. . L Vision
Eidgendssische Technische Hochschule Ziirich Lab
Swiss Federal Institute of Technology Zurich “ a

Neural Architecture Search for Single
Image Super-resolution

Master Thesis

Hiiseyin Ziya Imamoglu

Department of Electrical Enginering and Infotmation Technology

Advisors: Yawei L1, Prof. Dr. Radu Timofte
Supervisor: Prof. Dr. Luc Van Gool

September 20, 2021

Abstract

Neural Architecture Search (NAS) aims to automatically learn neural network topologies for given datasets
and tasks. Single image super-resolution is one of such tasks where NAS approaches have been used. The
work of Gao et al. explored the single path one-shot NAS paradigm with uniform sampling and showed
that it provided state of art performance on Imagenet dataset for a classification task. In Lightweight Image
Super-Resolution with Information Multi-distillation Network, Hui et. al. proposed a lightweight network,
which showed increased performance on super-resolution tasks with less number of parameters compared
to the previous works. In order to improve the performance of existing super-resolution networks and build
a successful NAS paradigm for single-image super-resolution, we combined these two different works. We
created a supernet built on the single one-shot NAS with uniform sampling methodology; with a search space
based on lightweight distillation network. The search space is also inspired by Res2Net. Unfortunately, we
failed to beat the baselines although our found networks showed comparable performance, showing the
premise of the idea and the possibility of further research.

Acknowledgements

I would like to thank Dr. Radu Timofte and Yawei Li for their consistent support and feedback during the
project. They were very helpful.

Contents

1 Introduction

2 Related Work

2.1 Single image super-resolution
2.2 Neural Architecture Search

3 Proposed Approaches
3.1 Preliminaries . . .

3.1.1 Lightweight Image Super-Resolution with Information Multi-distillation Network

(IMDN) . .

3.1.2 Single Path One-Shot Neural Architecture Search with Uniform Sampling

3.1.3 Res2Net . .

3.2 Buildingthe Supernet
3.2.1 Initial Supernet and eXtensionsol e
322 Dynamic SUPErnet e e e e e e e

4 Experiments and Results
4.1 Dataset

4.2 Initial experiments with IMDN and Establishing a Baseline
4.3 Initial Supernet and Extensions

4.4 Dynamic Supernet

5 Conclusion

13
13
13
15
17

19

CONTENTS

II

List of Figures

3.1
32
33
34
3.5
3.6

The architecture of information multi distillation network (IMDN) [12]
The architecture of information multi distillation block (IMDB) [12]
The architecture of contract-aware channel attention (CCA) [12]
Res2Net building block in comparison with the bottleneck block [8]
Our initial supernetwork with each architecture colored different with numbering

Our dynamic supernetwork for 3 number of stages with each architecture colored different

with numbering

III

L1ST OF FIGURES

v

List of Tables

4.1
4.2
4.3
44
4.5

PSNR and SSIM results for different scales from [12] 14
Reproduced PSNR for different scales together with reported results 15
Preliminary results L 15
Initial Supernet results and extensions 16
Dynamic Supernet results with replicated baselines for differing length 18

L1ST OF TABLES

VI

Chapter 1

Introduction

Neural Architecture Search (NAS) is an emerging area of deep learning that primarily deals with finding
neural network topologies automatically. In other words, the main aim is not just to train a given neural net-
work architecture to find the optimal weights but also to learn the optimal architecture of the network itself
for a given tasks. Despite the existence of earlier scientific works [23], the interest in the field has increased
rapidly in recent years with novel works like [28], [3]. Different methodologies have been implemented for
search spaces, ones which are based on discrete search spaces and reinforcement learning ended up with
long runtimes. Improvements have been proposed on top of these works to both increase the efficiency of
NAS algorithms and to use them for different scenarios. One such improvement was Single Path One-Shot
Neural Architecture Search with Uniform Sampling [10]. This work, which was based on the one-shot
NAS paradigm, successfully addressed the shortcomings of one-shot approaches, giving state-of-art results
on Imagenet dataset. The paradigm proposed tuned out to be efficient and flexible, showing premise for
further use. Our work is based on this one-shot paradigm as we tried to extend this framework to single
image super-resolution. We based our super-network on the work of Hui et.al [12], trying to increase the
performance of the multi-distillation blocks outlined in the work. For this purpose, we also drew inspiration
from Res2Net [8], as the work outlined another building block for incorporating multi-scale information.
In the end, we implemented one-shot neural architecture search with uniform sampling for single-image
super-resolution with a multi-distillation block. We implemented different supernets and although we fail to
beat the baselines, we got comparable results, thus showing the efficacy of our method.

CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

The early works for automatically finding neural network topologies goes back to as early as early 2000s
[23]. With the widespread popularity of deep learning and increase in hardware power, different methods
have risen for neural architecture search (NAS). In this review, first we will provide an overview of single
image super-resolution with a focus on deep learning methodology. Afterwards, we will provide a general
overview of NAS methodology with a focus on automated methods for super-resolution. Finally, we will
review the one-shot methods and their advantages.

2.1 Single image super-resolution

Single image super-resolution deals with constructing high-resolution (HR) images from the low resolution
(LR) images. Low resolution images are the degraded versions of the HR ones and modelled by blurring,
down-sampling and corruption processes respectively. This problem is ill-posed as many high resolution
representations can exist that can be downsampled to a low resolution image. In order to solve this problem,
we model the inverse problem as a Maximum A Posterior (MAP) problem and then solve it. With the
advances in deep learning, a convolutional neural network that can directly map the low-resolution images
to high resolution images can be created and trained. One such work was the work of Deng et al. which is
called SRCNN [6]. This was three layer network that founded a direct relationship between low resolution
and high resolution images. Improved networks such as the work of Zhange et. al [27] have been proposed
and shown to increase the performance of the network. Kim et al. [14] increased the depth of an SR network
to 20, increasing the performance further, outperforming the SRCNN by a significant margin. This was
a rather large network and to make the learning process faster, global residual learning with a high initial
learning rate was employed. The general trend in these works was to increase the number of convolutions
for increasing the PSNR values of the final results. For decreasing the number of parameters, recursive
architecture and parameter sharing were utilized in some of the works [16], [24], [11]. On top of that to
shorten the time, sub-pixel convolutions were realized in some of the works. Fast SRCNN was one of the
examples for this network [7]. A super-resolution network based on a Laplacian pyramid structure was
also proposed in the same vein [18]. Another breakthrough was EDSR [20], where authors got rid of the
unnecessary modules. These works decreased the number of parameters but required higher number of
calculations as they increased the depth to make up for the lost performance. To combat this, Ahn et al.
created CARN-M [2], with cascading for a mobile sceneario. This cam at a cost of reduced PSNR. To create
a relatively light network Hui et al. proposed a super-resolution network on top of an earlier work [13]
which has superior super-resolution performance [12]. In this work, an information multi-distillation block

3

CHAPTER 2. RELATED WORK

was proposed where information with different scales have been merged together in the hopes of increasing
the network’s super-resolution performance. A PSNR score of 32.21 has been reported on Set5, for a scale
of 4. Here, we will also entertain another work, namely Res2Net. This is a new backbone architecture for
combining multi-scale information [8]. This is also an important work for super-resolution as the authors
provide a new backbone for tasks that require multi-scale information which also includes single image
super-resolution.

2.2 Neural Architecture Search

Neural Architecture Search (NAS) mainly deals with finding optimal network architectures automatically
for a given task and dataset. There are quite a few different methodologies used in NAS, resulting in differ-
ent search spaces, optimization algorithms and backbones. Some methodologies leverage a discrete search
space with reinforcement learning while others might leverage a continuous search space with differentiable
loss functions [17]. NAS primarily has two optimization procedures. One is optimising the weights while
the other is optimising the architecture. Earlier works did this in a nested manner. Nested optimitation ended
up causing high computataional complexity as architectures sampled had to be trained from scratch. With
this setup, only small search spaces and datasets were affordable. To combat this, newer search algorithms
adopted weight sharing [5]. Some of them even converted the space into continous ones for easier optimiza-
tion [21]. Here, we will mainly focus on one-shot search methods. One-shot methods consist of training
a supernet once and then sampling the final architecture from that supernet, hence the name one-shot [4].
This, in contrast to the most-weight sharing arrangements, doesn’t use architecture relaxation, addressing
the architecture search problem in a second step. However, the coupling of the supernet weights still re-
mains due to the nature of the optimization issue. The work of Guo et. al. [9] alleviates this issue by using
a uniform sampling approach. The approach is state of the art in terms of efficiency, accuracy and training
time on ImageNet dataset.

Chapter 3

Proposed Approaches

3.1 Preliminaries

3.1.1 Lightweight Image Super-Resolution with Information Multi-distillation Network (IMDN)

We first start with reviewing the main building block of our work which is a lightweight network for single
image super-resolution. Hui et al. [12], proposed a neural network where information coming from different
scales are progressively refined with contrast-aware channel attention modules on top. The architecture
consists of three main building blocks, namely progressive refinement module, upsampler and contrast aware
channel attention module. These building blocks form the final network for single image super-resolution.
The architecture is depicted in figure 3.1, together with the upsampling module.

The network takes an downsampled image and upscales it for a given upscaling factor in a I°% =
Hiypn (IFR) fashion. Here, 77 and I°7 denotes the high resolution image and the low resolution image
respectively while Hryrp v denotes the network. There is also a different version of the network created for
any upsampling rate but we are nor going to review it here as our work is mainly based on initial network.
The network optimizes the loss function L(f) = % Zf\il ||Hrpvpn (TFE — THE||;. As seen from figure
3.1, the network consists of IMDB blocks. These blocks are made up of progressive refinement module and
channel attention module. Below we provide detailed descriptions for each module.

The progressive refinement module first extracts features by a 3x3 convolutional layer and then inputs
these features through subsequent refinement steps. The idea is to keep some features for the final feature
map (refinement) while sending others to the succeeding convolutions for further distillation. This enables
important features in a distilled fashion and enabling the fusion of information coming with different focuses

<
<

Conv-3
IMDB
Upsampler
v
SR
Conv-3
v
Sub-pixel

(=)
=y
N
=Y
(=]
=y

3xs®

(a) IMDN (b) Upsampler

Figure 3.1: The architecture of information multi distillation network (IMDN) [12]

CHAPTER 3. PROPOSED APPROACHES

on the image. A formal description is provided below in equation 3.1. Each convolution is followed by a
leaky relu activation function.

Foarse, = Splity (CLY (FE)),

n
refinedy’ * coarsey

FMo = Split(CLR (™, .)

n
refineds’ * coarses coarsey

" F. . = Splitl(CLMF™, ...

refineds’ * coarses coarsea

jol = CL}(F"

refinedy coarses

)
);

3.1
) (3.D
)

Contrast aware attention layer is an extension on channel attention currently employed in squeeze-and-
excitation module (SE). The key idea, which is the same for all attention modules is to highlight the high-
value areas. This attention is special to low-level vision and implemented by replacing global average pool-
ing with the summation of standard deviation and mean. If we denote the input as X = z1,...., 2, ,,, T
with C feature maps with a spatial size of H x W, the contrast information will be calculated by the equation
3.2 provided below.

ze = Hao(xe)

1 1)
- HWZ(%_HW)
(i,5)€xc (id)ewcxzﬁ (32)
1 1
TP
(Z’])G‘Tc

The architecture of the multi-distillation block (IMDB) is provided in figure 3.2 while the architecture
for contrast aware channel-attention is provided in figure 3.3.

3.1.2 Single Path One-Shot Neural Architecture Search with Uniform Sampling

We start this section of review by giving a general view of NAS approaches which led to the development
single path one-shot neural architecture. As stated in related work part, the main aim of NAS is to find
architectures automatically. In this regard, we solve two problems weight optimization and architecture
optimization. These problems can be formally stated as

Wq = argming Liyqin (N (a, w)) (33)
a* = argmaz,c AACCha (N (a, wg)) ’

where Liqin is the loss function on the training set and AC'C),; is the validation accuracy. The problem
considered here is classification.

Initial approaches, solved this problems in a nested manner, i.e. sampling architectures from A and
training them from scratch. To solve this problem, weight sharing is introduced where a supernet that
consists of the search space was created and trained. This supernet is optimized and then the best architecture
is sampled from this network. This approach came with the problems of weight coupling during optimization
and joint optimization leading to some parts of the network being trained better than the others. To further
solve this one-shot methods were introduced. In this paradigm, the supernet is trained once without any
architecture relaxation and the best network is sampled from this supernet. In other words, the training

6

CHAPTER 3. PROPOSED APPROACHES

—

[Conva | Prosressive
refinement

| Channel Split | module
(PRM)

| Conv-3 |

| Channel Split |

| Cconv-3 |

| Channel Split]

Conv-3 |

| Concat |
v
CCA Layer + 64
| Conv-1 | v 48

+ 16

Figure 3.2: The architecture of information multi distillation block (IMDB) [12]

+ o

e o f
--»-E' E

o jelv

O 7

4 64

Figure 3.3: The architecture of contract-aware channel attention (CCA) [12]

CHAPTER 3. PROPOSED APPROACHES

phase and the search phase are decoupled from each other. This made the process very efficient, flexible
and feasible. One-shot approaches tried to solve the problem of weight-sharing by using a drop-out strategy
[10].

In their work, Guo et. al. observed that solving the problem of weight-coupling with a path dropout
strategy yield results that are very sensitive to the dropout rate parameter. Thus, they proposed a single
path supernet architecture with uniform sampling to address the issues outlined in the previous paragraph.
In this paradigm, each network is a single path in the supernet that is being optimized and one is chosen
uniformly during the training procedure. This effectively addresses the problems of weight-coupling and
unequal training of network. The trained supernet is then evaluated with an evolutionary algorithm and the
best performing model is trained one more time in a fine-tuning fashion. The algorithm for evolutionary
search is outlined in algorithm 1 [10].

Algorithm 1: Evolutionary Architecture Search

1 Input: supernet weights W 4, population size P, architecture constraints C, max iteration T, validation
dataset D, q;

2 Output: the architecture with highest validation accuracy under architecture constraints

3 Py := Initialize_population(P, C); Topk := 0;

4 n:=P/2; Crossover number
5 m:= P/2; Mutation number
6 prob:=0.1; Mutation probability
7 fori=1:7 do

8 ACC,_1 := Inference(W 4, Dyar, Pi—1);

9 Topk := Update_Topk(Topk, P;_1, ACC;_1);

—
=

Perossover := Crossover(Topk, n,C);
Prutation := Mutation(Topk, m, prob,C);

—
R =

Pi = Pcrossover U Pmutation;
end
Return the architecture with highest accuracy in Topk;

-
B W

We did not provide the details of the architecture here as this work was implemented for a classification
task on ImageNet dataset.

3.1.3 Res2Net

Res2Net is a backbone proposed by Gao et. al. [8] to extract multiscale information and to represent this
information better in convolutional neural networks. The work proposes to do the multi-scaling at a more
granular level and to have multiple receptive fields available. To achieve this, the authors replaced the 3x3
convolutions with n channels by smaller filters with w channels. The feature maps are then concatenated in
the end. The module compared with the bottleneck block in the architecture is provided in figure 3.4. This
led to a performance increase when used with state-of-art classification networks on ImageNet. We are not
going to go in further detail in reviewing this paper as we use the Res2Net building block as an inspiration
in our custom supernet design.

3.2 Building the Supernet

In order to effectively search for a network using the one-shot paradigm proposed in [10], we first have to
build a supernet. Over the course of our work, we built a couple of different supernet in the process of

CHAPTER 3. PROPOSED APPROACHES

¥ ¥

[xI | | 1 x1 |
I X1 l X2 X3 I X4 I
| 3x3 I
Ko p—p
Y
3x3 353
K3
3x3
\ 4 \ 4 v K4
Ly | y2 | ys | vy |
Y
| 1 i‘l | | 1 f‘l |
(a) Bottleneck block (b) Res2Net module

Figure 3.4: Res2Net building block in comparison with the bottleneck block [8]

increasing the performance. Here, we are going to provide an overview of these nets. The nets all have the
property of collapsing into single path networks with sampling. One thing that we should talk about is also
the minor changes that we implemented in our networks. More details will be provided in the next chapter,
where we also discuss the results of our work.

Before going further, we should also give some motivation for our reasoning. We started with a relatively
small supernet and enhanced the network both by deepening it and also implementing different connections.

3.2.1 Initial Supernet and extensions

Our initial supernet is based on the IMDB which is depicted in 3.2. However, since our aim here is to
establish the proof-of-concept of our architecture, we started with three restrictions on IMDB, namely;

1. We decreased the number of stages (number of x3 convolutions two three) in the initial network.
2. We necessitated that the following a convolutions there should be a channel-split
3. The general structure is preserved as we still use concatenation as the final operation

The first two restrictions are gradually lifted. We added convolutions to the skip-connection layers inspired
by [8]. The first architecture is provided in figure 3.5.

As seen from figure 3.5, the supernet encapsulates 5 different paths which it can collapse into during
training. By altering the number of channel splits and convolutions in the architecture, we are in a way
searching for the best combination of the operations and best number of channels. With adding convolutions
to the skip connections, we extract further features. In the initial version of our network, we whether have
skip-connections or convolutions for the operations outlined as the connections to concatenations from split

9

CHAPTER 3. PROPOSED APPROACHES

uoIIN|oAUOD

UoIIN|OAUOD)
UoIIN|OAUDD)

Ia)
o
=}
<
S
c
=3
)
=1

UoIIN|OAUDD)

uolinjoAuo)

UOIIN|OAUOD)
UOIIN|OAUOD)
UoIIN|OAUOD)

Concatenate) Concatenate Concatenate Concatenate yrallag Concatenate

Convolution Convolution Convolution Convolution
3x3 or 1x1 3x3 or 1x1 3x3 or 1x1 3x3 or 1x1 3x3 or 1x1

Convolution

D w N = o
Figure 3.5: Our initial supernetwork with each architecture colored different with numbering

10

CHAPTER 3. PROPOSED APPROACHES
channels 3.5. however we also extended this network to choose between 3x3 or bypass, effectively having
20 choices.

Another thing in the new network is the final concatenation. In our early experiments, we concatenated
them directly without decreasing the number of channels in the last convolution to account for 64 channel
size. This increased the number of parameters significantly so we changed the last convolution in our
network to compensate. This increased the number of parameters and thus we also created a version with
less number of channels in skip-connections by altering the splits. We will provide further implementation
details in the results section.

In addition, in the initial network the first convolution in IMDB and the CCA layer with the last convo-
lution are not shared between the different paths. We also built networks with this structure shared. This
pretty much meant that the final layers of each net is shared.

3.2.2 Dynamic Supernet

Dynamic supernet is the version of the network in section 3.2.1 where we get rid of the first two of our
restrictions. This achitecture can be scaled to an arbitrary number of convolutions and thus arbitrary number
of supernetworks. It’s basically a generalized version of the initial supernet outlined in 3.2.1. This scales
with the power of twos as for a network of 3 number of stages we have 23 = 8 number of different paths
that a network can take. Figure 3.6 shows the different paths for the dynamic architecture with 3 number of
stages. Further details are provided in the next sections.

11

CHAPTER 3. PROPOSED APPROACHES

Channel Channel Channel Channel
O Split Split Split Split

[ELLE Channel Channel
Split Split Split

Channel Channel Channel Channel
Split Split Split Split

Channel Channel
Split Split

Channel
Splt

'\ Concatenatio Concatenatio Concatenatio Concatenatio
n n n n

Channel Channel Channel
4 Split Split Split

Channel Channel
Split Split

Channel
Split

Concatenatio Concatenatio
n n

Figure 3.6: Our dynamic supernetwork for 3 number of stages with each architecture colored different with
numbering

12

Chapter 4

Experiments and Results

4.1 Dataset

There are 3 different datasets used in the experiments in this work. We use the DIV2K [1] dataset for training
the neural networks. Set5 is used for validating the networks while Set14, Urban100 and BSD100 are used
for testing purposes.

4.2 Initial experiments with IMDN and Establishing a Baseline

These experiments were done with using the training set as DIV2K and using the exact procedure outlined
by [12]. The network is trained for a full 1000 epochs with an Adam optimizer with a momentum parameter
of 81 = 0.9. The iniial learning rate is 2210~* and it’s halved at every 2::10° iterations. The number of
IMDB units is 6. We ran the experiment for different scalings of x4, x3 and x2. The results are provided in
table 4.2. The results reported in the paper are provided in table 4.1. The values in bold show the best results
while the underlined values are the second best results. The table also provides the number of parameters
for each network. The table is directly taken from [12].

As one can see, we did not quite manage to get the exact results in the paper although we have used the
exact methodology and the same dataset. However, we though that the results were close enough, especially
for the scale of x3 and as we were trying the achieve comparable results, we decided to keep on working and
tried to see whether we could improve on these baselines. Since the original work produced put an emphasis
on the lightweight structure of the model, we will also replicate this emphasis in our work throughout the
report and provide the number of parameters for each network that we created. We also restricted our
work for x4 upscaling as it was the fastest setting for evaluation. This, we believed, would lead us to more
experiments given a time frame, meaning that we would have more time to experiment with different ideas.
Thus, from now on, all the architectures that are trained are for x4 upscaling.

After having the initial model, we decided to add some new blocks and then play with the model pa-
rameters to get a sense of how to improve the building block. This was done in order to understand the
limitations and strengths of the block as well as to inquire about possible paths that might lead to a better
supernet. The results are provided in table 4.3. Before proceeding further with the results of the network, we
should explain what those different directions mean. We wanted to first test the kernel size in our network as
kernel size is something NAS algorithms usually search for. For this purpose we devised two experiments.
We first increased the number of kernels to five and then use selective kernel [19] paradigm with different
settings. Selective kernel operations is an automated convolution block where a combination of different

13

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.1: PSNR and SSIM results for different scales from [12]

Method Scale | Params Set5 Setl4 BSD100 Urban100 Mangal09
PSNR /SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR /SSIM
Bicubic X2 - 33.66/0.9299 | 30.24/0.8688 | 29.56/0.8431 | 26.88/0.8403 | 30.80/0.9339
SRCNN [6] 8K 36.66/0.9542 | 32.45/0.9067 | 31.36/0.8879 | 29.50/0.8946 | 35.60/0.9663
FSRCNN [7] 13K 37.00/0.9558 | 32.63/0.9088 | 31.53/0.8920 | 29.88/0.9020 | 36.67/0.9710
VDSR [15] 666K | 37.53/0.9587 | 33.03/0.9124 | 31.90/0.8960 | 30.76/0.9140 | 37.22/0.9750
DRCN [16] 1,774K | 37.63/0.9588 | 33.04/0.9118 | 31.85/0.8942 | 30.75/0.9133 | 37.55/0.9732
LapSRN [18] 251K | 37.52/0.9591 | 32.99/0.9124 | 31.80/0.8952 | 30.41/0.9103 | 37.27/0.9740
DRRN [11] 298K | 37.74/0.9591 | 33.23/0.9136 | 32.05/0.8973 | 31.23/0.9188 | 37.88/0.9749
MemNet [24] 678K | 37.78/0.9597 | 33.28/0.9142 | 32.08/0.8978 | 31.31/0.9195 | 37.72/0.9740
IDN [13] 553K | 37.83/0.9600 | 33.30/0.9148 | 32.08/0.8985 | 31.27/0.9196 | 38.01/0.9749
EDSR-baseline [20] 1,370K | 37.99/0.9604 | 33.57/0.9175 | 32.16/0.8994 | 31.98/0.9272 | 38.54/0.9769
SRMDNF [26] 1,511K | 37.79/0.9601 | 33.32/0.9159 | 32.05/0.8985 | 31.33/0.9204 | 38.07/0.9761
CARN [2] 1,592K | 37.76/0.9590 | 33.52/0.9166 | 32.09/0.8978 | 31.92/0.9256 | 38.36/0.9765
IMDN [12] 694K | 38.00/0.9605 | 33.63/0.9177 | 32.19/0.8996 | 32.17/0.9283 | 38.88/0.9774
Bicubic %3 - 30.39/0.8682 | 27.55/0.7742 | 27.21/0.7385 | 24.46/0.7349 | 26.95/0.8556
SRCNN [6] 8K 32.75/0.9090 | 29.30/0.8215 | 28.41/0.7863 | 26.24/0.7989 | 30.48/0.9117
FSRCNN [7] 13K 33.18/0.9140 | 29.37/0.8240 | 28.53/0.7910 | 26.43/0.8080 | 31.10/0.9210
VDSR [15] 666K | 33.66/0.9213 | 29.77/0.8314 | 28.82/0.7976 | 27.14/0.8279 | 32.01/0.9340
DRCN [16] 1,774K | 33.82/0.9226 | 29.76/0.8311 | 28.80/0.7963 | 27.15/0.8276 | 32.24/0.9343
LapSRN [18] 502K | 33.81/0.9220 | 29.79/0.8325 | 28.82/0.7980 | 27.07/0.8275 | 32.21/0.9350
DRRN [11] 298K | 34.03/0.9244 | 29.96/0.8349 | 28.95/0.8004 | 27.53/0.8378 | 32.71/0.9379
MemNet [24] 678K | 34.09/0.9248 | 30.00/0.8350 | 28.96/0.8001 | 27.56/0.8376 | 32.51/0.9369
IDN [13] 553K | 34.11/0.9253 | 29.99/0.8354 | 28.95/0.8013 | 27.42/0.8359 | 32.71/0.9381
EDSR-baseline [20] 1,555K | 34.37/0.9270 | 30.28/0.8417 | 29.09/0.8052 | 28.15/0.8527 | 33.45/0.9439
SRMDNF [26] 1,528K | 34.12/0.9254 | 30.04/0.8382 | 28.97/0.8025 | 27.57/0.8398 | 33.00/0.9403
CARN [2] 1,592K | 34.29/0.9255 | 30.29/0.8407 | 29.06/0.8034 | 28.06/0.8493 | 33.50/0.9440
IMDN [12] 703K | 34.36/0.9270 | 30.32/0.8417 | 29.09/0.8046 | 28.17/0.8519 | 33.61/0.9445
Bicubic x4 - 28.42/0.8104 | 26.00/0.7027 | 25.96/0.6675 | 23.14/0.6577 | 24.89/0.7866
SRCNN [6] 8K 30.48/0.8628 | 27.50/0.7513 | 26.90/0.7101 | 24.52/0.7221 | 27.58/0.8555
FSRCNN [7] 13K 30.72/0.8660 | 27.61/0.7550 | 26.98/0.7150 | 24.62/0.7280 | 27.90/0.8610
VDSR [15] 666K | 31.35/0.8838 | 28.01/0.7674 | 27.29/0.7251 | 25.18/0.7524 | 28.83/0.8870
DRCN [16] 1,774K | 31.53/0.8854 | 28.02/0.7670 | 27.23/0.7233 | 25.14/0.7510 | 28.93/0.8854
LapSRN [18] 502K | 31.54/0.8852 | 28.09/0.7700 | 27.32/0.7275 | 25.21/0.7562 | 29.09/0.8900
DRRN [11] 298K | 31.68/0.8888 | 28.21/0.7720 | 27.38/0.7284 | 25.44/0.7638 | 29.45/0.8946
MemNet [24] 678K | 31.74/0.8893 | 28.26/0.7723 | 27.40/0.7281 | 25.50/0.7630 | 29.42/0.8942
IDN [13] 553K | 31.82/0.8903 | 28.25/0.7730 | 27.41/0.7297 | 25.41/0.7632 | 29.41/0.8942
EDSR-baseline [20] 1,518K | 32.09/0.8938 | 28.58/0.7813 | 27.57/0.7357 | 26.04/0.7849 | 30.35/0.9067
SRMDNF [26] 1,552K | 31.96/0.8925 | 28.35/0.7787 | 27.49/0.7337 | 25.68/0.7731 | 30.09/0.9024
CARN [2] 1,592K | 32.13/0.8937 | 28.60/0.7806 | 27.58/0.7349 | 26.07/0.7837 | 30.47 / 0.9084
IMDN [12] 715K | 32.21/0.8948 | 28.58/0.7811 | 27.56/0.7353 | 26.04/0.7838 | 30.45/0.9075

14

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.2: Reproduced PSNR for different scales together with reported results

Distillation Set 5 Set 5

Depth | Scale Rate PSNR PSNR
(Trained from scratch) | (Claimed)

6 x2 0.250 37.87 38.00

6 x3 0.250 34.34 34.36

6 x3 0.250 32.14 32.21

Table 4.3: Preliminary results

Network Type Kernel Size | Number of stages | Distillation rate | Set5 PSNR | Parameter Size
Vanilla 5x5 4 0.25 32.1433 2333436
Vanilla 3x3 4 0.25 32.1206 715000
Vanilla 3x3 3 0.3 32.0012 637848
Vanilla 3x3 4 0.25 32.0625 839880
Vanilla 3x3 4 0.125 32.027 908028
Vanilla with Selective Kernel | (1x1, 3x3) 4 0.25 32.0608 -
Vanilla with Selective Kernel | (3x3, 5x5) 4 0.25 32.08 -

size convolutions can be combined and selected. We also wanted to see the effect of the splits as this was
something that NAS algorithms also focus on as splits determine the channel size inputted into the convolu-
tions. We used different distillation rates, i.e. the multiplier for determining the number of channels distilled
to the final concatenation in IMDB unit. The last thing that we tested for is the number of stage, i.e. the
number of convolutions used in the IMDB unit. We did this because we wanted to see how the depth of the
network affects the performance.

Since this was to get a sense of the architecture, we only used the Set5 dataset for evaluations. The
ideas was to see which directions which we can extend the network into. The early experiments did not
give us the results that we were hoping for however this was a very important result as it showed us two
very important things about the network itself. One is that increasing kernel size increases the performance
although with a huge number of increase in parameter size. The second is that different distillation rates
as shown effect the performance, albeit not very significantly, giving us hope that this direction might yield
better results without increasing the number of paramaters too much. Different number of stages are also
checked here with using 3 stages. Although the performance decreased, the number of parameters decreased
as well, which gave use hope as we might be able to increase the performance of the network with NAS
with 3 stages. We also observed variability of the results as the average PSNR value fluctuated for differing
vanilla trials for scaling x4.

4.3 Initial Supernet and Extensions

Here, we provide the results for our initial supernetwork which we outlined its building block in figure 3.5.
We have 6 blocks, however for this particular experiment we use the Set5 as the validation set and use
Setl4 and BSD100 for the final test. The training set is DIV2K. Number of epochs is increased to 2000
and different learning rate schedulers are used for some of the experiments (explicitly mentioned). After
the supernet is trained, just as outlined in [12], we again train the found network using the same training

15

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.4: Initial Supernet results and extensions

Network Denth LR Distillation Val Set 14 | BSD100 | Urban100 | Parameter CII:;)tsﬁn
type P Scheduler rate PSNR(Set 5) | PSNR PSNR PSNR Size for Each Block
SuperNet 6 Step 0.125 32.08 2849 | 2751 2591 922856 324442
SuperNet 8 Step 0.125 32.16 2854 | 2753 26.02 1203921 43422342
SuperNet 8 Step 0.250 32.14 28.50 | 27.50 25.92 1047062 | 3,3,4,4,4,4,3,4
(Reduced)
SuperNet
(Reduced) 10 Step 0.250 3221 2855 | 2755 26.03 1369387
SuperNet 6 Cosine 0.250 32.09 2847 | 2747 25.87 772368
(Reduced)
SuperNet
(Reduced - 6 Cosine 0.250 32.09 28.50 | 27.50 25.91 755508
Shared)
SuperNet 8 Step 0.250 32.16 2855 | 27.52 26.02 1005212 | 33444434
(Reduced)
SuperNet 8 Cosine 0.250 3221 2857 | 27.54 26.06 1005212 | 33444434
(Reduced)
SuperNet
(Reduced - 6 Cosine 0.250 32.04 2847 | 27.49 25.86 556296
Shared-Conv1)
Vanilla 6 Cosine 0.250 32.15 2855 | 2752 26.00 712000
Vanilla 8 Cosine 0.250 32.19 2857 | 2754 26.06 931408
Vanilla 10 Cosine 0.250 3225 2862 | 27.57 26.15 1147640
Trilevel NAS [25]
(Claimed) - - - 31.62 28.26 - - 510000

parameters. The results for this training scheme and the network are provided in table 4.4.

Before providing any commentary on the results, we should provide the necessary information about
the architectures. Vanilla stands for the IMDN architecture with only, with no training alterations except for
increasing the number of epochs to 2000 for better comparison. For some trials, the learning-rate scheduling
was changed to cosine-annealing learning rate scheduler [22] as it was found to be better for the fine-tuning
phase. Each experiment with the SuperNet label, denotes a process of first training the supernet, then
searching on the supernet using the evolutionary search algorithm outlined in 1 and then finally fine-tuning
the network. The LR scheduler is only changed for the fine-tuning part. The maximum number of iterations
is 10 for the each experiment for the scheduler. Distillation rate is the distillation for each channel-split
operations and the depth is the number of modified IMDB units that we used (each unit has 5 different paths
in them as outlined in figure 3.5). The paths chosen for each block are also shown. Shared stands for the
architecture in which initial convolution coupled with the last convolution and the CCA layers are shared
between the different paths. The reduced paradigm changes the number of the final channels in the network
before concatenation. So the final convolution before concatenation in the IMDB paradigm has an input of
16 channels and also has an output of 16 channels. This makes sense here as the splits are constant there
are three splits and four different channel representation are concatenated as outlined if figure 3.2. When we
build the supernet, this paradigm is of course broken so we had to find a way to make sure that the number
of channels leaving the architecture is 64 so that the final summation can take place after each successive
IMDB. In our first implementation, we let the last convolution before the concatenation to have same number
of input and output channels while doing the reduction with the last convolution. In the architecture that
we defined as reduced, we did this mapping in the last convolution before concatenation rather than in the

16

CHAPTER 4. EXPERIMENTS AND RESULTS

last convolution. This is important as this provided similar performance with smaller number of parameters,
which also can be seen from table 4.4.

When we take a look at the results of our initial network, they are disappointing. We expected to beat
the baselines with the network that we custom-designed however the best results that we obtained are only
comparable to the baselines. This is a disappointing result, however one should also see that there’s some
merit in out methodology. Our process of train-search-train leads to different architectures (different from
the IMDN as well) that can compete with the baselines in the best cases. These means that our methodology
shows premise as we are not just collapsing into IMDN, which is a possibility in our architectures. The
second important thing is the differing sizes for networks with similar depths. We can actually limit the
number of parameters or flops during our search. We did not do that here to see the unconstrained version
of our network, however this is doable and another upshot of our work. This means one can design custom
neural networks with different requirements with this framework for super-resolution tasks. In addition, our
search progress also outlined a network with very small number of parameters. This network managed to
outperform some of the previous works with comparable parameter size. And one important thing that we
should also discuss here is the effect of sharing on the network. By keeping the initial convolutions and the
final ones constant between different paths sampled from the supernet distillation blocks, we managed to
increase the performance of our network with smaller number of parameters. This is a contribution of ours
to the proposed one-shot paradigm as this is not outlined in the original paper. However, most probably,
this is a domain-specific setting being valid for this particular design of the network for single image super-
resolution.

Another thing that we should pay attention to is the found architecture of the networks. Here, as one can
see from figure 3.5, the closest path to the IMDB unit is 4 and it’s no consequence that 4 is widely repeated in
our results. However, we also see that paths such as 2 and 3 are also chosen. The best performing networks
did not choose the first two paths. These results can be read in two different ways. The first one is that
the optimum architectures which provide comparable results to the baseline model are similar but not the
same as the architecture did not just collapse into the IMDB unit as path 4 is IMDB with three number of
stages. The found architectures show variability, and interestingly show repeating patterns in the middle of
the network.

4.4 Dynamic Supernet

Here we provide the results with our dynamic network. The dynamic network, as we outlined in section 3.2
has 2" number of different paths for a given block where n is the number of stages. The results are provided
in table 4.5. Here, we should also say that the end concatenations of this network follows the reduced pattern
explained above in section 4.3. The network has a depth of 6 and the search is done with the same method
outlined also in section 4.3. Number of stages for each network is shown for each network. Here, instead of
training only the best network, we also trained the best three networks. We also trained them from scratch
together with fine-tuning them. after the training of the supernet is finished.

This network seems to be better than our initial one as the results are a bit better. This supports our
initial assumption that increasing the search space will lead to better results. Again they are comparable to
the baselines. The interesting thing here is when we train the network from scratch, we sometimes get better
results from when we fine-tune the already trained supernet. This is a very important result and shows the
viability of our methods as our networks which are different than the initial network leads to comparable
results. In addition, this also shows the potential of our methodology as a semi-automated procedure. To
elaborate further, we can combine the modules that we found during automated search with the hand-crafted

17

CHAPTER 4. EXPERIMENTS AND RESULTS

Table 4.5: Dynamic Supernet results with replicated baselines for differing length

Val
e elr s Number Val PSNR Chosen
Network Sl 1o | Deptn | Pistillation of PSNR | (Sets, 15);\111: BSDI00 | Urbani0o | Porameter Path
ype cheduler rate Stages (Set 5) from 1ze for Each Block
scratch)
Dynamic
SuperNet Cosine 6 0.125 3 32.17 32.17 28.58 27.56 26.13 1215187 7,1,7.7,7,7
(Reduced-Best)

Dynamic

SuperNet Cosine 6 0.125 3 32.18 32.16 286 27.56 26.17 1257880 757,117
(Reduced -
Second Best)

Dynamic

SuperNet Cosine 6 0.250 3 32.17 32.19 28.61 27.55 26.15 1159811 7.1,7,7,5.7
(Reduced -
Third Best)

Dynamic

SuperNet Cosine 6 0.250 4 3224 - 28.55 27.56 26.13 14104962 | 11,7,12,7,13,13

(Best)

Vanilla Cosine 6 0.250 7 3215 - 2855 2752 26.00 712000

Vanila Cosine 3 0.250 7 32.19 - 2857 2754 26.06 931408

Vanilla Cosine 10 0.250 7 3225 - 28.62 7757 2615 147640

ones and train the new network from scratch. This might yield to better results and opens up further research
possibilities into this particular topic.

The found architectures are also very interesting. The first best three models both have the 7th com-
ponent as their most repeated building block with one or two different paths in between. This is a very
significant result as the 7th block includes subsequent convolutions and thus different from the IMDB unit.
The detailed summary of the dynamic net showing different paths are provided in Appendix. 7th path in this
architecture setting is most convolution-heavy network just like the 4th path in the initial network 3.5. This
might be due to the uneven optimization of the network however single-path architecture search with uni-
form sampling is known to counter this [10]. Thus, this pattern shows the premise of limiting the network
as architectures with less number of parameters might not yield this collapse into 7. Another interesting
result is the found architecture when we increase the number of stages to 4. The found architecture is vastly
different than the IMDN, however it shows tendencies of overfitting to the validation set. This also shows
the possible premise of limiting the number of parameters during architecture search. We did not provide
results with this angle as our main aim here is to prove the concept of using one-shot learning with uni-
form sampling in this setting and thus we did not restrict the number of parameters. We wanted to see the
architectures that the process yields.

18

Chapter 5

Conclusion

In this work, our main aim was to implement one-shot NAS with uniform sampling paradigm [10] to
single-image super-resolution task. For that purpose, we devised a supernet based on the lightweight multi-
distillation network proposed by HUi et. al [12] (IMDN) and inspired by Res2Net [8].

We built different supernetworks as our work progressed. Although different neural blocks were intro-
duced, we decided to built out network on two main operations, channel split and convolution. We built
the supernet by redesigning the IMDB units in IMDN in a multi-path structure where sampling a path from
these blocks amounted to creating a network. The initial network was a simple one with 5 different paths for
each block with three main restrictions, namely; the number of stages remained constant, every convolution
was followed by a skip-convolution layer and concatenation is used for the final operation. Later, we relaxed
the first two of these operations in dynamic networks and also implemented some structural improvements.
Although the results were comparable of our reproduced baselines, we failed to improve on top of IMDN
[12].

The best performing model when taken in tandem with the number of parameters was the dynamic model
with the number of stages as 3. This particular model provided directly comparable results to the baseline
when we increased the depth of the network to 8. This is an important results and directly affected by the
fact that the network in study was designed to be optimal with 6 units. On top of this, we also found out that
the networks with higher number of convolutions are favoured and the researched networks do not collapse
into IMDN, which led us to say that our work has merit. In addition, the network was also competitive with
different works when we decrease the number of parameters [25].

To sum up, we implemented a NAS algorithm for single-image super-resolution by using IMDN back-
bone and single path one-shot search with uniform sampling. The algorithm is comparable to the baselines
but does not improve the results.

19

CHAPTER 5. CONCLUSION

20

Bibliography

[1]

[6]

[7]

[10]

[11]

[12]

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution: Dataset
and study. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
July 2017.

Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and lightweight super-resolution
with cascading residual network, 2018.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architectures
using reinforcement learning, 2017.

Andrew Brock, Theodore Lim, J. M. Ritchie, and Nick Weston. Smash: One-shot model architecture
search through hypernetworks, 2017.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware, 2019.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep
convolutional networks, 2015.

Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution convolutional
neural network, 2016.

Shang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang, Ming-Hsuan Yang, and Philip Torr.
Res2net: A new multi-scale backbone architecture. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 43(2):652-662, Feb 2021.

Shuhang Gu, Wen Li, Luc Van Gool, and Radu Timofte. Fast image restoration with multi-bin trainable
linear units. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
October 2019.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single
path one-shot neural architecture search with uniform sampling, 2020.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Ostendorf. Deep
reinforcement learning with a natural language action space, 2016.

Zheng Hui, Xinbo Gao, Yunchu Yang, and Xiumei Wang. Lightweight image super-resolution with
information multi-distillation network. Proceedings of the 27th ACM International Conference on
Multimedia, Oct 2019.

21

BIBLIOGRAPHY

[13] Zheng Hui, Xiumei Wang, and Xinbo Gao. Fast and accurate single image super-resolution via infor-
mation distillation network, 2018.

[14] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep
convolutional networks, 2016.

[15] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep
convolutional networks, 2016.

[16] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-recursive convolutional network for image
super-resolution, 2016.

[17] George Kyriakides and Konstantinos Margaritis. An introduction to neural architecture search for
convolutional networks, 2020.

[18] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Fast and accurate image
super-resolution with deep laplacian pyramid networks, 2018.

[19] Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selective kernel networks, 2019.

[20] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
networks for single image super-resolution, 2017.

[21] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019.

[22] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.

[23] Kenneth Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation, 10:99-127, 02 2002.

[24] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Memnet: A persistent memory network for
image restoration, 2017.

[25] Yan Wu, Zhiwu Huang, Suryansh Kumar, Rhea Sanjay Sukthanker, Radu Timofte, and Luc Van Gool.
Trilevel neural architecture search for efficient single image super-resolution, 2021.

[26] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Learning a single convolutional super-resolution network
for multiple degradations, 2018.

[27] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution
using very deep residual channel attention networks, 2018.

[28] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2017.

22

