, the model’s prediction, the masked areas, and the final
reconstructed signal. These visualizations illustrate the model’s ability to restore missing information
from wavelet-decomposed features.
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Figure 7: Reconstruction results for the 10th training epoch and the 1000th batch. The image
illustrates the pretraining process where the model successfully restores masked regions of the
signal during EMG pretraining. This represents the restoration of multi-scale wavelet-decomposed
information at an earlier training stage.

Figure 7 shows the results for the 10th training epoch and the 1000th batch of the EMG pretraining
process. As seen in the image, the model has learned to effectively restore the missing parts of the
signal, showcasing its ability to handle the wavelet decomposition and its corresponding multi-scale
features.
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Figure 8: Reconstruction results for the 20th training epoch and the 1000th batch. This image shows
the pretraining process at a later stage, where the model continues to restore missing information with
increasing accuracy. The ability to restore the wavelet decomposition at this stage is further refined.

Figure 8 displays the results for the 20th training epoch and the 1000th batch of the EMG pretraining
process. At this stage, the model shows improved performance in reconstructing the masked regions,
indicating its enhanced understanding of the signal’s multi-scale features and its ability to restore
more complex signal components.

These visualizations highlight the progression of the model’s learning ability during the pretraining
process. The first figure 7 demonstrates the model’s early-stage capability to restore missing multi-
scale features, while the second figure 8 shows the improvements made by the model as it continues
training. This process emphasizes the model’s capacity to learn to restore wavelet-decomposed
features, which is critical for downstream applications like EMG signal analysis and classification.

E.2 Visualization of EPN612 Experimental Results
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Figure 9: Confusion matrix on the EPN612 test set after final training.

Figure 9 shows the test confusion matrix for the EPN612 dataset. Per-class recalls remain consistently
high (>87.4%, typically >92%), with the highest recall achieved for noGesture (99.4%). Most
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misclassifications occur between semantically similar dynamic gestures: (a) open is occasionally
confused with waveOut and pinch, and (b) pinch is sometimes predicted as open. The sparse
distribution of off-diagonal entries indicates that the model has successfully learned discriminative
representations for the remaining gesture classes.
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Figure 10: ROC curves for all gesture classes on the test set after final training.
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Figure 11: Per-class precision, recall, and F1-score metrics on the test set after final training.

Figure 10 presents the ROC curves for all six gesture classes on the test set. All models demonstrate
excellent discriminative performance with AUC values ranging from 0.981 to 0.999. The noGesture
class achieves the highest AUC of 0.999, followed by waveIn (0.995) and waveOut (0.994). The
curves are positioned well above the random classifier diagonal, indicating strong separation between
positive and negative classes across all gesture types.

Figure 11 shows the detailed per-class performance metrics. The noGesture class achieves near-
perfect performance across all metrics (precision: 0.998, recall: 0.994, Fl-score: 0.996). Dynamic
gesture classes show consistently high performance, with Fl-scores ranging from 0.883 (open)
to 0.956 (waveIn). The open gesture exhibits the lowest recall (0.874) among all classes, while
maintaining reasonable precision (0.892), suggesting some difficulty in detecting this particular
gesture pattern.
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3D PCA Embeddings
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Figure 12: 3D PCA embeddings visualization from multiple viewing angles showing feature repre-
sentations learned by the WaveletTransformer model.
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Figure 13: 3D t-SNE embeddings visualization from multiple viewing angles demonstrating non-
linear clustering patterns in the learned feature space.
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3D UMAP Embeddings - Multiple Views
View 1: Elevation 20°, Azimuth 45° View 2: Elevation 45°, Azimuth 90°
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Figure 14: 3D UMAP embeddings visualization from multiple viewing angles revealing the topologi-
cal structure of gesture representations in the feature space.

Figures 12, 13, and 14 present comprehensive 3D visualizations of the learned feature embeddings
using three different dimensionality reduction techniques: Principal Component Analysis (PCA),
t-Distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and
Projection (UMAP). Each visualization displays the same feature space from four distinct viewing
angles (elevation/azimuth combinations of 20°/45°, 45°/90°, 60°/135°, and 30°/225°) to provide
complete spatial understanding of the clustering patterns.

The PCA visualization (Figure 12) reveals the linear structure of the feature space, showing how
gesture classes are distributed along the principal components of maximum variance. The noGesture
class (red) forms a distinct, compact cluster that is well-separated from dynamic gesture classes,
while the active gesture classes (waveIn, waveOut, pinch, open, fist) exhibit more distributed but
still distinguishable patterns.

The t-SNE visualization (Figure 13) emphasizes local neighborhood relationships and reveals non-
linear clustering structures. The method successfully preserves local similarities, creating tight,
well-separated clusters for each gesture class. Notably, the noGesture class forms a dense, spherical
cluster at the center, while dynamic gestures are arranged in distinct regions around the periphery,
suggesting strong discriminative power in the learned representations.

The UMAP visualization (Figure 14) balances both local and global structure preservation, revealing
the topological organization of the feature space. UMAP shows excellent class separation with
noGesture forming a highly concentrated cluster, and dynamic gesture classes organized in a
manifold-like structure that preserves both local neighborhoods and global relationships between
semantically related gestures.

Across all three visualization methods, several consistent patterns emerge: (1) the noGesture class
demonstrates exceptional separability from active gestures, (2) dynamic gesture classes maintain
distinct clustering while showing logical spatial relationships based on gesture similarity, and (3)
the learned feature representations exhibit strong discriminative properties that facilitate effective
classification. The multi-view presentation confirms the robustness of these clustering patterns across
different spatial perspectives.
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F LIMITATIONS

While the proposed PhysioWave architecture represents a significant advancement in the processing
of physiological signals, it is not without its limitations. Our current approach focuses on large-scale
models specifically trained for electromyography (EMG) and electrocardiography (ECG) signals, both
of which have demonstrated state-of-the-art performance across several downstream tasks. However,
this approach is currently limited to these two modalities, and other important physiological signals,
such as electroencephalography (EEG) and photoplethysmography (PPG), remain underexplored.

Another key limitation lies in the fact that our work primarily focuses on separate models for different
physiological signals. Although our unified framework integrates pre-trained EMG and ECG models
with an existing EEG encoder, the design is not fully generalized across all biosignal modalities.
This calls for further exploration into the development of a universal, multi-modal model capable of
seamlessly processing a wide variety of physiological signals. A model of this nature could function
as a comprehensive "physiological diagnostic" system, akin to a highly specialized medical expert,
diagnosing and interpreting a broad spectrum of physiological signals across different conditions.
Developing such a universal model would not only enhance the robustness of signal interpretation
but also streamline the diagnostic process across different sensor modalities.

We believe that addressing these gaps by expanding the range of modalities incorporated into our
framework and further investigating the potential for a unified, multi-modal biosignal model will
significantly improve the versatility and applicability of our approach in real-world clinical and health
monitoring settings. Future research could focus on training models for a wider array of biosignals,
as well as enhancing the multi-modal integration capabilities to create a truly universal model for
physiological signal processing.
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