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Abstract

Medical ultrasound (US) imaging is a vital diagnostic tool and has many areas of appli-
cation. The raw data from US imaging, known as radio-frequency (RF) data, contains
more information than US images and has valuable use cases. Although large datasets
of processed US images are widely available, raw RF data remains scarce.

This thesis introduces the first system designed to predict raw RF data from US im-
ages. We have developed a data-driven, physically-informed model that combines deep
learning (DL) techniques with numerical simulations of ultrasound waves. Specifically,
we employed a TransUNet neural network architecture to predict the acoustic properties
of the underlying tissue. The neural network is trained using a custom synthetic dataset
generated by us. To create extensive and meaningful synthetic datasets of paired RF
data and US images, we propose four different strategies. These include using geometric
features from standard images in the ImageNet dataset and information from medical
CT images.

The performance of our model using different synthetic datasets is compared and eval-
uated for real RF data and we find that the model which generalizes best is trained on
the CT phantom dataset. Additionally, we explore fine-tuning the trained models to
predict RF data for medial gastrocnemius (MG) muscle images using a dedicated syn-
thetic muscle phantom dataset created by us. We verify that fine-tuning the model for
prior-known tissue types significantly improves the predicted RF data. By comparing
our physics-based model to an end-to-end DL model trained for RF data prediction, the
benefit of introducing the numerical simulation into our predictions is highlighted.
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Chapter

Introduction

1.1. Motivation

Medical ultrasound (US) has been a cornerstone of diagnostic imaging for decades, due
to its noninvasive nature. Unlike CT scans, which use ionizing radiation, US imaging
provides a safer alternative that avoids radiation exposure. Additionally, ultrasound
stands out for its cost-effectiveness and ease of use. In comparison to the more expensive
MRI and CT scanners, ultrasound devices are not only more affordable but also highly
portable, which increases their utility in various clinical and emergency settings. [11]

During the US acquisition raw US data, also called radio-frequency (RF) data, is collected
and then processed to construct a US image. For data analysis, there are multiple
advantages that RF data provides over traditional US images. Firstly, the RF data
contains more information than the processed US image, since it is available at a higher
resolution than the image. Additionally, it is not affected by post-processing steps such
as log-compression, which is used to construct a visually more appealing image. Due to
the enriched information present in the RF data, it has been used for spatial alignment
of ultrasound data by the work of Klein [12].

Recent studies have developed wearable US sensors and used them to measure muscle
activity, such as the system by Frey et al. [I3]. An example of such research is the study
conducted by Vostrikov et al. [14], where they use the collected RF data to estimate
the pennation angles of muscles using machine learning (ML) algorithms directly on the
edge device. Another work of Vostrikov et al. [I5] designed a data-driven ML model to
perform hand gesture recognition from RF data collected using a wearable US sensor.
These research projects are interested in directly processing the RF data, since the image
formation step takes up both computational and memory resources, that are not available
on edge devices.
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The training of such ML algorithms would benefit from large RF data sets. However, RF
data is scarce, as medical ultrasound acquisition systems are often proprietary and closed,
and manufacturers offer no access to the originally acquired RF data. Meanwhile, there
are large datasets of medical US images freely available [16] [I7]. Instead of collecting
large new datasets for RF data, it would be useful to be able to "recycle" existing US
image datasets.

Therefore, in this thesis, we want to establish a method to predict the original raw RF
data from existing US images. To the best of our knowledge, no previous methods have
attempted to predict raw RF data from images.

1.2. Objective

Our main objective is to develop a method to predict the raw RF data given a US image.
As the US image is constructed from the RF data using non-linear transformation, where
part of the information is lost due to processing steps such as envelope detection and
log-compression, there exists no closed-form solution to this problem. To predict the RF
data given the US image, we present a data-driven physically-informed model that can
be separated into two main parts:

1. A numerical simulation used to simulate a US acquisition for the predicted imaging
medium. This simulation computes the desired RF data based on the physics of
US and therefore forms the physics-informed part of our system.

2. A deep learning (DL) model that predicts the underlying acoustic properties of the
imaging medium, which we refer to as the phantom maps, given a US image. This
is the data-driven part of our system.

Utilizing the numerical simulation ensures the generation of realistic RF data that aligns
with the fundamental principles of physics. This would not be guaranteed when at-
tempting to directly predict RF data using a DL model. For the implementation of the
numerical simulation, the k-Wave toolbox [I8] is used.

To train a DL model to predict the medium phantom maps, a large dataset of matching
US images and phantom maps is needed, which was not previously available. Therefore,
we introduce a framework to create large synthetic datasets consisting of paired phan-
tom maps, US images, and RF signals. We present five different strategies to create
meaningful phantoms, aiming to generalize beyond the synthetic dataset:

1. The Ellipse phantom dataset, where phantoms are created using geometric primi-
tives.
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2.-3. The ImageNet and ImageNet-enhanced phantom dataset, where phantoms are cre-
ated using geometric structures extracted from general-purpose images in the Im-
ageNet dataset. The geometric structures are extracted using segmentation and
further enhanced using the edge information contained in the images.

4. The CT phantom dataset, where phantoms are created using information contained
in medical CT images.

5. The Muscle phantom dataset, where phantoms are created using medical US images
of the medial gastrocnemius (MG) muscle.

Using these five strategies, a total of 210’000 synthetic data samples are generated for
this project. For each of the first 4 datasets, a DL model is trained from scratch.

For the DL model, two different model architectures, the UNet[I9] and TransUNet[§],
are explored and their prediction performance is compared.

We evaluate the performance of our physically-informed model for each of the synthetic
datasets on real US images and compare the real and predicted RF data using custom
metrics we introduce.

The muscle phantom dataset is used to fine-tune the previously trained models for the
task of predicting RF data for US images of MG muscles. Like this, we can investigate,
if the model’s predictions can benefit from a dedicated synthetic dataset if the target
tissue is known in advance.

Lastly, an end-to-end DL model is trained to predict the RF data directly from the
US image. The end-to-end model’s performance is compared to our physically-informed
model. The goal is to provide a comparison and to evaluate the potential value of
integrating the numerical simulation into our system.



Chapter

Preliminaries - Ultrasound Imaging

This thesis concerns itself with ultrasound (US) imaging and how to extract the original
measured radio-frequency data (RF data) from a US image. Because the modeling of
the acoustic properties of tissue and the simulation of US data is a large focus, we first
explain how US data is acquired and what physical principles the imaging technique is
built on.

Basic Principle of Ultrasound

A medical US image gives a cross-sectional view of tissue and organ boundaries for a
target region. The US image is generated by sending an ultrasound wave through a
tissue of interest using a transducer. This causes echoes that arise as ultrasound waves
reflect from tissue borders and scatter from slight anomalies within the tissues. Using
the pulse-echo principle, which is the same principle used for sonar, one can reconstruct
the exact locations of the tissue borders with respect to the transducer and generate the
resulting US image. [I]

2.1. Physics of Sound Waves

An ultrasound wave is defined as a high-frequency sound wave with a frequency higher
than 20kHz, out of the range of audible frequencies [20].

Medical ultrasound sound waves are longitudinal waves that propagate through a physical
medium, which is typically some form of tissue or liquid. Particles oscillate along the
direction of travel and cause regions of high pressure (compression) and low pressure
(rarefaction), which is visualized in Figure As per usual for waves, the particles
don’t propagate, only the disturbance and its associated energy do. [1]
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Pressure
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Figure 2.1.: The visualization of a sound wave, showing the particle displacement in the
direction of propagation. [I]

The propagation of a sound wave depends on the medium it is traveling in [3]. The
frequency of the wave f is independent of the propagation medium and stays constant as
the sound wave crosses from one medium to another and is determined by the excitation
frequency of the transducer which usually ranges between 2-15 MHz. However the speed
of sound (SoS) ¢ of a sound wave changes across different media and is fully determined
by the current propagation medium. The properties of the medium that determine the
acoustic SoS are mass density p and stiffness k. The latter is a measure of how much
a material resists being deformed under pressure. The relationship between them is
captured with the following formula:

c=4/— (2.1)

The wavelength A is determined by the frequency f and SoS ¢ as usual for waves with
the following equation:

A= (2.2)

The wavelength of the ultrasound pulse determines the ability of a US imaging system
to resolve fine anatomical details. It directly impacts the axial resolution of the US
system.

2.1.1. Interactions with Matter

The signal the transducer receives at the transducer is the result of the echoes originating
from the interactions of the ultrasound waves with the propagation medium. To better
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Figure 2.2.: The different types of interactions of sound waves with matter. (A) Reflection
(B) Reflection and Refraction (C) Scattering. [2]

understand the echoes we receive at our transducer this section elaborates on the different
interactions of sound waves with the propagation medium.

Reflection and Refraction

Reflection and refraction of US waves occur at boundaries, where the acoustic impedance
of the medium changes [2]. The acoustic impedance Z of a medium represents the
resistance to the propagation of ultrasound waves through a medium and it is defined as
the product of the medium density p and the SoS ¢ of the medium:

Z=p-c (2.3)

Reflection of ultrasound waves occurs when an ultrasound wave traveling through one
type of tissue encounters an interface with another tissue of different acoustic impedance.
Specifically, if the US wave travels from medium 1 to medium 2, the reflected pressure
amplitude can be computed with [I]:
Lo — 7

br_ 22721 (2.4)

pi  Ze+ 21
where p, and p; reference the reflected and incident pressure amplitude and Z; and Zs
are the acoustic impedances of the two media. This assumes that the incident wave
arrives in the normal direction of the tissue boundary (see Figure (A)).
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If the incident wave arrives at an angle of incidence theta; (denoted as « in Figure[2.2|(B))
then by the law of reflection the angle of reflection 6, = 6; = « for a smooth interface.
If the SoS changes between the two media, analogously to the, due to refraction the
direction of the transmitted wave changes. The angle of the transmitted wave can be
computed, analogously as for electromagnetic waves, using Snell’s law:

sinf; ¢

= 2.5
sinf; co (2:5)

Scattering

The reflection laws described above hold only for large interfaces, for example at bound-
aries between different organs. Within most tissues, there are also many small-scale
variations of the acoustic impedance. These small structures we refer to as scatterers
and for them the reflections do not follow the previously described laws of reflection.
For targets smaller than the wavelength of the incident ultrasound wave, it is scattered
across a large range of angles. Formally for targets with a much smaller size d than the
wavelength A\ the scattered power is related to the frequency.

d6
W o 17 do £ (2.6)

This relation is called Rayleigh scattering. [I]

The scattering makes up most of the echoes that are received by a transducer and the
scattering is what gives different tissues their contrasts. [21]

Attenuation

As the ultrasound wave travels through the medium, the amplitude and intensity de-
creases. This is caused by both scattering and absorption. Both mechanisms are de-
pendent on the frequency. The attenuation of a medium can be described using the
attenuation coefficient a. The attenuation coefficent « is given in units | CmfiﬁHZ]. The
attenuation for a signal of frequency f at depth z can therefore be calculated using

dB

Att tion [dB| = _—
enuation [dB] = « [Cm-MHz

} - f[MHz] - z [cm)]. (2.7)

2.2. Transducers

The device that generates the ultrasound wave and then records the echo is called the
transducer. Medical transducers usually consist of multiple transducer elements, where
each transducer element converts an electrical signal into a sound wave and then also
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a b c
Linear Array Curved Array Phased Array

Figure 2.3.: Three different transducer types. [3]

converts the returning ultrasound echo to an electrical signal again. This electrical signal
generated from the returning sound waves is the RF data we measure which is subse-
quently used to generate the ultrasound image. [3]

Transducers make use of the piezoelectric effect to convert the electrical signals to sound
waves and the reverse. The piezoelectric effect describes the generation of an electric
potential out of mechanical stress on a piezo-crystal. Vice versa, an applied electric
potential produces a mechanical deformation on the piezo-crystal. By applying an oscil-
lating electric potential to the crystal we can make it expand and contract to generate
a sound wave of a desired frequency. Inversely it can also be used to sense the reflected
echo and measure the incoming sound waves [22].

A medical transducer usually consists of between 128 and 256 transducer elements. Each
transducer element has a piezo-element to generate a sound wave and receive a signal.
For each transducer element, there is a corresponding channel in the captured RF signals.
The resonance frequency of the transducer is also referred to as the center frequency and
typically corresponds to the frequency at which the ultrasound wave pulse is emitted by
the transducer.

2.2.1. Transducer Types

There is a variety of different types of transducers that have different applications. Three
such examples can be seen in Figure [2.3

Depending on how the transducer elements are arranged you get different transducer
types. For the linear array (Figure (A), there are usually between 128 and 192
transducer elements arranged equidistantly on a straight line, and the parallel form a
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Figure 2.4.: Visualization of three different US imaging artefacts. (A) visualizes the speed
displacement artefact, (B) shows the Shadowing artefact, and (C) shows the
artefact caused by refraction. [4]

rectangular image. In (B), the transducer elements in the curved array are arranged in
a curved configuration, leading to an image with an expanded field of view (FOV). On
the other hand, a phased array (C) features elements arranged in a straight line but with
a notably smaller operating aperture compared to a linear transducer, resulting in an
image shaped like a circle segment.

2.3. Ultrasound Imaging Modes

There are multiple different modes for US acquisitions. The simplest one is called A-
mode imaging, where the A stands for amplitude. For A-mode imaging, a single focused
beam is sent and echoes are received on a single channel and the height of the reflected
amplitudes are plotted.

When we talk about US images we usually refer to B-mode images, where the B stands
for brightness, where the raw US data is collected for many channels and formed into a
US image. This is the imaging mode that this thesis focuses on.

Lastly, there is also M-mode imaging, where the M stands for motion. In motion mode, a
stationary transducer emits ultrasonic pulses to capture either A-mode or B-mode images
sequentially, enabling the measurement of organ movement over time.|[23]

For traditional B-mode imaging, the US image is formed line by line using focused trans-
mit US beams, to achieve a high image resolution in the lateral direction. In contrast,
there also exists ultrafast US images, which rely on sending a single unfocused plane wave
(PW) through the entire field of view at once. With this method, higher frame rates of
US images are possible, with the downside of lower lateral image resolution. [24]
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2.4. Ultrasound Imaging Artefacts

During US image formation several assumptions are made that can lead to the following
imaging artefacts.

Speed Displacement

During image formation, a constant SoS of 1540 m/s is assumed. Deviations in the SoS in
various tissues from the assumed mean velocity result in errors in distance measurement
and distortions in the image [3]. This is visualized in Figure (A) for the example of
fatty tissue with a lower SoS of 1450 m/s.

Refraction

During image formation, it’s assumed that ultrasound waves travel in straight lines within
the imaging medium. However, as previously discussed, when sound waves encounter an
interface of two media with different SoS at an angle, refraction occurs, causing the
positions of structures in the image to be altered [3|. This is visualized in Figure

(B).

Shadowing and Enhancement

Another assumption in image formation is the consistent attenuation of the ultrasound
(US) beam as it passes through tissue. Consequently, regions with lower attenuation may
result in signal enhancement compared to neighboring areas, causing the region behind
them to appear brighter. Conversely, regions with high attenuation can produce shadows
behind them, as illustrated in Figure (C).
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Related Work

To the best of our knowledge, no previous research has focused on predicting the RF
data of US acquisitions from US images. However, our method uses several techniques
and addresses subproblems that have been previously explored by others, such as using
deep learning models on US images, extracting acoustic properties of the medium from
a US image, and creating synthetic US datasets. In this section, other studies that have
explored these subtasks previously will be reviewed.

3.1. Synthetic Phantom Data for Ultrasound

In this section previous works are discussed that have created synthetic datasets, that
match tissue property maps and corresponding US acquisitions.

One previous work that has explored creating a synthetic dataset for US images was
Perdios et al.[25]. Their strategy involved creating numerical phantoms by placing many
elliptical targets of varying scattering. The other acoustic properties (density, SoS, atten-
uation) remain constant through the numerical phantom. They use an optimized version
of the Field II simulator [26] to simulate US images. They create 30’000 synthetic data
images that they use to train a DL model, which can successfully improve the image
quality of low-quality US during image reconstruction.

The work of Zhang et al. [27] introduces a method to predict the scattering distribution
of an acoustic medium given the US image. For this, they create a statistical scattering
model and for each point in the numerical phantom assign distribution parameters, that
in turn, they try to predict using a DL model. To create the underlying scattering
parameter maps in their synthetic dataset they use overlapping geometric shapes from
thresholding random coarse gray-scale patterns interpolated at finer resolutions. The
final dataset they use has a size of 4000 parameter maps.

11
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It is important to note that both the methods by Zhang et al. [27] and Perdios et al.[25]
use convolutional methods for simulation, which leads to fast simulation times. While
convolutional methods are fast, they have the disadvantage of only being able to simulate
phantoms that have homogeneous acoustic properties aside from the scattering pattern

I28].

Our method relies on modeling a virtual phantom of real tissue structures. This is also
a topic explored for other medical imaging modalities such as computed tomography
(CT) and not just US. Therefore we also investigate two works that extract meaningful
phantoms used for CT simulation. The research of Shi et al. [29] explores creating
accurate numerical phantoms of the human body from a set of CT images. The images
are segmented into different tissue regions and average physical properties are extracted
based on the radiation measurements in the CT scan. In the work of Segars et al. [30]
they create virtual phantom models by projecting phantoms based on patient data from
CT images, such as those created by the work of Shi et al. [29], to mathematically
defined functions such as Cubic Bezier surfaces. This reduces the computation time for
CT projection calculation.

There also exist several different works that use generative models to create large syn-
thetic US image datasets using generative deep learning methods. The method presented
by Maack et al. [3I] uses a generative adversarial network (GAN) to create synthetic
US images based on a small existing dataset of real US images. Meanwhile Stojanovski
et al. [32] uses the more recent generative models called Denoising Diffusion Proba-
bilistic Models [33]. They use their synthetic dataset to successfully train a network to
perform semantic segmentation on real data. However, these methods are less relevant
for our work, since we are interested in having matching RF data and possibly also the
corresponding numerical phantom.

3.2. Prediction of Tissue Properties from Ultrasound
Images

Our method relies on training a DL model to predict the point-wise acoustic properties
of tissues from a US image. Here are some previous works, that have discussed strategies
to predict acoustic properties from US images.

As discussed in the previous section the work of Zhang et al. [27], has successfully trained
a UNet [19] architecture to predict the scattering pattern of the acoustic medium from
an US image. The model was trained on a synthetic dataset they created specifically for
the task.

There have been recent works to predict the SoS for an acoustic medium from US data.
One such work is the dissertation by Simson [34]. The presented method uses a UNet
[19] model to predict the SoS for a numerical phantom directly from the beamformed

12
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RF data. The model was trained on synthetic RF data that was simulated using k-Wave
[18] on numerical phantoms they create specifically for breast anatomy.

The earliest work that tried to predict the attenuation value from ultrasound data is by
Kuc [35] and a more recent technique was developed by Ghoshal et al. [36]. Both works
present analytic solutions based on US physics for predicting the global attenuation value
from the measured RF time signal. Predicting it from the RF data is an easier task than
from the US image since the RF signal carries more information. We have not found
previous works, that try predicting the acoustic attenuation properties point-wise for the
imaging medium.

The work of Chean et al. [37] uses time-domain time domain reflectometry theory, to
analytically predict the acoustic impedance, using restricting assumptions such as no
significant scattering or attenuation occurring in the propagation medium.

To the best of our knowledge, there is no existing work on trying to predict the mass
density of the imaging medium from medical US images. The work that comes closest
would be that of Sanabria et al. [38], where they use air-coupled ultrasound to predict
the density of particle boards during inspection. However, since this is barely related to
our case of medical US images, we will not get into their method.

13



Chapter

Methodology

This chapter will first outline the virtual phantom model we have developed. Subse-
quently, it discusses the methods used to simulate RF data given a virtual phantom
and to generate a corresponding US image. The simulation will be used for both the
synthetic data generation and our physically-informed model. Various strategies for cre-
ating diverse datasets of virtual phantoms are then explored. Finally, we will describe
the architectures of the deep learning (DL) models we use to predict RF data given a US
image.

4.1. Virtual Phantom Model

Our virtual phantom model specifies all relevant acoustical properties of the imaging
medium. We define the underlying propagation medium as a two-dimensional grid, de-
noted as GG, with height N, and width N,:

G={(i,) | 1 <i< N, 1<j< Ny}

The lateral direction is referred to as the x-axis and the axial direction as the z-axis.
The grid points represent the discretization of the physical propagation medium, with the
physical grid spacing defined by the distance Axz, which is uniform in both the lateral
and axial directions (See Figure . The transducer is positioned at the top of the grid
along the z-axis, with the transmission pulse directed along the z-axis, as visualized in

Figure

At each grid point with coordinates (i, j), we assign four acoustical properties that char-
acterize our virtual phantom:

e Density p(7,j), with unit [%]

14
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Figure 4.1.: A visualization of the virtual phantom grid G with dimensions N, and NV,.
During the simulation, the transducer will be placed at the top of the grid.

e Speed of sound c(7, j), with unit []

e Attenuation coefficient a(i, j), with unit [ie—]

e Scattering s(i, j), which has no absolute unit. For further details, refer to Section

41T

These maps collectively describe the virtual phantom for all points in our imaging
medium.

Thus, we can represent our virtual phantom as a function P that maps each grid point
to these four phantom values:

P:(i,j)— [pcas] (4.1)

In practice, the virtual phantom is represented as four matrices of dimensions N, X N,:
the density map D, the speed of sound (SoS) map C, the attenuation coefficient map A,
and the scattering parameter map S. When stacked, these form a 4 x N, x N, tensor
referred to as the virtual phantom P. An illustration of such a virtual phantom is shown

in Figure
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Figure 4.2.: An example virtual phantom P. It is characterized by four maps that model
the acoustic properties of the medium: Density, SoS, Attenuation, and Scat-
tering. This phantom was generated using a CT slice (see Section |4.3.4]).
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The density p(i,j) with unit [%] models the mass density of the medium at any grid
point, while the SoS value ¢(i, j) with unit ["] models the acoustic speed of sound for
any grid point. Together, they determine the acoustic impedance at every point, which
is essential to characterize how the incident sound wave is reflected.

Additionally, the attenuation coefficient a (7, j) models the attenuation of a signal consid-
ering scattering and absorption, which is essential for simulating the sought-after physical
properties.

We do not model the attenuation power exponent, due to limitations of the simulation
software we use (See Section . Furthermore, we do not consider the non-linearity
parameter B/A of the tissue, and the ultrasound acquisitions are always modeled linearly.
The model is made simpler and more efficient by disregarding this.

The scattering is not a physical measure but describes variances of a statistical model.
Using this statistical model we can draw realizations of the scattering distribution for the
density, resulting in the density map ps, which includes scattering elements. The defi-
nition of the statistical model and the precise interpretation of the scattering parameter
are detailed in the following section.

4.1.1. Scattering Model

In the virtual phantom the density, speed of sound, and attenuation can be considered
inherent characteristics of the medium, which can be either looked up in reference ma-
terials or measured directly through physical experimentation. On the other hand, our
scattering model tries to capture the effect of scattering using a statistical model, de-
noted as S. By applying S, we can then generate a density map that incorporates the
scattering components, ps(i,7) ~ S(i,7, p(i, 7)), where ps signifies the estimated density
distribution influenced by scattering s(i, j) at the coordinates ¢ and j, based on the initial
density values p(, 7).
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Scattering occurs when structures smaller than the wavelength of the incoming ultra-
sound wave have a different acoustic impedance than the surroundings. We call these
structures scatterers going forward. These scatterers cause a diffusive scatter, in con-
trast to the specular reflections that occur at larger surfaces at the boundaries of different
acoustic impedance.

Since scatterers differ in acoustic impedance from their immediate surrounding, one could
model the change of the acoustic impedance either with the density, the speed of sound,
or both. We decided to model them using changes in the density. Larger speeds of sound
can lead to speed displacement artifacts and lead to a longer computation time of the
simulation to achieve stability.

Therefore, by applying S, we generate a density map, ps ~ S(i,7,p(i,7)), where pg
signifies the estimated density distribution influenced by scattering at the coordinates i
and j, based on the initial density values p(i, ).

Statistical Model

We model the scattering with an adapted statistical model that is described by Zhang
et al. [27]. The scattering of each tissue type is characterized by three parameters
(vs, f1s,0s). The parameter v € [0, 1] describes the scatterer density, meaning the num-
ber of scatterers in a given area, which is not to be confused with the mass density p.
Further us describes the mean and o, the standard deviation of the scatter amplitude.

Drawing a sample from this probabilistic model means that for each point p;; in our grid
we draw from a Bernoulli distributed random variable (RV):

Xij ~ Bernoulli(vy)

The RV draws value 1 with probability vs and 0 otherwise. The points where the RV
equals 1 are classified as scatterers. If a point is a scatterer, we sample the density value
from the Gaussian distribution N (u(i, §), 0s(i, j)?). Otherwise, the mean density p(i, 5)
is assigned. The density with the scattering applied can therefore be described to be
drawn randomly in the following way:

orlisf) = {~N<us<z',j>7os<z',j>2) if Xi; =1 (42)

p(i,7) otherwise

The parameter vg € [0, 1] describes the scatterer density, meaning the number of scat-
terers in a given area. This density is fixed to always be 10 scatterers per resolution cell
which is in line with Pinton et al. [39] and Perdios et al. [25]. Given our simulation
setup, the resolution cell was experimentally determined to be 0.6357mm in axial and
0.6949mm in lateral direction, which results in approximately 9 x 10 grid points given
our simulation parameters described in Section In practice, the grid is separated

17



4. Methodology

into distinct resolution cells of the above-mentioned size and for each resolution cell, 10
points are chosen at random as our scatterers.

For the mean of our scattering, we choose ps(i,7) = p(i,j) to have it centered around
the density. The scattering variance os(i, j)? is defined with relation p(i,5) and s(i, 5).

To accomplish this, we draw a scattering factor for each location. If a grid point is a
scatterer, we will draw the factor with a variance s(I, j)for that grid point.

| (4.3)
1 otherwise

s*(1,7) = {NN(173(i7j)) if X;; =1

Then we multiply the drawn scattering factor at each grid point with the density at this
grid point:

ps(i,j) = s7(i,3) - p(i, J) (4.4)

If we combine formulas [£.3] with [£.4] using the linearity of the normal distribution, it leads
to our desired statistical model with mean pu(i,7) = p(i,7) and variance o(i, j)% =
s(i, ) - p(i,7)? leading to a standard deviation of os(i,j) = /s(4,5) - p(i, 7).

For all the phantoms we generate, s(i,j) is in the range € [0,0.015625] which means
the standard deviation ranges between € [0,0.125 - p(7, j)]. Experimentally, we find that
higher scattering does not increase contrast but only leads to an artifact, where the target
appears larger than it actually is.

4.2. Data Generation Pipeline

We want to create large datasets of virtual phantoms, corresponding RF data from US
acquisitions and the thereupon formed US image of the RF data. In this section, we
provide a detailed explanation of how we can simulate the acquired RF data and form
the US image given a virtual phantom.

The data generation can be broken down into 3 steps:

1. Phantom Generation
2. Simulation

3. Image Formation

An overview can be seen in Figure [4.3] First, we also specify the exact specifications
that are used to create all the synthetic samples in the datasets we produced.
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Figure 4.3.: Overview of the data generation pipeline.

4.2.1. Setup Specifications

The phantom grid size, simulation grid size, and final image size are identical for all
samples in the synthetic datasets. By fixing the setup specifications across our synthetic
datasets, consistency can be guaranteed.

Furthermore, a point for point correspondence between phantom values and image pixels
is achieved, by choosing equal phantom and image dimensions. This correspondence
makes the point wise prediction task for our DL models easier.

Our setup models a single plane wave (PW) US acquisitions using the Verasonics Van-
tage 256 ultrasound research system (Kirkland, WA, USA) coupled with a 192-channel
transducer, specifically the GE 9L-D model from General Electric Healthcare (Chicago,
IL, USA). This is modeled using the following grid and transducer parameters described
in Tables [41] and

Grid parameter Value

N, 576
N, 856
Axz 0.074mm

Table 4.1.: Overview of the grid parameters used in creating the synthetic datasets.

The grid width N, is chosen to match the width of the transducer using the grid spacing
Axz. Axz is selected such that the transducer element pitch p is a multiple of Axz. In
our case, we have p = 3 - Axz. The choice of both the N, and N, is also motivated by
the utilized simulation model, since simulation grids with a smaller prime factorization
are simulated faster [40)].
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Transducer parameter Value

# of Transducer Elements 192

Transducer Element Pitch p 0.23mm

Center Frequency feenter 5.2083 MHz
Bandwidth (3.1325, 7.2875) MHz
Sampling Frequency 20.8332 MHz

Input Signal Length (Wavelengths) 3

Elevation Focus 28 mm

Table 4.2.: Overview of the transducer parameters used in creating the synthetic datasets.

From the above-mentioned parameters, we can calculate all relevant parameters for our
phantom grid. Here are a few relevant parameters that follow from these specifications:

height = N, - Azz = 63.28mm (4.5)
width = N, - Azz = 42.58mm
wavelength A = _Gel  _ 0.29mm (4.7)
center

Here ¢y refers to the assumed average SoS in tissue and we apply ¢y = 15407,

Here, it is important to note, that when testing our implemented models, the size of the
grid or the transducer specifications may be chosen differently.

In this project, solely single plane wave imaging is modeled. While image quality could
be improved by using multiple plane waves from different angles, this would also increase
simulation time significantly.

4.2.2. Phantom Generation

In the first step, we need to create the virtual phantom P that fully characterizes the
imaging medium captured using the US simulation. The virtual phantom P is defined
as the concatenation of the four maps that model acoustic properties P = [D,C, A, S],
where D is the density map, C' corresponds to the SoS map, A describes the attenuation
map and S the scattering map.

The virtual phantom P can either be constructed using the various strategies mentioned
in Section[4.3]or it can be predicted by our DL model using a US image during inference.

In any case, the first step before passing the virtual phantom to the simulation, is to
sample the scatterers using the scattering distribution defined by our scattering param-
eters in the phantom map S. This is also illustrated in Figure [£.3] In Section [4.1.1] a
detailed explanation of the sampling process of the scattering model is provided.
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4.2.3. Simulation

Selecting an appropriate simulation tool is crucial for generating realistic synthetic US
data. The importance of the simulation method for this project necessitates a discussion
on the selection of the US simulation approach. Two common techniques for simulating
US are convolution-based methods and wave-based numerical methods.

In convolutional methods, the interactions of US are estimated through the process of
convolving the spatial impulse response of the acquisition system with the medium’s
scatterer pattern. An example of this implementation is found in the widely used Field
IT simulation tool by Jensen et al. [26]. The primary benefit of this approach lies in its
fast computation times, which enables its application even for real-time applications [27].
However, the convolution based method is based on the assumption that the propagation
medium consists of a homogeneous background with point scatterers. In addition, the
attenuation can only be modelled using a linear frequency dependence for convolutional
simulation methods [28]. Therefore this simulation method falls short for our purposes
due to the presence of larger-scale heterogeneities in our virtual phantoms.

To simulate a heterogeneous medium with spatially varying speed of sound, density
and attenuation, we need to use numerical-simulation methods [28]. The idea is to
simulate the US waves propagating through the medium using numerical methods to
compute the solutions of the partial differential equations that describe the physical
system. Consequently, the simulation tool we chose that fits this criterion is the k-Wave
toolbox by Treeby et al.. [18].

The k-Wave toolbox gets its name from the utilization of the k-space pseudo-spectral
method for efficient computation of time-domain solutions to differential equations. It
supports simulations across one, two, and three dimensions, though our focus lies on two-
dimensional simulations. Primarily designed as a Matlab toolbox, k-Wave also offers a
C-++ version, which we take advantage of to improve simulation performance. Moreover,
both the MATLAB and C++ versions of k-Wave implement optimizations for parallel
processing on a GPU, boosting simulation efficiency even further.

MATLAB Implementation

All properties to execute the k-Wave simulation functions are defined using the following
four input structures: The computational grid kgrid, the acoustic medium medium, the
acoustic source source and the sensor object sensor.

For the 2D computational grid kgrid we need to define the following parameters [40]:
e the grid height Nx where phantom height N, is chosen.
e the grid width Ny where phantom width N, is chosen

e the spatial resolutions dx and dy grid spacing Axz is selected for both
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Figure 4.4.: The left side displays the simulation grid, while the right side shows the
source driving the transducer elements.

e the temporal resolution dt and the total number of time steps Nt

The temporal resolution dt is chosen as suggested by k-Wave based on the maximum
speed of sound in our system and based on the spatial resolution Axz and the maximum
speed of sound in our phantom ¢4, [40]. We avoid selecting it based on the transducer’s
officially provided sampling frequency, as this could result in unstable simulations. The
total number of simulation steps Nt is determined by first specifying the total simulation
time T'. T is chosen to be the duration for an ultrasound pulse to travel twice the depth
D of the simulation grid, ensuring that all echoes reflected from the imaging medium are
recorded:

D
T=2. (4.8)
Cavg
T
Nt = — 4.9
v (4.9)

Here, cquq is the approximation of the average speed of sound and equals 1540 m/s.
The acoustic medium medium is defined using the following parameters [40]:

e 2D matrices for density, sound_speed and attenuation coefficient alpha_coeff.
Here, we assign the respective maps of the virtual phantom. For the density the
density map with the added scatterers p; is assigned.

e the attenuation power law exponent alpha_power. This is fixed to value 1.5, since
realistic values for this parameter range between 1 and 2 [9]. Using k-Wave this
can only be chosen globally for the entire imaging medium.
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Figure 4.5.: Visualization of the transducer element pitch, width and kerf. [5]
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e the non-linearity parameter BonA, which we do not define. This parameter describes
the non-linearity parameter B/A which indicates the relative impact of the non-
linear finite-amplitude effects on the speed of sound. By not defining it, k-Wave
will discard the non-linear term and only use linear differential equations for the
simulation [40].

Using the structures sensor and source we define the location of the transducer in our
simulation grid. For each structure a mask is defined that specifies the grid points, where
the input signal will be generated and where the pressure data will be recorded. The
transducer is positioned at the top and since our simulation grid matches the width of
the transducer, the transducer mask includes all grid points where z = 0 (See Figure.
The same mask is assigned to sensor .mask and source.p_mask. The setup specifications
(see Section ensure that each transducer element corresponds to an integer number
of grid points. For our specifications, one transducer element is consistently represented
by three adjacent grid points.

For a real transducer, the width of the transducer elements is not identical to the element
pitch (see Figure . The physical distance between the transducer elements is called
kerf. However, we disregard the kerf and approximate the element width as being equal
to the pitch. Our reasoning is that accurately representing the kerf, typically one-tenth
the size of the pitch, would require reducing the spatial resolution of our phantom’s grid
Axz by a similar factor. This adjustment would quadratically increase the size of the
phantom and, by extension, the computational time of the simulation.

The final thing to define is the excitation signal that drives the transducer elements and
the US acquisition. This is achieved using the toneBurst function in k-wave, which
utilizes the transducer’s center frequency feenter, the length of the input pulse in cycles,
and a Gaussian envelope (See Figure .
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Once these objects are defined, the simulation function to solve the coupled first order
system of equations in 2D can be called:

kspaceFirstOrder2D(kgrid, medium, source, sensor) ;

The simulation function by k-Wave is optimized to run more efficiently using a GPU.

This process yields recorded pressure data for each time step at each grid point included
in the sensor mask we defined. As previously noted, a transducer element is represented
by a fixed number of grid points within the sensor mask—three grid points, according
to the setup specifications in Section [4.2.1 To obtain the channel data for a single
transducer element, we sum the pressure data signals received by each grid point within
that element.

All that remains is to resample the received RF data from each channel to match the
expected sampling frequency of the transducer. This step is necessary because the simu-
lation’s temporal resolution is determined independently from the transducer’s sampling
frequency. We accomplish this using the 1D interpolation method interpil provided by
MATLAB.

C—++ Implementation

While the MATLARB code performs well, each simulation requires a substantial amount of
time to complete, even with GPU acceleration. The long simulation time is problematic,
because we aim to create large datasets of synthetic data using the simulation tool. The
amount of data we can generate is constrained by the duration of the simulations.

To address this issue, we take advantage of the C++ implementation that k-Wave offers.
The C++ implementation can reduce simulation time significantly, by exploiting the
temporal and spatial locality of the data during the simulation, which cannot be achieved
using MATLAB code [40]. For our simulations, we use the CUDA-optimized binaries of
k-Wave, version 1.3. This allowed us to also take advantage of GPU acceleration, further
reducing the simulation speed.

To interface the C++ binary, we need to create a simulation input file, which is stored as a
hierarchical data format (HDF) file [41]. The input file contains all relevant information
for the simulation, that was previously stored in the four structures kgrid, medium,
source and sensor.

Although k-Wave provides a MATLAB function to create a correctly formatted simula-
tion input file from the four input structures, our codebase predominantly utilizes Python,
making the repeated invocation of MATLAB processes time-consuming. Therefore we
have implemented our own version to create the simulation input file using Python,
which allows us to directly generate the simulation input file after we generate the vir-
tual phantom. Our implementation translates all MATLAB code and functions used by
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Figure 4.6.: Visualization of the plane wave image formation to generate a US image
from RF data

k-Wave for establishing the simulation grid and input signal into Python, streamlining
the process.

After the simulation is complete, the C++ binary returns another HDF file containing
the simulation outputs. Using Python we can then extract the received pressure signal
for each grid point in the sensor mask from the output file. Then we need to resample
the pressure signals and aggregate the signals across the grid points for each transducer
element. This last step was described in more detail for the MATLAB implementation.

4.2.4. Single Plane Wave Image Formation

After obtaining the RF data from the simulation, we have to construct the US image
from a single plane wave recording. This task is illustrated in Figure 1.6

Creating high-quality ultrasound images from single PW recordings remains an unre-
solved challenge, with numerous open competitions aimed at addressing this issue [42]
[43]. We employ the standard beamforming method, called the delay-and-sum (DAS)
beamforming [44].
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To form an ultrasound image from the simulated RF data, the following processing steps
in addition to the DAS-beamforming are performed:

1. Remove Input Signal

Time Gain Compensation (TGC)
Filtering

Hilbert Transform

DAS Beamforming

Envelope

Interpolation

© N o e W N

Log Compression

To implement these steps, we utilize the dasIT library [45]. This library offers functions
and guidelines necessary for implementing each processing step.

Remove Input Signal

In the initial processing step, we set the beginning segment of the received RF data to
zero. This adjustment is necessary because, during the early phases of the simulation,
the sensor captures the excitation signal emitted by the source. To focus solely on the
echoes of the excitation pulse, we eliminate the RF data from these initial time steps.

Time Gain Compensation (TGC)

In the second step, we address the attenuation of ultrasound signals using time gain
compensation (TGC). As the ultrasound pulse propagates through tissue, it undergoes
attenuation, leading to weaker echoes from deeper structures [7]. The TGC step com-
pensates for the attenuation, by amplifying the signals from deeper structures.

In the Verasonics US acquisition systems that we aim to model (see Section , the
gain correction is achieved by applying a TGC waveform to the signal [46]. To model
such systems as closely as possible, we also apply a TGC waveform. The TGC waveform
is a piecewise linear function, that is multiplied with the received RF data signal[45].
The TGC waveform is defined using a set of 8 control points that are interpolated.

We calibrate the TGC waveform based on the experiment at Section [6.1} where we utilized
the desired acquisition system and transducer to capture a known phantom structure.
This captured data was then compared to a virtual recreation of the phantom. The
control points derived from this calibration are detailed in Table [£.:3] The impact of the
TGC is illustrated in Figure [£.7]
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Figure 4.7.: Comparison of the RF data before and after the TGC correction.
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Table 4.3.: TGC control points

In a real US acquisition system, TGC correction is applied directly to the analog signal
before it reaches the analog-to-digital converter stage. This is important, because the
echoes from deep tissue regions likely fall below the detectable voltage range of the analog-
to-digital converter before the TGC is applied. Therefore, when comparing our synthetic
RF data with real acquired RF data, it is important to compare the two TGC-corrected
signals.

Filtering

To eliminate noise outside of the desired bandwidth of the transducer we apply finite
impulse response (FIR) bandpass filter. The width of this bandpass filter is set to match
the bandwidth of the transducer, as specified by the manufacturer. We use the bandwidth
specifications for the GE-9LD transducer (see Section

Hilbert Transform

The RF data contains information about both the amplitude and the phase of the signal.
The Hilbert transform is a tool to extract both the instantaneous amplitude and phase,
by mapping our real RF signal to the complex analytic signal. The Hilbert transform is

defined as [47]:
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Figure 4.8.: (A) visualizes of the beamforming delays for any point on the image plane.
[6] (B) shows the single element directivity of a transducer element [7].

+o0
Hiz(#)] = © / H(F)——dr = r(t) + j - s(t) (4.10)

T J_ oo t—T

By applying the Hilbert transform to the signal, we can extract the real part r(¢) and
the imaginary part s(¢) of the analytic signal. These components provide information
about the instantaneous amplitude, also known as the envelope F(t) and instantaneous
phase ¢(t) [47]:

E(t) = [H[z(t)]| = /72(t) + s2(t) (4.11)
o(t) = arg(H[z(t)]) = arctan(j(g) (4.12)

In a subsequent processing step, we can utilize the analytic signal to extract the envelope
of our beamformed data using Equation [4.11

DAS beamforming

The beamforming is the heart of the image formation pipeline. It maps our analytic
time from the time domain of the received signal (n_channels, time) to the image plane

(2,%).

The fundamental concept of the delay and sum (DAS) beamformer involves initially
calculating the delays for each pixel P. with coordinates (ze,x.) on the image plane
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to each transducer element x,,. These delays measure the time 7px it takes for the
ultrasound wave to travel from the transducer to point P, and the time 7rx it takes the
echo to propagate to transducer element m. The delays can be calculated using [6]:

rx (2, z, ) =(z cos(a) + xsin(a))/c (4.13)
Trx (2,2, 2m) =/ 22 + (x — xp)?/c (4.14)
T(Z,$,Jim7a) =Tte + Trz (415)

Here, it is assumed that the speed of sound ¢ stays constant at ¢ =1540 m/s through
the entire image medium. This is an approximation that can lead to speed displacement
artefacts (See Section . Although the formula can be generalized to accommodate
different angles of incidence a of the PW, for our purposes, we exclusively consider
a=0.

Once the delays are calculated, the beamformed signal for all points in the image plane
can be obtained by summing the delayed analytic signals from each channel [6]:

Ipps(z, x] = Zwm[z,x]ym[T(z,x,xm)] (4.16)

Here, y,[7(z, x, x,,)] represents the analytic signal for channel m at the time delay cal-
culated in equation . Due to the directivity of the individual transducer elements
(as shown in Figure (B)), not every transducer element is influenced by the point
at location P,. Therefore, one can define wy,[z,z] to only consider the signals of the
relevant channels in the sub-aperture defined by the element directivity [6]:

1, if |2 — | < —

Wz, x] = 2f4 (4.17)
0, otherwise

The element directivity of a transducer element is modeled using f-number fx. This is
a transducer-specific constant and is chosen by daslT in relation to the elevation focus
of the transducer.

The DAS-beamforming function we use is efficiently implemented by the dasIT library
[45].

Envelope, Interpolation and Logarithmic Compression

Having obtained our analytic beamformed imagelpag, we now aim to calculate the actual
pixel intensities for the final image.
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(A) (B)

Figure 4.9.: Comparison of the resulting image before (A) and after (B) applying the
logarithmic compression step.

We begin by extracting the envelope by taking the magnitude of the analytic signal

(Equation [4.11]):
Ienv = ’IDAS‘ (418)

Before the final processing step signal Iy, has shape (N,, n_transducer channels). We
need to interpolate our signal in the lateral x-direction, to ensure the physical pixel size
is consistent in both directions and matches the original phantom grid spacing Axz.
According to our setup specifications, each transducer channel corresponds to a grid
points—and by extension, image pixels—where a is an integer. Consequently, we can
employ bilinear interpolation in the x-direction to expand the image width by a factor
of a, which for our synthetic datasets is 3. This allows us to adjust our signal image to
the desired dimensions (N, Ng).

Due to significant amplitude differences in the image signal, we must apply logarith-
mic compression to the beamformed signal before quantizing it into 8-bit pixel values.
Following Palmer’s method et al. [6], we first convert the signal to dB:

Then, as suggested by Palmer, we normalize the signal [6]:

I4B norm. = IaB — maX(IdB) (420)

and clamp values that fall outside of the selected dynamic range D, [6]:

IdB fnal = {IdB norm. if IdB norm. < _D’I‘ (421>

—D,, otherwise.
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For the dynamic range, the value D, = 60 is chosen for all samples.

Finally, we obtain the desired grayscale image by quantizing the dB values into integer
numbers within the interval [0,255]:

255(14B final + DTW (4.22)

J— {
grayscale D,
where || represents the rounding to the nearest integer operator. The image in Igrayscale
corresponds to the final US image.

A comparison between the image before and after the logarithmic compression step we
described is illustrated in Figure [£.9]

4.3. Virtual Phantom Datasets

A primary challenge and focus of this work is the creation of a synthetic virtual phantom
dataset that exhibits sufficient diversity and complexity. This is crucial for training DL
models on the synthetic dataset in a way that enables them to generalize effectively from
synthetic samples to real tissue data.

We present four different strategies to create virtual phantoms:

1. Ellipse Phantoms

2. ImageNet Segmentation Phantoms
3. ImageNet-enhanced Phantoms

4. CT Phantoms
5

. Muscle Texture Phantoms

For each dataset of virtual phantoms we create, we utilize the data generation pipeline
outlined in Section [£.2] to generate corresponding RF data and US images for each phan-
tom. These datasets can then be employed to train DL models.

4.3.1. Ellipse Phantoms

For our first method, we follow the work of Perdios et al. [25], where they created virtual
phantoms by placing random ellipses. Their models demonstrated good generalization
to both numerical phantoms and real tissue images. However, in their work, only the
scattering parameters were varied between the targets and no other acoustic attributes

25].
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Figure 4.10.: Visualization of the ellipse parameters.

Analogously to them, we create a virtual phantom by placing a fixed number of targets
within our phantom on a fixed background. Each target is a set of points of the imaging
medium. The targets have the shape of geometric primitives, where we choose ellipses
of random size, shape and orientation. They are placed randomly across our phantom
and for each target, we assign a fixed number of targets. A further advantage of this
method is that it offers an easy way to create any amount of different virtual phantoms,
without any additional external data. In contrast to Perdios et al., we do not only vary
the scattering for the different targets but also the other four acoustic parameters defined
in the virtual phantom. The method used for assigning the acoustic properties to the
targets is described below.

We set the number of targets at 25 ellipses. This number can be increased to enhance
the complexity of the phantom. For each target, we sample the following geometric
parameters of the ellipse to determine its shape and size on the phantom grid:

ze ~ Uniform(0, N) 4.23)

xe ~ Uniform(0, Ny) 4.24)
. NZ NZ

a~ Unlform(%, I) (4.25)

b ~ Uniform(—=, &) (4.26)
207 4

6. ~ Uniform(0, 360) (4.27)

All geometric parameters and the location of the ellipse are independently and uniformly
sampled. The lower limit for the ellipse axis lengths a and b is chosen in relation to
the grid size, such that our target ellipse is still clearly visible. The upper limit is
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also selected in relation to the grid size, such that the last placed ellipse cannot cover
all previous ellipses. The ellipse parameters are visualized in Figure By placing
targets sequentially, we get overlapping ellipses, which lead to more complexity and more
intricate boundaries than with non-overlapping ellipses.

For the background, we set the following phantom values as listed in Table [£.4] For the
SoS we choose 1540 “%, as for the average soft tissue, and which is also assumed in the
image formation for all standard beamforming techniques. For the attenuation coefficient
we choose 0.54 dB/(MHz-cm, the average value for soft tissue [48]. The density is chosen
to be that of water, which is also close to the average density of soft tissue [48|. For the
scattering parameter, we selected a value that experimentally yielded a realistic speckle
pattern.

Parameter | Value with Units
Db 1000 kg/m?
Cp 1540 m/s
ap 0.54 dB/(MHz-cm)
Sp 0.000625

Table 4.4.: Default values for the phantom background

We create a dataset of 50’000 virtual ellipse phantoms using this method.

Assigning Phantom Values to Targets

For each target region we have placed on the simulation grid, we assign the phantom
values with a single value that is the same for all grid points in the target. If we formalize
this, each target T} is a subset of grid points T, C G. Now for each target, we assign a
homogeneous value to each of the phantom maps:

p(Tk) Pk
P(T}) = ;((?Z)) - ;’; where P(T},) = P(i,j) ¥ (i,5) € Tk (4.28)
5(Tk) Sk

The strategy we employ here to assign tissue values to the targets is not limited to
the shape of the targets and is similarly implemented in the other phantom generation
strategies (Sections {4.3.2} 4.3.3} [4.3.4] and [4.3.5])

There are a number of strategies on how you could choose and assign the values to each
map [pg, Ck, ok, 5] 7. Since our goal is to model a distribution of virtual phantoms that
accurately represents real tissue structures, we strive to select realistic tissue values.
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Therefore, we make use of a dataset on tissue properties collected by the Foundation for
Research on Information Technologies in Society (IT’IS) [9]. They provide a list of tissue
types, where they provide information on the density, SoS and attenuation coefficient for
each tissue type. In Table 4.5 some examples of the data they provide are listed:

Tissue Name Density Speed of sound | Attenuation
Mean Std | Mean Std coefficient
Blood 1050 17 | 1578.2 11.3 0.206
Breast Fat 911 53 | 1440.2 21.9 0.379
Cervix 1105 74 | 1629.0 5.7 0.705
Connective Tissue | 1027 0 1545.0 0.0 1.260
Gallbladder 1071 63 | 1583.6 0.0 0.131
Kidney 1066 56 | 1554.3 18.2 0.244
Muscle 1090 52 | 1588.4  21.6 0.617
Nerve 1075 52 | 1629.5 20.5 1.150
Ovary 1048 0 | 1595.0 0.0 0.680
Pancreas 1087 59 | 1591.0 0.0 0.830

Table 4.5.: Small excerpt of the tissue data provided by the IT’IS Foundation|9].

For the density and for the speed of sound a standard deviation is provided in addition to
the mean, while for the attenuation coefficient only the mean is given. Furthermore, they
do not provide any information on scattering values or the closely related echogenicity
of the tissue types.

For each target T} we can assign a tissue 7(k) at random from the above-mentioned list
of tissues:

T(k) ~ Uniform({TBlooda TNerves « + « 5 7-Muscle})

Then, we can appoint the tissue properties of our target based on the assigned tissue
type. Since, for the density and SoS, we are also provided with an estimate of the
standard deviation in addition to the mean, we can model the variance by sampling from
an appropriate distribution:

ek ~ N (e, 0c, |T = T1) (4.30)
ap = (4.31)

For scattering or, by extension, echogenicity, there appears to be no well-established
tabular information correlating tissue type and echogenicity in the level of detail that we
need. A very broad categorization for a few tissue types is provided by [49], however,
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Figure 4.11.: This figure shows the truncated normal distribution used to sample the
factor ug to determine the scattering of target Ty

this list is too short and not narrow enough for our purposes, as it only differentiates
between hyper- and hypo-echoic tissue.

Therefore, we assign the scattering of each target independently from the selected tissue
type. We draw the scattering value si for target T) at random with respect to the
background scattering. This is achieved by randomly sampling a factor a, that relates
the target scattering s and background scattering sp:

Sp = uj -5, where uy ~ TruncatedNormal(y = 1,0 =2,a = 0,b=5) (4.32)

Intuitively, for ux, = 1, we get the same scattering as the background and the target could
not be distinguished. For u; < 1 the target is hypo-echoic, which looks dark compared
to the background, whereas at ux = 0 we have a region with no scattering. For ug > 1,
the region is hyper-echoic, which appears bright on an image.

Here, we sample uy, from the truncated normal distribution [50] which is plotted in Figure
We do not take the regular normal distribution here, and restrict values of u to be
positive, as negative values for scattering do not make sense in our context. Furthermore,
we avoid too large scattering values, as these can deteriorate our image quality. Therefore,
we only consider u < 5, a range we determined experimentally. The standard deviation
of this distribution is chosen arbitrarily and it could be set otherwise.

If uy, would be sampled from the uniform distribution between [0, 5], it would result in a
greater amount of hyper-echoic targets. This is due to the higher quantity of hyper-echoic
targets in the range [1, 5], than the amount of hyper-echoic targets in the range [0, 1].

One thing to keep in mind here is that while all targets represent real possible tissue
values, their arrangement and composition are random and are not enforced to be real-
istic. This also introduces unrealistic scenarios, such as brain tissue located right next
to kidney tissue, as found in our dataset of synthetic phantoms. To further bias a model
to learn realistic tissue regions, it would be advantageous to introduce this bias into our
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dataset. This is one of the motivations for creating the dataset based on medical CT

images [4.3.4]

4.3.2. ImageNet Phantoms

While ellipse phantoms serve as a practical initial model due to their simplicity and
the minimal information required for generating individual data points, their utility is
bounded by their inherent limitation to basic geometric forms. Real-world anatomical
structures and boundaries exhibit more complex geometries, which we cannot capture
using our ellipse-phantom dataset. Therefore, we aimed to create another dataset, which
contains more complex geometric information about our targets. Thus, we utilize the
geometric structures and information contained in the ImageNet dataset [51].

First released in 2009, the ImageNet dataset [51] is one of the most important datasets in
the field of computer vision [52]. The dataset is vast, containing over 14 million annotated
high-resolution images and is diverse enough to be categorized into over 20,000 categories
[51].

We make use of the large variations of geometric structures that appear in ImageNet im-
ages and extract them to generate virtual phantoms containing more complex structures.
To extract the shapes of all the objects that are occurring in these diverse images, we
use instance segmentation. Instance segmentation is a computer vision technique, that
involves identifying and delineating each distinct object of interest appearing in an image
[53].

Segment Anything Model (SAM)

We perform the image segmentation using the Segment Anything Model (SAM), which
is developed and released by Kirillov et al. [54]. SAM is a foundation model [55] for the
task of image segmentation, which means it was trained on a broad web-scale dataset.
This makes it ideal for our purpose, due to the large diversity of objects we want to
segment in the ImageNet dataset.

Inspired from foundation models in Natural Language Processing (NLP), SAM is a
promptable model, meaning, that given an image and a prompt, it will predict a segmen-
tation mask. The prompt specifies which object to segment in the image and can range
from a point to a bounding box or even text [54].

We use the implementation of the SAM provided directly by Kirillov et al. [54]. Because
our goal is to detect all objects in an image, we use a fixed grid of points of 32x32
as points. For each prompt, a segmentation mask is computed. Predicted masks with
either a too low stability score or with a too large intersection over union (IoU) with other
predicted masks are discarded. These are the filtering methods Kirillov et al. implement
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as a standard and we adopt these thresholds. This leaves us for the ImageNet images we
have segmented with an average of between 43 and 44 segmentation maps.

Using the SAM, we extract segmentation masks for the 50’000 images of the ImageNet
validation set. Subsequently, for each of these images, a virtual phantom using the
segmentation masks is generated.

Creating a Virtual Phantom from Segmentation Masks

We can generate the virtual phantom the same way as we have done for the ellipse
phantoms, by sequentially placing targets on a background. We reuse the same back-
ground parameters [pp, ¢y, Qp, sb]T as in Section m This time, however, each target
T}, is not a simple geometric shape but an extracted segmentation mask. This means,
that the number of targets on a virtual phantom corresponds to the number of extracted
segmentation maps for a given ImageNet image. For each target, we assign phantom
values [pg, Ck, g, sk]T using the same methodology as for the ellipse phantoms described
in Section [£.3.1] Because the ImageNet images generally have different dimensions than
our phantom dimension (N, N,), we must resize and crop each segmentation mask to
fit our phantom grid.

The flow of data from an original ImageNet image to a virtual phantom and corresponding
US image is depicted in Figure The approach presented is not limited to ImageNet
specifically and could be applied equally to other datasets. We choose the ImageNet
dataset due to its diverse pool of images and popularity. An alternative could be the
Microsoft Common Objects in Context (COCO) dataset [56], which is used for object
detection and segmentation. For these examples, segmentation maps would already be
provided, which could directly be used to create our phantoms.

4.3.3. ImageNet-Enhanced Phantoms

For both the datasets we have created so far, we have placed target areas across a
background. While the targets for the ImageNet phantom dataset are geometrically
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Figure 4.13.: An in vivo US image of a muscle. Structures of different shapes, densities
and textures are visible inside the tissue in the US image, which we want
to be represented within our synthetic datasets.

more complex, the area within the target Ty is homogeneous and the phantom values
[Pk, Cy U, sk]T remain constant. This will bias a model trained on this synthetic dataset
toward predicting larger regions with homogeneous phantom parameters.

However, in real tissue structures more fine-grained structures and texture patterns can
be found within a given tissue type. An example of a muscle tissue US image is illustrated
in Figure It is apparent, that there are many smaller, finer-grained structures
present within this tissue, and we aim to represent such structures in our synthetic
dataset.

For the ImageNet-Enhanced phantom dataset, we refine the ImageNet-phantom dataset
by integrating more detailed structural elements into the phantoms. This enhancement
is achieved by incorporating edge information from the ImageNet images in addition to
the previously predicted segmentation masks.

In summary, we start by generating the same phantoms as described in Section [.3.2 using
the segmentation masks. Then for the points belonging to the edge map, we introduce
an additive term. A broad overview of this approach is shown in Figure [£.14]

Edge Detection and Dilation

To extract the edges from the ImageNet images, we employ an established edge detection
technique, namely the Canny edge detector algorithm [57]. This program executes the
following steps to detect edges in the image: smoothing the image to reduce noise,
calculating gradients to identify potential edges, applying non-maximum suppression
and finally using double thresholding with hysteresis to refine the detected edges. As it
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Figure 4.14.: Methodology showing the flow of data for the Imagenet-enhanced dataset.

is an already well-explored technique, we use the implementation provided by the python
library OpenCV [58].

Due to the non-maximum suppression step in the Canny edge detector, the obtained
edges are generally thin and often only one pixel wide [57]. When integrating such fine
structures into our virtual imaging medium, these would introduce structures smaller
than a single wavelength. As discussed in Section structures of sub-wavelength
dimensions primarily contribute to scattering. Given that our scattering model already
accounts for such interactions, we want to avoid additional sub-wavelength structures.

Therefore, we use the morphological operation known as dilation [53] to broaden the
edges. Within the simulation grid utilized for generating all synthetic data (refer to
Section, a single wavelength is equivalent to four grid points. Bearing this in mind,
we adopt a 4x4 dilation kernel. To achieve a smoother output map, an ellipse-shaped
dilation kernel rather than a square one is implemented.

Choosing Appropriate Thresholds for Canny Edge Detector

The Canny edge detector uses two gradient thresholds as hyperparameters, a low thresh-
old and a high threshold, which must be carefully selected and adapted for each individual
image [53]. Intuitively, by increasing both thresholds, fewer edges with stronger gradient
magnitudes are considered. This selection is critical for our purposes, as we aim to avoid
edge maps where, after dilation, large portions of the map are characterized as edge
points. This would result in more homogeneous maps and thereby the finer structures
we strive to introduce would be lost.

Given the extensive variety of images in the ImageNet dataset we try to process, choos-
ing the thresholds uniformly across all the images leads to the above-mentioned issues
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Figure 4.15.: Comparison of two phantoms with (right) and without (left) edge enhance-
ment

and selecting the thresholds manually for each image is not feasible. To tackle this chal-
lenge we have developed and employed the following heuristics to choose the thresholds
dynamically:

We begin with a low threshold of 100 and a high threshold of 200 and apply the edge
detection. Then, we check for the resulting edge map if any of the four quadrant areas of
the map contains at least 20% edge points. If this is the case, then we will dynamically
increase both thresholds by a factor of 1.5 and recursively repeat this process until the
detected edge maps are sufficiently sparse.

While this heuristic has proven effective for our applications, one could choose different
initial thresholds or a different factor between the recursive iterations.

Incorporating edges into Virtual Phantom Generation

We can now incorporate the extracted edge information into the virtual phantom gener-
ation.

Initially, we perform the same steps as described in Section [4.3.2f We start with an
empty simulation grid, with background phantom values [pp, ¢y, ap, sp]7. Then, we se-
quentially place targets on this grid, where each target T} is a set of points, which is
given using an ImageNet segmentation mask. By randomly assigning a tissue 75 from
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our list of tissues, we can appoint the phantom values [p, cx, ax, x| to all points in
Ty. Hereafter, we obtain phantom values for every grid point (4, 7) that we reference as
[0/(3, ), ¢ (i, 5), &' (4, 3), 8' (3, )]

Now, we also have a set of points F, which corresponds to the extracted edge map and

holds the obtained fine-structure information. For these points, we introduce an additive
term in addition to the previously assigned phantom values:

p(Z,J) Pl(l:vj:) tép
-l e
s(i,7) s'(4,5) + es

A different value is picked for each phantom term, since the four phantom values have
different scales. Intuitively, we want this additive to be in relation to the standard
deviation of each phantom map.

Since we assign p, ¢ and « based on the random tissues, we approximate the standard
deviations o for the values based on the empirical distributions of the means across the
tissue values presented in our list of tissues. The estimation can be achieved by using
the sample variance

1 n
_ b . 4.34
1 NT;"T (4.34)

1 n
2 2
o° = E T; — U 4.35

Here, Np refers to the number of tissues. The aforementioned formula for the sam-
ple variance can be used to acquire the standard deviation o for the density, SoS and
attenuation coefficient.

The scatter parameter s is a bit different, as we do not extract it from an external dataset
but sample it from a distribution. It is important to note that we do not directly sample
s; rather, we sample a factor u from a truncated normal distribution (See Figure 4.11]).

s =wu”-s, where wu ~ TruncatedNormal(y=1,0=2,a=0,b=25) (4.36)

To compute the variance of random variable .S, we can write it in relation to random vari-
able U, where random variable U is distributed using the truncated normal distribution
[50].

Var(S) = Var(sy - U?) = s; - Var(U?) (4.37)
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The variance for U? can be calculated using the moments of U [59]:

Var(U?) = (E[U*] — E[U?)?) (4.38)

We can approximate the moments of U E[U*] and E[U?] by numerically computing the
integrals of the expectations[59]:

5
E[UY] = / u* - TruncatedNormal(u = 1,0 = 2,a = 0,b = 5)(u) du (4.39)
0

5
E[U?] = / u? - TruncatedNormal(u = 1,0 = 2,a = 0,b = 5)(u) du (4.40)
0

Then, the standard deviation of scattering parameter s is simply:
os = 4/ Var(5) (4.41)

Once we have the standard variations for each of our four phantom values, a random
factor e of the standard deviation will be added to each map. We sample e from:

e = Uniform(0.5, 2) - choice({—1,1}) (4.42)
and we define the additive term e; to be:
ep=e-op, Ype€{p,ca,s} (4.43)

The additive term e; is then added for each map p for all points belonging to the edge
map. Therefore, the fine structure regions will have an offset of between 0.5 and 2
standard deviations for each phantom value. We do not include the smaller offsets, since
we require the fine structures to be significant to get different samples from the original
ImageNet dataset.

4.3.4. CT Phantoms

While the previous two phantom generation techniques explore generating phantoms us-
ing complex geometric structures with realistic tissue properties, their composition is not
based on real tissue structures. In vivo tissue structures might have reoccurring patterns
of tissue composition that are not present in the previously established datasets.

Medical images provide a method for capturing tissue structures, with a broad spectrum
of imaging modalities available. While our work’s primary focus lies on US images,
other popular imaging modalities such as X-ray, Magnetic Resonance Imaging (MRI)
and Computed Tomography (CT) can be considered to extract information about tissue
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structures. Each of these modalities offers unique advantages and is capable of revealing
aspects of tissues that may not be visible through other imaging methods [60].

In this dataset, we aim to capture realistic tissue structures in the created virtual phan-
toms using a previously collected dataset of 3D CT scans.

CT scans are generated by rotating an X-ray source and detector around the body to
capture cross-sectional, high-resolution image slices[61]. These images offer a higher
resolution compared to other modalities such as US, which makes them suitable for
capturing even fine tissue structures. A distinctive feature of CT imaging, compared to
MRI and ultrasound, is that the intensity values within a voxel correspond directly to
the physical properties of the tissue. The intensities are measured in Hounsfield Units
(HU) [62] which can be used to estimate realistic values for the acoustic properties of
each pixel.

The Hounsfield unit is defined through the linear attenuation coefficient p, which quan-
tifies the penetration of a material by a beam of radiation:

M — UWater
HW ater

HU = 1000 - (4.44)

where pyyqter is the linear attenuation coefficient of water.

Using CT images we attempt to generate realistic virtual phantoms, based on authentic
medical data. To generate this data, we must first preprocess the CT scan data available
to us, creating CT slices that match the dimensions of our virtual phantoms. Then, we
apply the HU intensities for the extracted CT slices to create a realistic virtual phantom.
An overview of the process can be seen in Figure We describe now first the method
of the pre-processing, followed by how we generate a realistic virtual phantom using the
extracted CT data.

The CT scans used are from the New Mexico Decedent Image Database (NMDID) [63].
They provide a dataset of whole-body CT scans of over 15’000 different subjects. For
each subject, around 25 different scan volumes covering different parts of the body are
available. Utilizing the data of four subjects we generate a dataset of 50’000 virtual
phantoms.

Pre-Processing

The pre-processing includes the following processing steps that are also visible in Figure
4.16| (A) - (C):

1. Extract CT slices from a provided CT volume
2. Extract a region of interest through thresholding

3. Extract a crop of the CT slice that matches the size of our virtual phantom.
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Figure 4.16.: Overview of the preprocessing of CT scans to extract CT crops (A-C),
followed by generating a virtual phantom and simulating corresponding RF
data and an US image (D).
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The individual processing steps are described in more detail below.

The initial CT data is provided in volumes, where one volume consists of many slices
contained in DICOM files. These files also include data on the physical size of the pixels
and the thickness of each slice. We can concatenate the 2D slices to form a 3D volume.
From this 3D volume slices in the sagittal, axial and coronal planes can be extracted, by
slicing the 3D volume in the respective axis. Due to the potential difference between the
slice thickness and the pixel spacings, we interpolate the extracted slices. This ensures
uniform pixel spacings in both directions of the extracted CT slice. Since neighboring
slices are often very similar and to increase diversity between the extracted slices, we only
extract every n-th slice in every direction, where n is chosen between 5 and 20 given the
processed volume. This is a heuristic that could be adapted, and if more data is needed
we could decrease n. This initial step of extracting diverse slices from the CT volumes

is shown in Figure [£.16] (A).

For the NMDID dataset we have approximately 25 volumes per subject and using our
method around 150 slices are extracted for each CT volume.

The extracted slices are typically far larger physically than our virtual phantom size. We
therefore want to extract a crop of the CT slice with the equal physical size as our virtual
phantom. As depicted in Figure (A), the extracted CT slice encompasses not only
regions of tissue but also substantial areas of background. Therefore, random cropping
of the image may frequently result in extracts that do not include any tissue regions.
Consequently, we first need to identify the tissue regions within the CT scans. From
previous experimental data [64] we learn that all tissue types have HU units larger than
-700. Hence, we threshold the CT slice to only consider points with HU > —700. Now, we
refine the threshold mask of points by applying the morphological operation of erosion
[65] with a fixed kernel size of 25. On the one hand, we aim to eliminate equipment
regions, which may have been part of the threshold mask and which are sufficiently thin
in our dataset to be removed. On the one hand, we aim to eliminate equipment regions,
which may have been part of the threshold mask and which are sufficiently thin in our
dataset to be removed. The eroded threshold mask is referred to as the set of points
M.

After extracting the region of interest in a CT slice, we can obtain multiple random crops
of this CT slice, where each crop has the exact physical size of our simulation grid. Thus,
we select a random point from our region of interest M and we crop around this a patch
of the slice which has the desired physical size. Now, because the phantom grid spacing
Axz is generally much smaller than the pixel spacing of the cropped patch, we upsample
the patch using bilinear interpolation. After the upsampling, the crop matches the size
of the simulation grid.

We decide to extract 5 crops per CT slice. This could be increased if more data is needed
or it can be decreased for greater variety between individual samples.
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Figure 4.17.: The piecewise linear function mapping from Hounsfield unit to mass density.

Creating a Virtual Phantom from a CT Slice Crop

For the extracted CT crop, the intensities are measured in Hounsfield units. The
Hounsfield unit is strongly related to the mass density p of the measured tissue[66]. Using
the experimental data provided by Uwe Schneider et al., a piecewise linear function can
be fitted using linear regression to map the HU to the mass density p [67]. The piecewise
linear function utilized was fitted by the k-Wave library function hounsfield2density
[68]. The function is visualized in Figure

Note that in the work of Uwe Schneider et al. [67] the scaled HU unit is employed, which
is defined as:

scaled HU = 1000 - — % (4.45)
HW ater

Given that our data is provided in regular Hounsfield units, we must initially shift the
intensities by 1000 before applying the piecewise linear function shown in Figure [{.17].
Using this mapping, we can estimate a realistic density value for every point in our virtual
phantom.
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Figure 4.18.: The GP models that are fitted to the I'T’IS dataset. The mean is represented
by the bold black line, while the gray shaded areas denote two standard
deviations around the mean. (A) shows the GP model mapping the density
p to attenuation coefficient . (B) shows the GP model mapping the p to
speed of sound s.

Now, based on the density values, we choose appropriate values for the other phantom
values ¢, a and s. Each parameter is sampled from a probabilistic model.

To enforce spatial consistency between neighboring points, we group the points into level
sets based on the estimated density value p(i,j). We can define these level sets as subsets
of grid points where the density is in a range:

Ly ={(i,7) | low_threshold; < p(i,j) <= high_threshold, }

The thresholds are chosen manually to divide our range of densities into 21 level sets.
The ranges do not have the same size and are selected to obtain more level sets for ranges
where many different tissue types exist.

We then assign values ¢, o and s to all points in level set Ly given the mean estimated
density over the level set, which we call pg. If we were to predict these values for each grid
point individually and independently instead, we would lose spatial consistency, which
would be unrealistic.

It was previously shown that there exists a significant empirical relationship between
the density and the speed of sound [48]. Therefore, we can fit a linear model through
the data on the acoustical properties derived from IT’IS [9]. Since this is not an exact
linear mapping, we want to likewise incorporate the uncertainty of the SoS value given
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the density into our model. To include the uncertainty, we fit a Gaussian process (GP)
regression model using a linear kernel [69].

A GP model characterizes a probability distribution over possible functions that fit the
data they try to model [69]. In addition to a predicted value, it also provides an un-
certainty estimate, which allows to sample a probability distribution given an input at
inference. Using different kernel functions, one can include prior information about the
data distribution [69]. Since there is a linear relationship between density and speed
of sound, we use a linear kernel to fit the GP model [48]. This is performed using the
Python implementation provided by scikit-learn [70].

For the attenuation coefficient o only a weak correlation with the density exists [48].
However, modeling using a GP model provides us with the uncertainty within the data
and allows us to predict diverse realistic estimates for the attenuation coefficient ay,
given a density value pr. Due to the absence of a direct linear correlation between
the attenuation coefficient and density, we use an RBF kernel in addition to the linear
kernel.

Both fitted GP models are plotted in Figure [£.18]

To the best of our knowledge, there does not exist a documented correlation between the
mass density and the scattering parameters s. Therefore, we assign it independently at
random similar to the other phantom generation strategies described in the previous two
sections.

Using this strategy we create virtual phantoms with realistic values for all 4 phantom
parameters [p, ¢, a, s|.

Filtered Data

When utilizing this method to generate a virtual phantom dataset from CT scans, we
encounter a specific issue. Some samples will have large sections of bone tissue right at
the top of the phantom near the transducer lens. Bones have a high SoS and attenuation
compared to soft tissues. Therefore, the resulting image can be heavily distorted by
speed displacement artefacts and shadowing, so that the entire image provides little
information beyond the initial bone tissue section. Also, while bone tissue might occur
in US acquisitions, it is usually not located right at the surface of the transducer, due to
the previously mentioned artefacts.

Therefore, we filter low quality data samples from our dataset before fitting our deep
learning models. Heuristically, we exclude any virtual phantoms where the top area A
contains at least one-quarter of its area with density or SoS values above the threshold
for soft tissue. Area A is visualized in Figure and it spans the intervals [0,N, /3] in
axial direction and [N, /8, 7/8 -N,| in lateral direction. The thresholds are chosen to be
the maximum density and SoS values for soft tissue [9], with the density threshold being
at 1178 % and the SoS threshold at 2000 .
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Figure 4.19.: An overview of the filtering of the phantoms with bone tissue at the trans-
ducer lens. If over 25% of the points in the phantom in area A have values
over a threshold, the phantom is removed from the dataset.

4.3.5. Muscle Texture Phantoms

The previously generated datasets model a great variety of geometric shapes and different
tissue structures. In this final dataset, we aim to model one specific tissue structure type.
If the type of tissue structure is known in advance, it is beneficial for training to fine-tune
the model to a dataset of the known tissue type.

We choose the muscle tissue of the medial gastrocnemius (MG) muscle of the lower
leg, because the data for both creating such virtual phantoms [I6] and evaluating the
performance of our models on the domain of this muscle is available [71].

The virtual phantoms are created using a dataset of US muscle images that were col-
lected in the work of Leitner et al. [16] in the context of training a DL model to predict
the muscle-tendon junctions (MTJ). The dataset consists of images of the medial gas-
trocnemius (MG) and lateral gastrocnemius (LG) muscles and was recorded using three
different acquisition systems. The US acquisition systems are the Aixplorer V6, the
Esaote MyLab60 system, and the Telemed ArtUs US [16].

To extract the specific texture patterns of the MG from an existing dataset of real-life US
images on the muscle tissue, we make the following assumptions: Within the MG muscle
tissue sample, we have exactly two different types of tissue, muscle and tendon tissue.
Additionally, we assume the tendon structures to appear brighter and more echoic in the
US images than the surrounding muscle tissue.
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Figure 4.20.: Overview of the creation process of the muscle phantoms

Using these assumptions, we implement thresholding to receive the set of pixels M be-
longing to the muscle tissue and the set of pixels M corresponding to the tendon tissue.
Given a crop of the original US image matching the size of our virtual phantom, we can
assign the acoustic properties [par, car, anr]? for all points of the muscle tissue and like-
wise [pyz, cxps )t for the tendon tissue points. These values are determined using the
data from the I'T’IS dataset [9] and using the probabilistic method described in Section
Using the probabilistic method here guarantees that our model will not converge
to only ever predicting the fixed tissue values of tendon and muscle.

We do not have tabular values for the scattering parameters. However, since the tendon
tissue appears brighter, it has a higher scattering Therefore, we assign the muscle tissue
the fixed scattering parameter that we previously used for the background scattering sy,
which is 0.000625. The scattering parameter of the brighter tendon tissue is then drawn
randomly in relation to the background scattering, analogously to how we have assigned
target scatterings before (see Section :

sy =u®-sy  where wu ~ TruncatedNormal(y = 3,0 = 2,a = 2,b = 5) (4.46)

Note that here we draw u from a shifted distribution compared to before because we
require a scattering parameter higher than the muscle tissue.

When thresholding the original US images to differentiate the muscle and tendon struc-
tures, the choice of the threshold is important. Across different acquisition systems and
different subjects, this threshold might vary. For this reason, we established not a fixed
threshold value but applied the histogram distribution of intensities within the US image.
We determine that setting the threshold at 87.5% of the cumulative distribution function
(CDF) yields optimal results in our analysis (see Figure . Intuitively, this results in
one-eighth of the pixels having a higher intensity than our threshold.

Using this method, we can create virtual phantoms, which replicate real tissue structures
of the MG muscle. We generate 10’000 virtual phantoms for this dataset. We do not
match the dataset size of the previous datasets, because this dataset is used for fine-
tuning a previously trained model and therefore needs fewer samples.
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Figure 4.21.: Dynamic thresholding based on the CDF of the intensity distribution. Pix-
els above the threshold are classified as tendon tissue, while those below it
are categorized as muscle tissue.

To consider the greatest diversity of US images possible from the US image dataset by
Leitner et al. [16], we take the same amount of images from each acquisition machine.
The images taken are also balanced across the different subjects per machine.

4.4. Physically-Informed Model for RF Data Prediction

Our goal is, given an US image, to predict the raw RF channel data. Due to the complex-
ity and non-linearity of the image formation processing (See Section [4.2.4]), there exists
no closed-form solution to the proposed problem.

Formally, the problem of predicting RF data from the US image can be defined as a
regression task, where we try to predict a time signal for each transducer channel. As
this process involves analyzing image data to extract information, it falls within the
research field of computer vision (CV). In the past decade, through the introduction
of convolutional neural networks (CNN) by AlexNet [72], deep neural network (NN)
architectures have established themselves as a very effective technique for various fields
of CV such as image classification, segmentation, image restoration and many more.
These deep learning (DL) models have also been used to great effect for tasks on US

images [27] [25] [73].

It might be tempting to train a DL model to directly predict the RF channel data from the
US image. However, the resulting RF data would not have any guarantee to be realistic
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Figure 4.22.: Overview of the inference steps to make a prediction using our physically-
informed model.

and be in agreement with all the differential equations, that describe the physical model
of ultrasound wave propagation.

To introduce this prior information into our system, we propose a physically-informed
model. Instead of predicting the RF data using a NN directly, we train a NN model
to predict the acoustic properties of the imaging medium, which we model using the
virtual phantom P (see Section |4.1)). During inference, we can then use the simulation
environment k-Wave established in Section to acquire RF data for the predicted
virtual phantom P. This can be seen as a form of regularization of our DL model, where
we include the prior information of the laws of physics for the propagation of ultrasound
waves through the simulation into our predicted RF data.

An overview of our physically-informed model during inference can be seen in Figure
4, 22)

4.4.1. Problem Formulation and Loss Function

We want the DL model in our physically-informed system to learn to predict the acoustic
properties described in virtual phantom P. To train a machine learning (ML) model,
we first need to formalize our problem to a loss function for our neural network (NN)
architecture to optimize during training.

Our problem statement can be formalized by defining the input to our model as the image
I € ZN=>*No_that has height N, and width N,. The target output of our model is the
virtual phantom P € R**N=*No and can be defined as a tensor, which is a concatenation
of the four phantom maps that describe the acoustic medium [D, C, A, S]|. As areminder,
these maps model the density, SoS, attenuation coefficient, and scattering for each point
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of our phantom grid. The prediction of our NN model M with trainable parameters 8

can therefore be described as A
P = M(L0). (4.47)

Then, we train the parameters 8 of our NN model to optimize a loss function over our
training dataset:

Ntrain
1
Etotal N, E(Pia M(Iia 0)) (448)
rain
Ntrazn
1 .
=< > L(P;,Py) (4.49)
train

where Nypqin is the number of samples in our training set, and (Ij, P;) is the i-th data
sample. L is the loss function for a single data sample.

For the loss function, we state that the Mean Absolute Error (MAE) fits our needs best.
It is a simple loss function, which is defined as the absolute difference for each map value
averaged over all maps and grid points. Incorporating the MAE, we get the following
loss function

Nz N

~ 1 ~
L(P;,P;) = P;(p, h, w) — Pi(p, h, 4.50
( )= NN, ;wl 2 Pi(p, h, w) — Pi(p, h, w)| (4.50)

where p indexes the different phantom maps by defining
[P(17 ) ')7 P(2, K ‘)7 P(37 " ')7 P(47 ) )] = [D(7 ‘)7 C('? ')7 A(? ')7 S(‘v )] (4'51)

To get the alternative Mean Squared Error (MSE), instead of the absolute value, the
squared value of the difference is used.

Here, it is important to notice that our phantom maps do not have the same scale. While
the density and SoS map both take values in between [700, 2200], the scattering takes
values in the much smaller range |0, 0.015625|. Despite our initial attempts to address
this issue by using a weighted loss function, we still encounter the challenge that our DL
model must predict values of vastly different magnitudes. Predicting different targets at
different scales is an inherent limitation for a DL model [74].

We resolve this issue by standardizing the phantom maps across the training dataset
first. For each phantom map p, we compute the mean p, and standard deviation o),
of the phantom map across the entire training dataset. Then, we can standardize each
phantom map in a training sample to receive the normalized phantom map P:

5 P(p7 ) ) — Hp

P(p,--) = Er— (4.52)
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Figure 4.23.: The visualization of the UNet architecture we use, displaying the number
of channels at each layer.

During inference, we must subsequently rescale the predicted phantom maps from the
standardized targets back to their original scales:

P(pa'v') :P(pa'v') 'O-P—i_'u’p (453)

Here, we use one DL model M to predict all four phantom maps at once. Alternatively,
One could opt to train a separate DL model for each phantom map individually instead
of predicting all four maps with a single model. This would however increase the com-
putational and memory load by a factor of four. Additionally, we hypothesize that the
shared features might enhance the predictions of the phantom maps, since correlations
between the different the acoustic parameters exist. This is related to multi-task learning

I73].

4.4.2. Model Architectures
UNet
The UNet, initially developed by Ronneberger et al. [19], is a very popular neural network

architecture for medical image processing. The architecture uses an encoder-decoder
structure connected by skip connections, utilizing a series of convolutional layers. The
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UNet architecture is particularly useful for pixel-wise classification or regression, since
it can effectively combine both low resolution contextual information using the deep
encoded features and high-resolution local information of the image.

There are numerous works using the UNet architecture on US images for numerous
different applications [25] [76]. In particular the previous work of Zhang et al. [27] for
predicting the scattering map and the work by Simson [34] to predict the SoS map both
employ UNet models. Therefore the UNet is chosen for the initial model architecture.

The architecture with the exact model hyperparameters we use is shown in Figure |4.23
We choose an initial channel width of 64 and a total depth of 4. For the downsampling
in the encoder, 2x2 Max-pooling is employed, while for the upsampling a 2x2 transpose
convolution is used. This results in a model with a total of approximately 31 million
trainable parameters.

The input dimensions for UNet models are variable and do not need to be fixed before-
hand. However, both dimensions need to be divisible by factor 2¢ where d is the depth
of the UNet. We chose a depth of d = 4, which means the image dimensions need to
be divisible by 16. Since the images in our synthetic datasets have size 856 x 576, the
images are padded with zeros to the next highest image divisible dimensions, which is
864 x 576, before being passed to the model.

TransUNet

While the UNet has shown great results in many fields of processing medical images, there
exist more recent model architectures that aim to improve the performance of the UNet.
One such model that we try is called the TransUNet architecture introduced by Chen
et al. in 2021 [§]. Like the UNet, the architecture was originally designed for medical
image segmentation. The TransUNet architecture integrates a Vision Transformer (ViT)
with the conventional UNet framework, significantly enhancing the encoder’s capability
to extract more sophisticated high-level features. The ViT model architecture was in-
troduced by Dosovitskiy et al. [77] that outperformed traditional CNN architectures for
image classification. The ViT is built on the transformer model architecture introduced
by Vaswani et al. [78] for the task of natural language processing, using an attention
mechanism, which helps the model to focus on relevant parts of the input data. The
ViT accesses the transformer architecture, by splitting the image into a fixed number of
patches, which are then embedded and processed analogously to words for the original
transformer.

The TransUNet architecture is visualized in Figure Like in a regular UNet, the
input image is processed by convolutional layers and downsampled to extract high-level
low resolution feature maps. Instead of immediately upsampling this feature map, they
are passed to a ViT model to extract improved feature maps, profiting from attention
mechanisms. The resulting feature maps are then upsampled using a traditional UNet
decoder architecture using cascaded upsampling and convolutional layers. Using this
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Figure 4.24.: An overview of the TransUNet architecture is illustrated.[§]

model architecture Chen et al. [8] achieve better results than using a traditional UNet.
The TransUNet has also been successfully applied to US images in the research by Li et
al. [73].

We use the implementation of the network by Chen et al. [8], which is openly available.
For our purposes, we reduce the model size of the vision transformer, to roughly achieve
the same number of trainable parameters as our UNet architecture. For the model pa-
rameters, we choose the configuration of the ViT-B/16. However, to keep the number
of trainable consistent with those of our UNet-architecture, for a valid comparison, we
reduce the following two model parameters: The hidden size, which refers to the dimen-
sions of the patch embedding, is reduced from 768 to 384; The transformer MLP (see
Figure (a)) dimension is reduced from 3072 to 768. The resulting model has roughly
32 million trainable parameters.

4.4.3. Inference Using the Physically-Informed Model

The steps of the Inference are shown in Figure [£.:22] Given an US image, we can use the
trained DL model to predict the corresponding virtual phantom.

There are some post-processing steps applied to the predicted phantom. As established,
the predictions of the DL model are standardized by the normalization parameters of the
training set, therefore the predicted phantoms need to be rescaled first using equation
4.53

In the next step, the predicted scattering map is clipped to be in a range of 0 and 1, since
values outside of this range do not make sense the way the parameters were defined (see
Section . Then the scattering is applied to the density map, by drawing scatterers
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using the scattering distribution parameterized by the predicted scattering map. In the
last step, the density, SoS and attenuation coefficient maps are also clipped to sensible
ranges, based on the maximum values that occur for tissues in the human body:

p € [0,2200]
¢ € [0,4200]
a € [0,21]

The predicted virtual phantom can then be simulated using the k-Wave simulation tool,
as it was described in Section to deterministically compute the final predicted RF
data.

4.5. End-to-End Deep Learning Model for RF Data
Prediction

To evaluate the effectiveness of our physically-informed model, we also employ an end-to-
end DL model. The model is designed and trained given an US image to directly predict
the corresponding RF data.

To formalize this problem, we can refer to the input image as I € Z¥=*N= and the output
RF data as R € RY*M where M is the number of channels and N; is the length of each
time signal in R. We note here that the number of channels M is always smaller than
the image width N,, while the signal length V; is always larger than the image height
N,. For our synthetic data, we have M = % and N; = 2- N,.

Compared to our previous prediction problem, the output data has a different shape
for this problem than the input data. For this reason, we need to slightly adapt the
model architecture from before. This is done by extending the previous model architec-
ture with an additional tail architecture. The model architecture we use has as a first
block either the UNet or TransUNet model. Now instead of using the output of this
architecture directly as our model output, we add an additional tail architecture. The
tail architecture first resizes the outputted feature map of the TransUNet or UNet to the
desired output shape Ny x M and then follows up with several convolutional layers in
the form of two ResNet-blocks (see Figure . These final convolutional layers should
allow the network to recreate the typical time-signal structures at the new higher output
resolution.

For the loss function, both the MSE and MAE are valid choices. We choose the sample-
wise MAE loss, which can be analogously defined as before:

Ny M
~ 1 ~
Etime(Ria Rl) = Nt M E E |Ri(t7 m) - Ri(tv m)| (454)
t=1 m=1
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Figure 4.25.: The visualization of the end-to-end model architecture that predicts the RF
data directly from the US image.

where R; and R; refer to the true and predicted RF signal for sample i. Similar to
the physically-informed model, we train the end-to-end model on the standardized RF
signals and then rescale the predicted signals during inference. The standardization is
done across the entire training dataset.

Due to the relevant frequency nature of the target RF signals, an additional loss term
can be introduced. We refer to this loss as the spectral loss and it should bias the model
to predict RF signals with a realistic frequency spectrum. The spectral loss is defined by
us to be the mean squared differences of the spectral magnitudes:

Ny M
Lopeetran (RisBi) = 2 S (F(Ra)(fom)| = |F{RYEm))? (2.55)

f=1m=1

Here F denotes the Discrete Fourier Transform (DFT) for the target and predicted
RF signals, which is computed using the Fast Fourier Transform (FFT) algorithm [79].
It is worth mentioning that the DFT is a linear mapping involving a simple matrix
multiplication. Therefore, the spectral loss term is differentiable and can be optimized
using backpropagation.
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The total loss function we optimize during training then becomes:
['total = [ftime + )\['spectrum (456)

where \ is a trade-off parameter to balance the two loss terms, and it needs to be
determined experimentally. We find A = 0.1 works well for our use-case, however, the
choice of A could be further investigated.
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Chapter

Fxperiments

5.1. Overview of the Physically-Informed Model
Evaluation

To evaluate the accuracy of our physically-informed model for a single sample, we perform
model inference as it was described in Section to get the predicted RF data from
an image. Subsequently, we apply image formation to compute the predicted US image.
Figure illustrates the inference steps of our physically-informed model. We then use
selected metrics to compare the predicted and actual RF and US image data. If the
true virtual phantom data is available, it can additionally be employed to assess the DL
model’s performance in predicting the virtual phantom.

In the following sections, we will elaborate on the datasets used to test our trained
models and discuss the metrics used to evaluate the accuracy. We will further discuss
the different training regimes selected to train our DL models.

5.2. Evaluation Datasets

The evaluation datasets that are used to assess our model’s performance are of either of
the following two types:

e Synthetic data: This dataset is constructed using simulations from our simulator
and virtual phantoms.

o External test data: This dataset comprises a diverse set of data, including syn-
thetic data generated with an alternative simulator, and real acquisitions from both
physical gelatin phantoms and in vivo tissues.
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Figure 5.1.: Overview of the evaluation of the physically-informed model’s performance
for a single sample.

5.2.1. Synthetic Evaluation Set

The test set, containing synthetic data, is generated using the same methodology as
the training set, employing our simulator and beamformer consistently. This approach
ensures that the test data is perfectly aligned with the training domain, maintaining
consistency in the creation of virtual phantoms and the simulation of the ultrasound
acquisition. This ensures that no new sources of error are introduced, allowing for a
precise and accurate evaluation of the model’s performance to generalize and accurately
predict within the domain it was trained on.

When evaluating the physically-informed model, this test dataset offers the added ben-
efit of facilitating a direct comparison between the original and the predicted virtual
phantoms. Moreover, it allows us to evaluate the impact any errors within the predicted
phantoms may have on the simulated RF data and the subsequently formed images.

In practice, the inference and evaluation take around one minute per sample. While we
assign a dataset of 5’000 samples to this evaluation set for each dataset, due to timing
constraints we limit the size of this dataset to 1’000 samples.
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5.2.2. External Evaluation Set

It is crucial to evaluate our model’s performance on data acquired from various sources
aside from data generated by ourselves: virtual phantoms from different simulation mod-
els, acquisitions on real physical phantoms, and importantly, data samples from actual
in vivo tissue. This approach enables us to assess how effectively our model generalizes
to diverse examples, with a focus on in vivo samples, since many of our strategies aim to
lead to a generalization to in vivo tissue data.

When selecting samples for evaluation from different open-source datasets, ensuring con-
sistency in the US imaging method of the selected samples with our simulated US imaging
method is crucial. For our objective, we look for RF data from a single plane wave that
was acquired using a linear transducer array.

We solely require the RF data, as it enables us to directly form images using our beam-
former (see Section [4.2.4]). Using a different beamformer could introduce additional
sources of error, which we aim to avoid when comparing the original and predicted im-
ages.

We obtain such RF data from 3 different sources:

1. Verasonics System Recordings [71]: This dataset was acquired in the context
of the work of Leitner et al.|[71]. The dataset can be categorized into two groups:
Samples that were either acquired on the CIRS GP phantom model [10] or on in
vivo MG muscle tissue. All acquisitions were made using the research US imaging
system Verasonics Vantage 256 with a GE 9L-D model transducer.

2. Plane-wave Imaging Challenge in Medical Ultrasound (PICMUS) 2016:
The PICMUS challenge [43] aimed to assess various beamforming strategies for ex-
tracting high-quality ultrasound images from plane wave RF data. The evaluation
set from PICMUS, fitting our requirements, consists of four phantom data samples
and two in vivo carotid tissue samples. The phantom data is further divided into
two simulated samples using the Field II simulator and two samples containing data
of real physical phantoms. The platform used to acquire the data is the Verasonics
Vantage 256 with the L11-4v transducer.

3. Challenge on Ultrasound Beamforming with Deep Learning (CUBDL)
2020: The evaluation dataset from CUBDL [80] consists of a diverse collection of
RF data that was acquired on both phantom and in vivo dataf42]. For our pur-
poses, we use the dataset provided by the Department of Biomedical Engineering
at Tsinghua University, China (TSH) [81]. This dataset features 500 single plane
wave recordings of the forearm muscle brachioradialis. Given the similarity among
many recordings, likely due to repeated acquisitions on the same subject, we select
6 distinct-looking samples to make the evaluation more efficient. The data was
acquired using the Verasonics Vantage 256 US system using a L10-5 transducer.
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Figure 5.2.: Example images for all 5 external datasets

For each selected dataset, while multiple plane wave acquisitions at various angles are
available, we consistently take the acquisitions, where the incident angle of the plane
wave is zero.

As an overview, we categorize our external test sets into the following distinct datasets:
e Verasonics CIRS: acquisitions on the CIRS GP phantom model [71].

e Verasonics muscle data in vivo acquisitions on the MG muscle in the lower leg
7]

PICMUS phantom acquisitions of physical phantoms and virtual phantoms using
Field II simulator [43].

PICMUS in vivo in vivo acquisitions of carotid artery data [43].

CUBDL in vivo in vivo acquisitions of the brachioradialis muscle (BM) in the

lower arm [82][81].

Example images for all 5 external datasets are shown in Figure [5.2]

This approach ensures a comprehensive evaluation across different types of data, high-
lighting our model’s generalization capability, particularly towards in vivo tissue sam-
ples.

One consideration we need to keep in mind for the PICMUS and CUBDL data is that
they employ different grid and transducer settings compared to those used for training
our model. Therefore, results on these datasets will show the generalization ability of
our model across different transducer and acquisition settings.

For our physically-informed model, we need to define a simulation grid for each of the
external test sets. The heuristic we have developed to choose the simulation grid and all
simulation parameters is explained in the following section.
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Finding Appropriate Simulation Grid Specifications

To replicate an acquisition using our simulation environment, we need to define the
transducer and simulation grid. Most of our simulation parameters can be read directly
from the data sheet of these datasets, however, the simulation grid size is less trivial. A
systematic approach to selecting the simulation grid size (N,, N.) and grid spacing Azz
is explained here.

To precisely replicate the transducer, the initial step involves choosing a grid spacing
Axz, which allows us to accurately depict the transducer element pitch. For an accurate
representation of the transducer in a discrete simulation grid, the element pitch should
be a multiple of Axz.

In our training set, the grid spacing Azz is equal to the temporal displacement zieyyp.
As a reminder, ziemp represents the distance that the sound wave travels in one time
step of the sampled RF data, and it is determined by the sampling frequency of our
signal. For all the datasets we consider in this project, the sampling frequency is four
times the central frequency of the transducers, which results in a temporal displacement
Ztemp = A/4, where X\ represents the wavelength of the sound wave. Ideally, we choose
Axz = Ziemp. However, this does not guarantee that Azz is a divisor of the element
pitch. Therefore, we choose Axz to be the divisor of the element pitch that is closest to
Ztemp- We can calculate this in the following way:

element pitch

Azz = (5.1)

\‘element pitChJ
where n=|————

n Ztemp

Here, n is the number of grid points per transducer element.

We define the width of our simulation grid as the width of the transducer (refer to Section
4.2.3]). Thus, to specify the width of the simulation grid N,, we multiply the number of
transducer elements by the number of grid points per transducer element:

N, =n_transducer elements - n (5.2)

Using the provided image depth D, we calculate an appropriate grid height N,. Then
we define N, such that it is a multiple that closely matches this depth D ~ N, - Axz,
which we can compute with

N. = {AZZJ (5.3)

Here, we round down to disregard any excess parts of the provided RF data.
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5.3. Evaluation Metrics

The metrics chosen for the model evaluation are of great importance, since conclusions
and subsequent decisions are made based on the metrics. For our system, we establish
metrics for the RF data we aim to predict, as well as metrics to compare predicted
and true US images. While the primary objective is to accurately predict RF data, the
beamformed US image also reveals information contained in the RF data. Likewise, for
the physically-informed model, we need metrics to evaluate the phantom maps, if they
are available (see Figure [5.1)).

5.3.1. RF Metrics

Before we go over the RF data metrics, there are two important notes when comparing
the RF data signals. First, we always compare the TGC-corrected RF signals. We
do this because the RF data provided to us in the external datasets is already TGC
compensated since the TGC happens before the analog to digital conversion step in a
real US acquisition system (see Section .

Second, we always compare the normalized RF data signals. We do this because the
simulated and real RF data have different physical measurement units. The real recorded
RF data has unit Voltage while our simulated RF data is recorded in Pascal. To compare
them independent of the scale we can compare the normalized signals. The normalized
signal R is computed using the mean x and standard deviation o of the RF data R over
all channels:

D R[tvm] —H

R[t,m] = (5.4)

o
Now we will describe the different metrics we use to compare the RF data signals. Because
we are the first that try to predict RF channel data from US images, there are no
established metrics to evaluate the accuracy of the prediction. We propose the following

comparison metrics to compare the true RF data and predicted RF data we denote with
R:

e Time-series mean absolute error (MAE)

Envelope MAE

e Mean cross-correlation (CC) peak.

Windowed Root mean square (RMS) difference.
e Power spectral density (PSD) MAE
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Figure 5.3.: An overview of the RF metrics used showing the computed metrics for a
single channel. (A) Here we have the envelopes of the two signals to be
compared. (B) This shows the windowed RMS difference. (C) This shows
the CC function of the two signals. (D) shows the comparison of the PSD
of the two signals.
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We denote the true RF data with R[t,m] and the predicted RF data we denote with
R[t,m], where t is the time sample index which ranges from 1 to 7" and m is the channel
index which ranges from 1 to M, where M is the total number of channels

The first metric we choose is the sample-wise mean absolute error (MAE) to compare
the time signals. This takes the absolute difference of the time signals and averages them
over the whole time signal and overall channel data:

1
Time Series MAE(R, R) Z |R[t,m] — Rl[t,m]| (5.5)

This is the most straightforward way to compare two time signals. However, this metric
might be misleading due to phase shifts and the periodic nature of our time series. As an
example two identical signals where one is phase shifted by 90 degrees would yield very
similar images and should be very close, however, they will yield a very high sample-wise
MAE. For this reason, we also use additional metrics.

One way to get around this problem is to compare the envelopes of the two RF data
signals. The envelope is an important part of US image formation (see Section
and it can be computed using the magnitude of the Hilbert transform H [47]. We can
then compute the MAE over the two envelopes:

T
1 ~ .
Envelope MAE(R, R) = UT E_ ;_1 |E[t,m] — E[t,m]| with E[t,m]=|H(R)[t,m]|
(5.6)
The envelopes of an example signal are shown in Figure (A).

Another method to compare the similarity of two time signals is the cross-correlation
(CC) function. The CC function is defined as the product of the two functions, where
one is displaced by the lag 7. We can calculate it for each channel m using the operator

* [83]:

((R[m] * R[m])[r] =Y _R[t,m] - R[t + 7,m] (5.7)

As it is common practice we use the normalized cross-correlation function. It gives an
easier interpretation of maximum correlation at 1 or -1 and minimum correlation at 0
and can be seen as a time-dependent Pearson correlation coefficient [83]. To extract a
single number for this metric, we take the maximum absolute value for each channel and
then take the average peak CC over all channels:

Average CC peak(R, R) Z max{| (R Rim))[7]|} (5.8)

An example of the cross-correlation can be seen in Figure (C).
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We can also compare the root mean squares of the two RF signals. For a voltage signal,
the RMS is closely related to the power of the signal [84]. Because our RF signals can be
scaled to voltage, the RMS can also be used to compare the power of the two RF signals.
Because the location of large echoes is important to us in our RF data, we want to keep
some spatial information about the location of the power in the signals. Therefore we
divide the RF signals into windows and compute the RMS over each window w:

(5.9)

Here T, denotes the number of samples in a window We can then compare the absolute
differences of the RMS over the windows and average them over all windows and all
channels:

1

M
MN,, D ) IRMS,, (R[m]) — RMS,,(R[m])|  (5.10)

m=1 w

Mean RMS differences(R, R) =

where N, is the number of windows per channel. We use as a heuristic a window size
T, of 100 samples. This is illustrated in Figure (B).

Finally, we also compare the two signals in the frequency domain, as it is also an impor-
tant feature of the RF data. To compute the frequency power spectra for each channel
we use Welch’s method [85] over just a plain FFT, as it is less sensitive to noise and
reduces the variance. Then we compare the two power spectral densities (PSD) using

the MAE and average it over all channels. Such PSDs are portrayed in Figure (D).

5.3.2. Image metrics

The images that are constructed from the predicted RF data also hold value, since
they reveal intuitive information that is hidden in the RF signals and allow for a visual
comparison. To compare the predicted and true US image, we can rely on metrics that
were introduced and used by previous works such as by Zhang et al. [27] to compare the
predicted and true US images. In addition, more advanced established image similarity
metrics are used. Here is an overview of the metrics we measure when comparing the
true and predicted US image:

1. Pixel-wise Root Mean Squared Error (RMSE)
2. Mean image intensity difference

3. Signal-to-noise ratio (SNR) difference

4. Patch-wise KL divergence

5. Structural Similarity Index (SSIM)
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6. Perceptual Loss [86]

The first metric we choose is the pixel-wise root mean squared error defined as:

1
RMML:N;EZ s (5.11)
j=1..N

This is a straightforward way to compare the individual pixel intensities, which can
be a useful indicator of image similarity. However a mismatch between the speckling
patterns between two images, due to differently drawn scattering patterns can increase
this. Additionally, the RMSE cannot capture the structural similarity between the two
images.

The next three metrics are chosen analogously to Zhang et al. [27]. We rely on their
metrics, since the model they have developed similarly to ours also predicts US images.

First, we have the mean image intensity difference (I), which is defined using the following
formula:

ar=le=bl o G 12 > s (5.12)

I, N J '
j=1..N

The subscripts p and ¢ denote predicted and true US image, s; denotes pixel intensity
for the j-th pixel and N are the number of pixels. This metric captures global intensity
shifts in the images.
As proposed by Zhang et al.|27], we can also capture the global SNR of the images and

compute their difference:

ISNR; — SNR,|

ASNR =
SNR SNR¢

. with SNR=" (5.13)
g

Here i and o reference the global mean and standard deviation of the image intensities.

They also measure the patch-wise local intensity statistics, by computing the Kullback-
Leibler (KL) divergence on intensity histograms of image patches|27]. These intensity
statistics are of importance for downstream tasks of tissue characterization and should
be accurately replicated [87] [88]. The KL divergence can be computed using

Lhpllhe) = > Iy (ht[[zl]]> (5.14)

I=1...D

where h denotes the intensity histogram and D is the number of histogram bins, where
D = 50 bins are chosen. The KL divergence is a common tool in statistics to compare
two probability distributions. If the distributions match perfectly, the KL divergence is
zero. Higher KL divergence indicates a higher mismatch between the two distributions
[89]. Just as Zhang et al.[27] propose, we choose a patch size of 10 wavelengths A of our
ultrasound pulse in both directions. A visualization of the comparison of the intensity
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Figure 5.4.: Example for patch-wise the histogram comparison using the KL divergence.
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histogram in an image patch is shown in Figure [5.4, The final value we report is the
mean KL divergence overall image patches.

In addition to the metrics introduced by Zhang et al., we also use the following two
metrics to capture structural differences between the two images. One such metric is the
Structural Similarity Index Measure (SSIM) [90]. It is a metric based on human visual
perception and tries to quantify and combine the concepts of luminance, contrast, and
structure. Formally it is defined using the following formula:

SSIM(z,y) = I(z,y) x c(z,y)? x v(z,y)? (5.15)

_ < 2Mxﬂy+01 )a X < 20m0y+02 >ﬁ « ( Uzy+c3 )W (5 16)
P2 A4 2+ C 02+ 02+ Cy 020y + C3 '

where the luminence term is denoted with [, the contrast term with ¢ and the structure
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term with s. To go into detail about the meaning of each term would go beyond the
scope of this report.

Another advanced metric we choose to compare images is the perceptual loss [86]. The
perceptual loss leverages deep features extracted by a NN trained for image classification.
These deep features contain high-level and contextual information about the images that
other metrics such as the SSIM cannot capture [86]. We use their implementation and
the default trained AlexNet [72] they provide is used to extract the features.

5.3.3. Phantom Comparison

If the true phantom is available, we can also compare it with the predicted virtual
phantom. Note that this is only the case for us for the synthetic evaluation set we have
created ourselves, since we do not know the virtual phantoms for the real acquisitions in
the external evaluation set.

For the phantom comparison, we can use both the pixel-wise RMSE and the patch-wise
KL divergence analogously to the Image metrics in the previous section. Here we report
both metrics for each of the four phantom values individually. This choice is made,
because we want to evaluate how well our DL model performs for each of the phantom
maps and see if certain acoustic properties are harder to predict.

5.4. Training of The Physically-Informed model

The physically-informed model we design leverages a DL model to predict the phantom
maps. In this section, we specify the training datasets used for training the DL models
and we describe the training specifications used.

5.4.1. Overview of Training Datasets

We create large virtual phantom datasets for the following phantom types that we have
developed in Section [4.3] :

e Ellipse Phantoms

ImageNet Phantoms

ImageNet-enhanced Phantoms

CT Phantoms

Muscle Phantoms
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For each of these datasets, except for the muscle phantoms, we create 50’000 data samples
using the respective virtual phantom generation strategy, followed by the data generation
steps. The CT phantom set is a bit smaller, however, since we filter samples that have
bone tissue at the transducer lens (see Section. This removes approximately 17% of
the data samples. Since the muscle dataset is only used for fine-tuning a trained model,
we choose a smaller size of 10’000 samples.

We distribute these data samples at random into a training, validation, and test set. The
training set is used for training our DL model, while the validation set is used to track
the validation loss during training, to tune training hyperparameters and to select the
best model. The test set is used in the end for evaluating the performance and makes up
the synthetic evaluation set discussed in Section [5.2.1] We assign 80% of the total data
samples to the training set and 10% each for the validation and test set. The dataset
sizes for all the datasets we use to train our DL model from scratch are presented in

Table B.11

Dataset Ellipse ImageNet ImageNet-enhanced CT Combined
Training Set 40,000 40,000 40,000 33,351 153,351
Validation Set 5,000 5,000 5,000 4,151 19,151
Test Set 5,000 5,000 5,000 4,151 19,151

Table 5.1.: The size for each of the datasets that we use to train our DL model from
scratch and how they are distributed across the training, validation and test
set.

Then we train a TransUnet model (see Section 4.4.2]) from scratch for each training
dataset except for the Muscle phantoms, since they are used for fine-tuning.

We also decide to train a model that learns from all four phantom types. For this reason,
a model is trained on what is referenced as the Combined dataset, which is the union
of all the previous datasets and contains all the data samples generated. This model is
therefore trained on the largest dataset and can potentially learn from all the information
introduced in our different datasets.

After training a NN from scratch for each of the large datasets in Table we can then
fine-tune the trained models on the muscle phantom datasets. This gives us a total of
ten trained models, five models that were trained on larger datasets from scratch and for
each a model that was fine-tuned on the muscle data. An overview of this can be seen

in Figure [5.5]

5.4.2. Training Specifications

Here we briefly describe the training hyperparameters for each of the DL models we train
to predict the virtual phantom. These hyperparameters were experimentally found by

72



5. Experiments

Muscle
Phantoms
Combined
Ellipse —> | M(,04ain) | — L 5 | M(-,0fin)
Ellipse Muscle
Phantoms
Imagenet = —> | M(+, O4pqi | >
g ( "am) M('70fine) Imagenet
—> M('79t7‘ain) > M('70fine)
Imagenet- . . 0. Imagenet-
enhanced M, Btrain) L | M Ofine) enhanced
Datasets
1 5 CT
CT —> M('yetmin) M('yofine) |:| DL models

Figure 5.5.: An overview of the DL models we train and on what dataset they are trained
on.

trying a variety of different hyperparameter configurations, and to that extent, we have
implemented a grid search.

The model architecture we found performs best is the TransUNet model architecture as
it is described in Section [£.4.2]

For the loss function, we choose the MAE loss (see Section and we optimize it
using the popular Adam optimizer [91]. We choose an initial learning rate of 5-1075 and
we decrease the learning rate by a factor of 0.8 if the training loss does not decrease for
five consecutive epochs. We found that a batch size of 8 worked the best for us. However,
due to memory limitations on the GPU, we were not able to try higher batch sizes, which
might be interesting to explore.

To artificially increase the dataset size and prevent overfitting, we use the concept of data
augmentation. For the data augmentation methods, we choose techniques analogous to
the work of Leitner et al. [16]. They also used augmentation techniques specifically for
US images, which we can therefore make use of for our model. Specifically, we apply the
following augmentations:

1. We randomly crop the image by 10% of the image size, while keeping the original
image dimensions by resizing the images afterwards.

2. With probability 0.5 we flip the image horizontally.
3. With probability 0.5 we apply random rotations by +20°.
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Figure 5.6.: An example of the augmentation applied to both the input US image and
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4. With probability 0.5 we apply a random affine transformation that includes: trans-
lations in both image directions by 10%; zooming the images by scale factors in
the range 0.7, 1.3]; randomly shearing the image in the range [-0.2,0.2].

For all augmentations, it is important to apply the same transformation to both the
image and the virtual phantom. An example of the augmentation is shown in Figure
0.0l

We implement the training pipeline in Python using the PyTorch library [92]. All models
are trained on the GPU clusters provided by the computer vision lab at ETH. The models
are trained on two GPUs at a time.

The models for the Ellipse phantom, ImageNet phantom, ImageNet-enhanced
phantom, and the CT phantom dataset are trained for 75 epochs each. The model for
the Combined dataset is trained only for 25 epochs, where it is important to consider
that one epoch considers updates over the entire dataset. This means training one epoch
on the combined dataset leads to around 4 times as many parameter updates compared
to training on the other datasets, because it contains roughly 4 times as many data
samples. This takes more time, the combined dataset was trained for around 8 days
compared to the other datasets where training takes around 6 days.

The fine-tuning of the models on the muscle dataset is done using the same training
parameters, but only for 10 epochs. However, here we use the mean squared error (MSE)
instead of the MAE, since it experimentally gives us better results.
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5. Experiments
5.5. Training of the End-to-End Model

The end-to-end model is trained on the Ellipse phantom dataset for 25 epochs using the
model architecture and loss function described in Section [4.5]

The same initial learning rate as for the physically-informed model of 5 - 107° is chosen
and the loss function is also optimized using the Adam optimizer [91]. For the learning
rate schedule, the same specifications are chosen as for the physically-informed model.

For the data augmentation, we only use random horizontal flip and do not use the other
augmentation techniques, that are used for the physically-informed model. Rotations
and affine transformations are avoided, since the transformation cannot be accurately
translated for the RF data. Random cropping could be applied, however, this would
reduce the bias of the TGC function, which we also want the model to learn.

Again the training is implemented using PyTorch [92] and the model is trained on the
GPU clusters provided by the computer vision lab at ETH.
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Chapter

Results

Here, we present and discuss the results of the experiments described in the previous
chapter. Initially, we discuss two experiments to get a better understanding of the lim-
itations of our approach. Subsequently, we will look at the performance outcomes of
training our DL models on the synthetic datasets we have created. In the end, an abla-
tion study will be conducted, providing explanations for the selected loss function and
model architectures.

6.1. Data Generation Validation

Our aim is to demonstrate the efficacy of our virtual phantoms and simulations in repli-
cating real-world acquisitions. We utilize the physical CIRS phantom model because of
its known physical dimensions and target placements. Employing a virtual phantom, we
accurately replicate the physical phantom’s characteristics. This enables us to compare
the real acquisitions on the physical phantom to the simulated data from the virtual
counterpart.

This experiment establishes the maximum accuracy with which our physically-informed
system can recreate real RF data and US images. Here, we hand-design the virtual
phantom to match the physical phantom as closely as possible. Therefore, we cannot
expect our results, derived from a DL model predicting a virtual phantom, to exceed this
benchmark.

Additionally, this analysis can also be useful for calibrating different model parameters
utilized during our synthetic data generation, such as the TGC waveform of the signal

(see Section [4.2.4)).

For this experiment, we use a physical phantom model. Physical phantom models are
used in practice for calibration and testing the performance of ultrasound acquisition
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6. Results

Figure 6.1.: Acquired section of the CIRS GP phantom model

systems. By utilizing the CIRS phantom model we know thanks to a data sheet the
physical size and locations of all the targets inside the medium. This enables us to
recreate a virtual phantom with the identical measurements. For the grayscale level
targets in the phantom, the only values provided are the dB level of the target with
respect to the background.

Initially, we implemented this experiment by acquiring data ourselves on the CIRS Model
040GSE Multi-Purpose, Multi-Tissue Ultrasound Phantom [93] using an Ultrasonix ac-
quisition system. However, this presented an issue, since the returned signal data from
the acquisition was already beamformed by the beamformer of the Ultrasonix machine.
We aim to compare the original RF data, which prompts us to use a different dataset.

To avoid above-mentioned issue, we use the RF data on the CIRS Model 054GS General
Purpose Ultrasound Phantom (CIRS GP) [10], which was collected on the research US
acquisition system Verasonics Vantage 256 using a GE 9L-D model transducer in the
work of Leitner et al. [71].

We recreate the CIRS GP using a virtual phantom. The geometric locations and size
of all targets are known from the provided data sheet [10] and are visualized in Figure
[6.1] The background values are also known, apart from the attenuation and scattering,
for which we opt to utilize the standard values available for the synthetic datasets. The
chosen background parameters are presented in Table [6.1]

To recreate the small point targets, we increase the acoustic impedance by increasing
both SoS and density by 25% w.r.t the background at the specified locations. For the

7



6. Results

Acoustic properties | Value with Units
Ob 900 kg/m?
Ch 1540 m/s
ayp 0.54 dB/(MHz-cm)
Sb 0.000625

Table 6.1.: Background phantom values for the CIRS GP Phantom [10].

grayscale targets, we only increase the scattering. We calibrate the scattering values of
these targets, aiming to closely match the appearance and the contrast-to-noise ratio

(CNR) of the real acquired targets. This resulting in scattering values s are presented in
Table [6.2]

Target Scattering parameter s
+3dB target 0.00069
+6dB target 0.0012
Hyperechoic target 0.0077

Table 6.2.: Scattering values s for the grayscale targets in the CIRS phantom.

The transducer specifications and simulation grid are the same as the ones for the syn-
thetic data setup specifications provided in tables and in Section [.2.1] except
for the US image to have less depth with IV, = 704. The depth is chosen lower, as the
RF data contains fewer samples. To identify the exact location of the transducer on the
GP phantom, we measured the pixel distances of the known targets to the sides of the
image. The resulting phantom can be seen in Figure [6.2

To compare the real and simulated RF data and US images, we employ the evaluation
metrics introduced in Section[5.3] Since the exact locations of all the grayscale and point
targets are known, two additional metrics can be calculated. The contrast-to-noise ratio
(CNR) is a good indication of image quality and is computed for each known grayscale
target with [94]:

ONR = i~ tel (6.1)

0; + 0,

where p;, (o, 0; and o, denote the means and standard deviations of the image intensities
within an area inside the target and an area outside the target.
In addition, using the point targets we can compute the axial and lateral resolution
by computing the full width at half maximum (FWHM). The reported resolutions are
averaged across all point targets.

The resulting RF and image metrics between the real and simulated US image is presented

in Tables [6.3] and [6.4.

The acquired and the simulated images are compared in Figure They are visually
confirmed a close match, which shows that our data generation pipeline is capable of
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Figure 6.2.: Virtual phantom designed to replicate the physical CIRS phantom
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Figure 6.3.: Comparison of the US image of the real acquired RF data on the left and
the US image of the simulated RF data on the right.

approximating and yielding visually close results.

Because we know the locations of the point and gray-scale targets, we can compare the
CNR of the grayscale targets and the axial and lateral resolutions between the real and
acquired images. The results are presented in Tables [6.5] and [6.6]

For the CNR, we get higher values for the real US image, indicating a better image
quality for the real data. This discrepancy might be caused by our choice of background
scattering parameter or by our choice of the scattering density. This could be further
investigated in the future.

For the average axial FWHM of the real US image that we report in Table we should
note here that the average is heavily disturbed by two outliers. For the two outliers, the
calculation of the FWHM seems to be faulty. By disregarding the outliers, we get an
average axial FWHM of 0.47mm, which is much closer to the average axial resolution of
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RF Metrics
MAE 0.95
Envelope RMSE 1.03
Cross-Correlation Metrics (Average Peak) 0.16
RMS Difference 0.28
PSD MAE 2.59 x 1010

Table 6.3.: Summary of RF metrics for the manually created CIRS validation.

Image metrics
Mean Intensity Difference 0.11
SNR Difference 0.00058
SSIM 0.15
RMSE 33
Perceptual Loss 0.11
Mean KL Divergence 0.22

Table 6.4.: Summary of image metrics for the manually created CIRS validation.

the simulated image. Either way, the simulated images seem to get a higher resolution
both in axial and lateral directions.

These values in tables[6.3]and [6.4] can be used as a baseline when comparing the predicted
values for the predicted RF and image data our physically-informed model generates.

As we can see from our results, we do not get a perfect match between the real and
simulated RF data and the resulting US image. disparity exists between the real and
simulated data and various possible sources for these discrepancies are listed below:

e One reason for the gap could be due to the imperfect representation of the physical
world by our virtual phantom model. One contributing factor is the lack of knowl-
edge of the actual scatterer pattern, which we approximate using our scattering
model. In addition, the virtual phantom is only a discrete approximation of the
continuous acoustic medium. Choosing a higher grid resolution might further close
this gap, however, this would lead to longer simulation times.

e We approximate the 3D model using a 2D simulation grid. This simplification is
another source that could introduce discrepancies between the real and simulated
recordings. Introducing a third dimension is possible, however, this increases the
simulation time significantly.

e Our simulation grid stops at the border of the virtual phantom, whereas in reality,
the areas beyond the virtual phantom also contribute to the echoes received by
the transducer. Extending the simulation grid beyond the virtual phantom could
mitigate this issue while leading to longer simulation times.
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Target CNR True | CNR Predicted | CNR Absolute Difference
Plus 3dB Target -26.52 -62.32 35.80
Plus 6dB Target -5.12 -7.68 2.56
Hyperechoic Target 3.79 2.73 1.06

Table 6.5.: CNR Metrics for the real and simulated US image for the CIRS validation.

Metric Real image | Simulated image | Absolute difference
Avg Axial FWHM 4.02mm 0.26mm 3.76mm
Avg Lateral FWHM 1.15mm 0.97mm 0.19mm

Table 6.6.: The average FWHM metrics for the real and simulated US image for the
CIRS validation.

e The transducer modeled in our simulation grid does not account for the kerf between
transducer elements, for efficiency reasons (see Section |4.2.3)). This omission could
also contribute to the gap.

e Another source of error is the simulation model itself. For example, because we
do not model the non-linear properties of the acoustic medium, they are also not
considered.

e Another contributing factor is the uncertainty surrounding the specific TGC wave-
form applied to the signal by the acquisition system. We empirically calibrate
the TGC for the Verasonics system in this experiment, by manually adjusting the
control points to closely align the synthetic and acquired RF data and images. A
similar calibration should be done for a new machine if the TGC waveform is not
provided.

e Another source of error stems from our limited knowledge regarding the exact input
wave function of the transducer; we approximate it using a pulse with 3 cycles in
length.

One of the things we noticed in the simulated image compared to the real image is the
triangular areas in the bottom right and left corner of the image, which seem to be
somehow distorted (see Figure right). We hypothesized that this might be connected
to the simulation grid ending right at the border of the transducer. To test this, we
expand the virtual phantom in the simulation using edge padding, where we repeat the
edge values on both sides of the phantom. However, we find that this does not remove
the triangular artefacts while increasing the simulation time.
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6.2. Visual Effect of Each Acoustic Property

Using our physically-informed model we try to predict 4 different acoustic properties for
each pixel. In this experiment, we evaluate the difficulty of predicting the individual
virtual maps density D, SoS C', attenuation A and scattering S.

The purpose of this experiment is to explain discrepancies in results. The scattering and
attenuation regularly achieve lower normalized validation losses compared to the density
and SoS losses, which indicates that they are easier to determine.

The intensity of a pixel in a US image depends on the reflected pressure amplitudes from
that physical point. Further, the density and SoS values can not be predicted solely
from the reflected pressure echoes of an image. As a reminder (see Section , when
a sound wave passes from medium 1 to medium 2 the reflected pressure amplitude is
described by the formula [I]:

% = 2-1-2 where Z; = pic; (6.2)
where p, is the reflected and p; the incident pressure amplitude and Z; are the medium
acoustic impedances. Therefore, knowing the reflected pressure amplitude, we have one
equation and two unknowns in formula , which does not allow for an exact solution
for both acoustic impedances Z; and Z,.

There also exists the ambiguity that a high reflected pressure amplitude might either
indicate a switch to lower or to higher acoustic impedance in equation In addition,
even if we could predict the acoustic impedances exactly, we could not predict exact
values for density and SoS since we have two unknowns with only one equation.

In attempt to evaluate these ambiguities and the difficulty predicting various acoustic
properties from the US image, we have devised the following experiment: We create a
template virtual phantom with a single circular target placed in the middle of a standard
background (see background values as in Table . Then, for each phantom value p, ¢,
«a and s we create two phantoms. One phantom where we increase the phantom value
for the target shape and one where we decrease the phantom value.

Because the different phantom maps are on different scales and have different variances,
the choice of the increase and decrease is not trivial. Here we increase and decrease the
maps by 3 standard deviations of the respective phantom value. These are the same
standard deviations, that we have calculated in Section

Then we can simulate all eight virtual phantoms to get corresponding US images. We can
now compare the two images for each acoustic using our regular image metrics. Here, we
select the RMSE and the perceptual loss. If the images are very similar for an acoustic
property, we hypothesize it to be harder to predict, since the change does not have a
big impact on the visual appearance of the image. If the two images are very different,
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Density SoS Attenuation Scattering

Increased
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Figure 6.4.: Overview of the resulting images after either increasing or decreasing a spe-
cific acoustic parameter by the respective standard deviation.

we hypothesize it to be easier for a learning algorithm to pick up on the differences and
predict the correct phantom value.

The resulting images are shown in Figure [6.4] and the quantitative resulting image met-
rics are shown in Figure It becomes clear that the two density images look very
similar even though the density values are very different. We conclude that this ambigu-
ity makes the prediction harder. Meanwhile, for the scattering and attenuation, a clear
distinction between the two images can be seen, due to the different pixel-wise intensities
of the targets. This is also reflected in the quantitative results in Figure [6.5] where the
image RMSE and perceptual loss are lower for the density than for the scattering and
attenuation, letting us conclude they are harder to distinguish. For the SoS, while the
reflection echo intensities are similar, a distinction can be made due to the speed dis-
placement artefacts (see Section . This distinction is reflected in the high perceptual
loss.

Additionally, it becomes apparent that the acoustic impedance differences for a target
are only seen in the received echo at the target boundary regions, while scattering and
attenuation affect all the pixels in the target. Therefore, to predict the density and SoS
of pixel P, we need more context than to predict scattering or attenuation at pixel P.

We can therefore find an explanation for why certain acoustic properties are harder to
predict for each pixel than others.
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RMSE Values Perceptual Loss Values
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Figure 6.5.: Resulting image metrics for each phantom value. For each acoustic property,
the images of the increase and decrease of the acoustic property are com-
pared. On the left, we have the RMSE between the images and on the right
the perceptual loss of the two images.

6.3. Physically-Informed Model Results

In this Section, we evaluate the models that we have trained on the five main datasets.
These datasets and the training model architecture and specifications were established
in Section We reference them in the following using these names:

e Ellipse model: The TransUnet model trained on the Ellipse phantom dataset.

e ImageNet model: The TransUnet model trained on the ImageNet phantom
dataset.

e ImageNet-enhanced model: The TransUnet model trained on the ImageNet-
enhanced phantom dataset.

e CT model: The TransUnet model trained on the CT phantom dataset.

e Combined model: The TransUnet model trained on the Combined phantom
dataset.

First, we investigate the validation loss curves during training for each model to see
how well the models converge. Then we can evaluate the performance of each model on
the corresponding synthetic datasets, where each such set contains synthetic images we
have generated from the same phantom types as the model was trained on. Finally, we
can evaluate and compare the generalization capabilities of our trained models on the
external test sets.
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Figure 6.6.: The validation loss plotted for each epoch during the training for each of our
five models.

6.3.1. Model Convergence and Validation Loss

We train the models on the Ellipse, ImageNet, ImageNet-enhanced, and CT phantom
datasets all for 75 epochs, while the larger combined dataset was trained for 25 epochs
(refer to Section for details). Here we can see for of the models, at which epoch the
best validation loss was achieved in Table

Trained Model Epochs Trained | Epoch best validation loss
Ellipse model 75 66
ImageNet model 75 70
ImageNet-enhanced model 75 74
CT model 75 75
Combined model 25 25

Table 6.7.: For each model we present how many epochs we train and at which epoch we
achieve the best validation loss.

The results in Table [6.7|show that the Ellipse and ImageNet models have converged while
the others might benefit from training for more epochs. It is also intuitive that these
two models converge faster, since the Ellipse and ImageNet phantom datasets are less
complex than the other datasets. These datasets contain less complexity and therefore
less information that the model can learn. The ImageNet-enhanced, the CT and in
particular the Combined model, on the other hand, are trained on more complex data
and could benefit from longer training. All the validation losses together with the training
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Figure 6.7.: The validation loss for each phantom map (density, SoS, attenuation coeffi-
cient and scattering parameter) individually.

losses are plotted in Figure It’s important to note that we cannot directly compare
the values of the validation losses shown in Figure since they depend on the dataset
specific normalization parameters.

We also evaluated the validation loss curves for predicting each phantom map (density,
SoS, attenuation coefficient and scattering parameter) individually. These losses are
shown for the ImageNet model in Figure [6.7, but the plots look similar for the other
models as well. When comparing the normalized losses in Figure [6.7] we find that the
scattering and attenuation achieve a lower normalized loss than the density and SoS.
This means that the trained model can more accurately predict the attenuation and
scattering values, with respect to the respective standard deviation, than the density
and SoS. We can explain this discrepancy between the different phantom maps using
the results from the experiment in Section [6.2] where we see the effect of changing the
phantom parameters with respect to the standard deviation on the image. We conclude
that the density and SoS maps are harder to predict, which is reflected in the validation
losses reported in Figure [6.7]

6.3.2. Results for Synthetic Evaluation Datasets

Here we present the performance of each of the trained models on their corresponding
synthetic dataset. The synthetic dataset contains images created from the corresponding
phantom type that the model was trained on. The Combined model is evaluated on the
test sets of each of the previous four datasets. The values reported in Table [6.8] are the
average metrics across the entire evaluation set.

Please be cautious that we cannot directly compare the performance metrics of these
5 models on the synthetic test set since each of these metrics is computed for different
evaluation sets. Each of these datasets has different distributions, since the strategy
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Metric Ellipse | ImageNet ImageNet- CT Combined
enhanced
RF Metrics
Timesignal MAE 0.824 0.876 0.879 0.851 0.852
Envelope RMSE 1.045 1.062 1.082 1.053 1.073
CC average peak 0.187 0.179 0.178 0.187 0.183
RMS Difference 0.192 0.248 0.271 0.222 0.240
PSD MAE 1.351e-10 | 1.362e-10 1.347e-10 1.360e-10 | 1.359e-10
Image Metrics
Image RMSE 42.822 41.993 42.368 39.458 44.285
Mean Intensity Diff 0.282 0.145 0.151 0.123 0.228
SNR Difference 0.156 0.122 0.120 0.095 0.143
Average KL-Div 0.512 1.267 1.346 1.064 1.066
SSIM 0.128 0.128 0.133 0.134 0.129
Perceptual Loss 0.110 0.104 0.103 0.085 0.106
Phantom Metrics

RMSE Density 47.414 58.663 49.373 109.428 60.589
RMSE SoS 44.771 62.248 49.521 189.959 80.434
RMSE Attenuation 0.276 0.332 0.292 0.538 0.331
RMSE Scattering 0.0019 0.0029 0.0022 0.002985 0.002255

Table 6.8.: Results for each model on their respective test set containing synthetic data
samples of the same virtual phantom type as the model was trained on. We
show the RF, Image and Phantom metrics for each of the Ellipse, Imagenet,
Imagenet-enhanced, CT and Combined models and can compare the different
metrics.

to create the phantoms is different, and some phantom structures could be harder to
approximate than others. However, the results in Table[6.8|can still give us some valuable
insights, that are elaborated on in the following.

First, we can compare the RF metrics achieved for all models in Table[6.8 with the results
in Table [6.3] from the data generation validation experiment in Section [6.1] We find that
the RF metrics for all models on the synthetic datasets outperform the "baseline" of the
CIRS experiment. This can be easily explained by the gap between real and simulated RF
data, which is present for the CIRS experiment but not for the metrics on the synthetic
data. For the synthetic datasets, we compare two simulated RF signals, while for the
experiment in Section real and simulated RF data are compared. The discrepancy
in the results across the RF metrics shows the sim-to-real gap for the RF data, that we
need to be aware of.

The Ellipse model’s predictions give the best results for the RF metrics and part of
the Image metrics on its respective ellipse test set. This shows that it can match the
respective training domain the best, which can be explained due to the simpler phantoms
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Test US image

Comparison phantom maps Comparsion RF data for middle channel Predicted US image

Figure 6.8.: Example of visual results for the ellipse model on the ellipse test set.

it needs to predict. However, it is interesting to see that the intuitive perceptual loss
and SSIM metrics indicate the best results for the CT model, compared to the Ellipse
model.

We can see that the Combined model shows worse metrics compared to the other four
models. This can be explained, because the Combined model needs to recreate all four
data distributions, while the other models can each fit their corresponding dataset and
the particular distribution of virtual phantoms.

When comparing the phantom metrics across the datasets, we have to be aware that
each model was evaluated on different datasets with different distributions. We therefore
cannot conclude that the Ellipse model performs better than the CT model just because
the RMSE is larger. In the CT phantom dataset, we have a larger variance for the
density, SoS and across the different virtual phantoms. This makes it in turn harder
to predict these phantom parameters with the same accuracy, which leads to the higher
error for the CT phantom model.

We can also qualitatively evaluate the visualization of predictions of each model on their
respective test set and find promising results.

In Figure [6.8 we have the visual results for an image the Ellipse model processes. It
is evident that the predicted phantom matches the true phantom quite closely for all 4
acoustic properties and the resulting US image looks visually very close to the original
image. This shows the effectiveness of our approach and the capability to recreate these
phantoms.

However, we find that the predicted RF data generally has lower peaks than the true RF
data, which can be seen in Figure[6.8] We find this for most samples in the ellipse dataset,
however, this is also an issue we find for the other four models we train. High peaks in
the RF data indicate echoes with high amplitudes that are received by the transducer,
which are caused by large jumps in acoustic impedance. We can see that the predicted
virtual phantoms have smoother and less abrupt borders between targets for the SoS
and density maps, compared to the original phantoms, which leads to smaller peaks in
the resulting RF data. One way to potentially achieve clearer borders in the predicted
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Test US image Comparison phantom maps Comparsion RF data for middle channel Predicted US image

Figure 6.9.: Example of visual results for the ImageNet model on the ImageNet phantom
test set.

Test US image Comparison phantom maps Comparsion RF data for middle channel Predicted US image

Figure 6.10.: Example of visual results for the ImageNet-enhanced model on the
ImageNet-enhanced test set.

phantom could be by introducing an additional loss term when training the model, that
tries to enforce the same gradients between the target and predicted phantom maps.

For the ImageNet model, we find that large targets are generally well detected, which is
a good indication. An example is shown in Figure However smaller targets, as can
be seen in the phantom plots in Figure [6.9] are not detected with the same accuracy by
the model. This could be partly due to the inherent resolution of the US image, which
cannot capture structures that are too small. However, it can also be related to the loss
function we use. By using the global MAE loss, small structures tend to not weigh in
as much towards the loss function compared to the larger more homogeneous structures.
To get around this problem a different and more complex loss function could be explored
such as the perceptual loss that is commonly used for generative models [95].

An example of a prediction of the ImageNet-enhanced model can be seen in Figure
We can see in this example that the finer lines are recognized by the model, which shows
promise. However predicting smaller structures can still be challenging for the model, as
discussed for the ImageNet model.

What we find here is that the bottom half of the phantom is predicted with less accuracy
than the top half. This can be explained, because at greater depths, the ultrasound
transducer needs to send and receive signals over a longer distance and the echoes might
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Test US image Comparison phantom maps Comparsion RF data for middle channel Predicted US image

Figure 6.11.: Example of visual results for the CT model on the CT phantom test set.

get distorted by the structures above it. Therefore we have less direct information at
a lower resolution for the bottom section of the US image, which makes the prediction
of the bottom parts inherently harder. It is most evident for this dataset, however, the
issue of getting worse predictions for the bottom half of the images can also be found for
the other models we trained.

Figure[6.11]shows an example of a prediction of the CT model. Visually, the predicted US
image closely resembles the original image, particularly in the upper regions. However,
we find that the predicted density and SoS maps from the CT model are generally more
uniform than those of previous models, likely due to the CT phantom dataset’s wider
variation in densities and SoS. Even after excluding data samples containing bone tissue
at the transducer lens, a significantly larger proportion of phantoms still include bone
structures compared to the other datasets. The other datasets select tissues at random
from the IT’IS tissue list [9], where soft tissues are much more frequent than bone tissue.
Therefore, the CT model is less biased towards soft tissue and learns to predict density
and SoS on a larger range, which leads to less precise predictions for these two maps. We
find that the predicted scattering maps include more details, as can be seen in Figure
[6-11] since it follows the same distribution as in the previous datasets.

6.3.3. Results for External Evaluation Datasets

The external evaluation set (refer to Section [5.2.2]) can be used to evaluate how well the
models generalize beyond the domains that they were trained on, and how well they can
recreate US data that was acquired using real systems.

The metrics obtained on the external test set are compared to the upper bound re-
sults established in Section [6.1] referred to as the ceiling. Since the ceiling involves a
hand-crafted virtual phantom accurately representing the correct acoustic properties, the
models are not expected to surpass these results.

To evaluate and compare the model performances, the external evaluation sets are split
into two subgroups. On the one hand, we have phantom data that was acquired on
a phantom model, which includes the PICMUS phantom set and the Verasonics CIRS
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Figure 6.12.: The visual results for a sample of the Verasonics phantom evaluation set.
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Figure 6.13.: The visual results for a sample of the Verasonics muscle evaluation set.

evaluation sets. On the other hand, we have in vivo data that was acquired on real-
life tissue, which includes the CUBDL in vivo, the PICMUS in vivo and the Verasonics
muscle data evaluation sets.

The quantitative results for RF and Image metrics are presented for both the phantom
and in vivo datasets in Figure[6.15] We also evaluate and compare the predictions of the
different models visually.

One thing to note from the quantitative results in Figure is the high time-signal and
frequency spectrum MAE for the ceiling experiment. The error being higher than that
of the other predictions seems very counter-intuitive. Meanwhile, all other RF metrics
we have introduced show the ceiling achieving significantly better results. This might be
an indication that the MAE metrics are not the most reliable, when comparing the RF
metrics, compared to the other three RF metrics we have introduced.

In Figure the results for the Verasonics CIRS phantom input image are shown.
It can be seen that all the models recognize the high contrast target in the phantom
they predict. However, the Ellipse, ImageNet, and Combined models have the cleanest
resulting image. This makes sense since the Ellipse and ImageNet phantom datasets are
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Figure 6.14.: The visual results for a sample of the CUBDL in vivo evaluation set.

trained on clear targets placed on a homogeneous background.

Meanwhile, the CT model predicts disturbing patterns in the density and SoS maps that
reduce the resulting image quality. These patterns are likely caused by the presence of
similar patterns in the CT phantom dataset.

None of the models successfully recreate the point targets in the resulting images, which
can be linked to the lack of similar single-point targets in all datasets. However, it is
noteworthy that the predicted phantoms from the Combined and both ImageNet models
exhibit traces of the point targets, albeit with an acoustic impedance difference too small
to cause a visible echo in the resulting image.

The visual results for the CIRS phantom are also largely in line with the Image and RF
metrics for the phantom evaluation set shown in Figure [6.15] with a few exceptions. The
Ellipse model has the lowest envelope RMSE and mean RMS difference and achieves
a high average CC peak indicating that it is the model suited the best for predicting
phantom data. This is also intuitive, since physical phantoms consist largely of simple
geometric shapes. The low scores for the RF metrics for the ImageNet model might be
disturbed by an outlier, since visually there is no clear indication of this.

The results are also visually inspected for the in vivo data samples. Figures [6.13] and
[6-14] show the results of the models for two different types of muscle data. For reference,
the finer brighter structures in the muscle tissue are called aponeuroses.

Immediately it can be seen that the predicted US image of the CT phantom is visually
the most similar to the real acquired input image. This indicates that the predicted RF
data holds contents most similar to the original RF data. The CT model also achieves
the best score for the relevant RF and most of the Image metrics, which lets us conclude
that the CT model achieves the best generalization for in vivo data samples.

It becomes clear that the Ellipse and ImageNet models do not perform well for the in
vivo examples, and cannot capture the finer longer structures of the aponeuroses in the
muscle tissue. In the phantom map for the ellipse model in Figure we can see the
hints of ellipses and simple geometric shapes, however, they are not enough to capture
the fine structures. The predicted image by the ImageNet-enhanced model in Figure[6.13|
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Figure 6.15.: A comparison for the Image and RF metrics between the models between
the phantom and in vivo dataset. The results are also compared with the
Ceiling results we find.

features slightly more visible lines for the two largest aponeuroses sheets. It makes sense
for the ImageNet-enhanced model to perform better than the ImageNet model to detect
the finer structures, although the effect is not as large as we would hope.

The Combined model’s quantitative and visual results are also underwhelming and similar
to the Ellipse and ImageNet phantom models. One reason for this is likely the fact that
the CT samples make up a relatively small part of the phantom dataset, compared to the
combination of the other three datasets. Therefore it might make sense to introduce more
CT phantoms into the combined dataset, relative to the other phantom types. Another
factor that might hinder its performance could be that the Combined model has not fully
converged yet, therefore training the model longer might be beneficial.

Furthermore, a cascaded training regime could benefit the training of the Combined
mode. This is further elaborated on in Section [7.2] However the cascaded learning
would require carefully fine-tuning the number of epochs we train on each dataset and
unfortunately, this was outside the scope of this project.

One issue that we found when evaluating our results on the external dataset, was reoc-
curring shading patterns that were present in the formed images for all models. These
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Figure 6.16.: An example visual result, comparing the prediction of an MG muscle US
image before and after fine-tuning for the Combined model.

patterns could not be explained using the underlying numerical phantoms and eventu-
ally, it was found to be an error in the daslIT beamformer. This issue was caused by
the binary implementation of the apodization function in dasIT [45] (see Equation.
The problem can be resolved by using a windowing function such as the Henning or
Blackman window instead.

6.3.4. Results for the Fine-Tuned Model

After fine-tuning each of our models on the Muscle phantom set, based on MG muscle
images, very promising results can be shown. Here only the numerical and visual results
for the Combined model are presented, however, the same trends can be seen for the
other models as well.

In Figure the improvement of the model’s prediction is evident. This example
compares the model’s prediction for an MG muscle image before and after the fine-
tuning step. It can be seen in the predicted phantom maps, that the fine-tuned model
picks up on the smaller aponeuroses structures. These then also become visible in the
corresponding simulated image, which appears much closer to the original input image.

The improvement is also reflected in the numerical results presented in Table [6.9] For
the Verasonics muscle evaluation set, significant improvements for all the Image metrics
become apparent. While the RF metrics results are mixed, the envelope RMSE and RMS
difference clearly show an improvement.

It should be noted that, while this fine-tuned model shows good results, the model
generally learns a fairly simple pattern from the muscle phantom data. Due to the
binary threshold masks that are used to create the muscle training data, the model tends
to divide the pixels into two distinct different tissue types. If unforeseen tissue types are
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Metric MG Muscle In vivo Phantom
Before After Before After Before After
RF Metrics
Timesignal MAE 0.929 0.853 0.902 0.788 0.948 0.886
Envelope RMSE 1.410 1.21 1.455 1.334 1.211 1.243
CC average peak 0.200 0.179 0.191 0.211 0.187 0.195
RMS Difference 0.591 0.372 0.606 0.480 0.433 0.458
PSD MAE 2.11e-10 3.00e-10 | 1.86e-10 2.12e-10 | 1.86e-10 2.24e-10
Image Metrics
Image RMSE 57.34 37.41 70.16 55.20 50.09 65.22
Mean Intensity Diff 0.266 0.111 0.569 0.448 0.340 0.712
SNR Difference 0.116 0.048 0.314 0.319 0.269 0.346
Average KL-Div 1.944 0.413 2.575 1.536 1.977 1.363
SSIM 0.137 0.183 0.130 0.168 0.139 .138
Perceptual Loss 0.105 0.105 0.149 0.153 0.152 0.158

Table 6.9.: Numerical results for the Combined model, comparing the RF and image
metrics before and after fine-tuning on the MG Muscle dataset. The average
metrics are calculated for specific Verasonics Muscle evaluation sets containing
MG muscle images; all in vivo evaluation sets; and all phantom evaluation
sets. The better score for each metric is marked in bold.

present in the target US image, the model will likely struggle more to capture this, the
longer the model was fine-tuned. Therefore, the number of fine-tuning epochs should be
chosen carefully.

Still, it can be concluded, that if the acoustic properties and patterns of the target tissue
domain are known in advance, the model performance can be significantly increased by
fine-tuning on a small dedicated dataset.

6.4. End-to-End Model Results

In this section, the performance of the end-to-end model trained on the Ellipse dataset
is assessed and compared to the physically-informed model trained on the same dataset.
Both models are evaluated using the corresponding synthetic Ellipse test set, to avoid the
domain gap of training and evaluation set present for the external evaluation datasets.

In Table the resulting RF and image metrics are presented and in Figure an
example of a prediction is visualized for both the end-to-end and the physically-informed
model.

Qualitatively a clear difference between the predicted images and RF data of the end-to-
end and physically-informed model can be found, such as in Figure In the example,
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. Physically-Informed | End-to-End
Metric Model Model
RF Metrics
Timesignal MAE 0.824 0.644
Envelope RMSE 1.045 1.741
CC average peak 0.187 0.225
RMS Difference 0.192 0.736
PSD MAE 1.351e-10 1.462e-10
Image Metrics

Image RMSE 42.822 53.47
Mean Intensity Diff 0.282 0.316
SNR Difference 0.156 0.221
Average KL-Div 0.512 3.562
SSIM 0.128 0.168
Perceptual Loss 0.110 0.322

Table 6.10.: Results for the physically-informed model and the end-to-end model that
are both trained and evaluated on the ellipse phantom dataset.

the physically-informed model RF data prediction matches the original RF data much
more closely and the US image also looks far closer to the ground truth. Meanwhile,
the US image for the prediction of the end-to-end model looks very unrealistic. This can
be explained, since the end-to-end model’s predicted RF' data is not guaranteed to agree
with the laws of physics that the US acquisition follows. Due to the numerical simulation
model in the physically-informed model, this is intrinsic to its RF data prediction. This
explains the more realistic RF data and corresponding US image for the physically-
informed model.

These qualitative findings are also reflected in the quantitative metrics in Table[6.10] The
physically-informed model has a much lower error for the envelope of the RF metrics and
the windowed RMS difference is also considerably lower. This clearly shows a clear
improvement in the quality of the predicted RF data of the physically-informed model.
This is also reflected in the resulting image metrics, where the predicted image of the
physically-informed model achieves better metrics for all of our metrics, except for the

SSIM.

These results let us conclude that the physically-informed model produces superior results
over the end-to-end model and supports our choice and design of the physically-informed
model.
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Figure 6.17.: An example comparing the predicted RF signal and corresponding US image
of the physically-informed and the end-to-end model. For the RF data, the
middle channel of the transducer is plotted for both results.
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Figure 6.18.: The validation loss for each phantom map on the ImageNet phantom
dataset. The TransUnet has the lower validation loss for all four phan-
tom maps. Here the training is done without data augmentation.

6.5. Ablation Study

6.5.1. Model Architecture

We have investigated two different model architectures for predicting the acoustic pa-
rameter phantom from the US image. The UNet[I9] and the TransUNet[§] model ar-
chitectures are compared, where both models have the exact architectures described in
Sections [4.4.2] and [4.4.2] The two models are designed to have a comparable number
of learnable parameters. In this particular experiment, we have trained both models
without data augmentation using the MSE loss for 25 epochs on the ImageNet phantom
dataset.

Figure shows the validation loss for both models for each phantom parameter map
individually and their average in the total loss. It can be seen that the validation loss
for the TransUNet model is significantly smaller for each phantom map than that of the
traditional UNet architecture, for each of the predicted acoustic parameters. This clear
reduction of the validation loss of the TransUNet over the UNet lets us conclude that it
is more suitable for the task of predicting acoustic phantom maps from US images.

Based on these results the TransUNet model is selected as our DL model of choice.
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Figure 6.19.: An example that shows the effect of the MAE against the MSE loss function
during training.
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6.5.2. Loss Function

We investigate the choice of the loss function for training the DL model from scratch. To
this end, we compare the predictions for the TransUNet model trained on the ImageNet-
enhanced dataset for 50 epochs once using the MAE and once with the MSE loss. A
visualization of a predicted phantom of an image in the test set is shown in Figure

We find that the MSE tends to lead to smoother predicted phantom maps than the model
trained using the MAE (see Figure. These smoother predictions could be explained
by the higher penalization of outliers of the MSE compared to the MAE. The smoother
phantom maps, lead to generally smoother transitions of acoustic impedances. Since the
reflected echo amplitude depends on the acoustic impedance differences, the smoother
transitions will lead to a smoother resulting US image with lower contrast and less clear
edges. The US image from the MAE prediction will therefore have better contrast and
clearer edges than the US image resulting from the MSE prediction, which can be seen
in in Figure [6.19

For this reason, the MAE is selected over the MSE for training the DL models from
scratch.

6.5.3. Dataset size

An important hyperparameter to consider is the number of samples in the training
dataset. The amount of samples needed to train an ML model varies considerably be-
tween different tasks. For this reason, we try to evaluate if the task of predicting the
acoustic properties needs the full dataset size we are using or if fewer data points might
also be sufficient. For this purpose, we compare three models trained on three different

99



6. Results

Total Loss
0.9 1 —— 1'000 Total Loss
10'000 Total Loss
—— 50'000 Total Loss
0.8 A
&
S 0.7 1
C
°
S
©
S
S 0.6
0.5 A
0.4 1~ T T T T T T T
0 10 20 30 40 50 60 70
Epochs

Figure 6.20.: The total validation loss comparing the model trained on 1’000, 10’000 and
50’000 samples of the ImageNet phantom dataset

subsets of the ImageNet phantom set training data. The dataset sizes are 1’000, 10’000
and 50’000 samples of which 80% are used for training. All models are validated on the
full validation set of 5’000 images.

In Figure [6.20] the total validation loss is reported and compared for the three models. It
becomes very clear that the model significantly improves if it is trained on larger datasets,
as the validation loss converges at a considerably lower value. At some point you would
expect a diminishing return from more training data, however, we see that this is not
the case yet. This indicates that even larger datasets could potentially further improve
the model’s performance.
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Chapter

Conclusion and Future Work

7.1. Conclusion

In summary, the following contributions have been made in this thesis:

1. We are the first to design a system to predict RF data from US images. We have
designed and implemented a physically-informed model using a data-driven DL
model to predict the acoustic properties of the image and a numerical simulation
to predict realistic RF data from US images. For the numerical simulation, the
k-Wave simulation tool was used.

2. We introduce a framework to create 5 distinct synthetic datasets of virtual phan-
toms for training our DL model: the Ellipse phantom dataset, the ImageNet phan-
tom dataset ImageNet-enhanced dataset, and the CT phantom dataset in addition
to a smaller Muscle phantom dataset. A total of 210’000 virtual phantoms, along
with their corresponding RF data and processed US images, were generated. Our
approach has the potential to create much larger datasets.

3. For the DL model, a TransUNet architecture was trained from scratch for each
synthetic dataset. Furthermore, the performance of our physically-informed system
for each synthetic dataset was evaluated on an external dataset of real US data.
We determined both visually and numerically, that the model’s predictions are
generalizing best to the US data of in vivo tissue, when training on the CT phantom
dataset.

4. We demonstrated that, by fine-tuning the model for a specific tissue type, using
tissue specific synthetic data, the RF predictions of our physics-informed model
can be improved for images of that tissue type.

101



7. Conclusion and Future Work

5. Two different DL models were explored and we found that the TransUNet is the
more suited model architecture for predicting the acoustic properties of the imaging
medium, showing superior performance.

6. An end-to-end deep learning model was trained to predict the RF data directly from
the US image, using the same synthetic datasets as the physics-informed model.
We showed that the end-to-end model achieves significantly worse results compared
to our physically-informed system, further validating the choice of the system we
have designed.

7.2. Future Work

The next step in evaluating the quality of the predicted RF signals would be to train a
model for a specific task on the synthetic RF data and then evaluate the trained model
on real RF data. An example of such a task would be the prediction of pennation angles
in lateral gastrocnemius (LG) muscles using RF data as described by Vostrikov et al.
[14]. If the trained model generalizes well to real RF data, it further confirms the value
of the synthetic RF data we predict.

One straightforward way to improve our method would be to generate and train on a
larger synthetic dataset. Our method has the potential to create far larger datasets for
all 4 phantom types. Only a small fraction of the ImageNet and the CT scan dataset
available was used by us for the dataset generation. The ImageNet contains 14 million
images [51], of which only 50’000 were utilized, while for the CT phantoms only 4 out of
15’248 subjects available in the NMDID [63] are currently used. Deep learning methods
generalize better using more data and larger models with more trainable parameters can
be trained successfully. This becomes a question of computational and time resources
available.

Instead of using segmentation maps from ImageNet images, an interesting possibility
is to explore extracting segmentation maps from medical images for generating virtual
phantoms. While this approach might appear similar to the method used to create the
CT phantoms, this would not be limited to C'T scans and could be applied to other image
modalities such as MRI images and US images, further increasing the amount of available
datasets. Instead of the SAM model, the alternative and more recent MedSAM model
presented by Ma et al [96] could be used for segmentation, as it is trained specifically for
medical image segmentation.

Another way to improve the quality of the predicted RF data of our system would be
to improve the US simulation, by making it more realistic. For efficiency in this work, a
2D simulation on a simulation grid with exactly the width of the transducer is chosen.
For a real acquisition, the RF data is also affected by a wider region that spans three
dimensions. Therefore, it might be interesting to explore if a larger phantom during
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inference improves the predicted RF data quality. The modeling of the non-linearity of
the acoustic medium could also improve the final results.

There is furthermore potential to improve our combined model trained on the union of
the four large datasets. Instead, a cascaded training regime to combine the different
synthetic datasets could be applied. This implies to start training on a simpler dataset
(the ellipse dataset) and then for later training epochs on progressively more complex
data (such as the CT phantom dataset). This approach has occasionally proven effective
in the field of curriculum learning [97]. One work that explores training a model on
datasets from multiple domains in this fashion and discusses the challenges that come
with it is the study by Karthik et al. [98].

Since our model is trained on a synthetic dataset with the goal of generalizing well to real
US data, the target domain and the training domain are inherently different. Therefore,
one could explore strategies from the field of domain adaptation to generalize better
from the training to the target domain. One such technique that could be explored is
Meta-Learning introduced by Li et al. [99], a model-agnostic training procedure that
encourages the model to generalize well to other domains during training.
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1 Project Outline

In clinics huge digital ultrasound dataset exist. Since medical ultrasound equipment
used is proprietary and closed, it is not possible to access the raw data of these images.
In emerging ultrasonic applications, e.g., AR/XR, robotics, human-machine-interfaces,
networks are used for sensor control at the extreme edge. Training these models would
benefit from raw data, but it is scarce. To overcome this dilemma, this project aims
to develop an image-to-raw data converter. The project explores end2end and mixed
deterministic/data-driven model and approaches all implemented in C++ and Python.
The latter focuses on developing a "physically informed" model that includes an ul-
trasound simulator (deterministic), a CNN U-net model (data-driven), and a joint loss
function to convert images to raw data.
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Figure 1: The proposed methodology for the USDataRacycler consists of 2 modlues: one
simulation environment to create ultrasound RF data and images from density
maps and a neural network architecture to convert images to density maps.

1.1 Research Question

The research questions of this thesis are:

e What are possible model pipelines for converting images to raw data. How large
are the conversion losses and what are strategies to improve conversion?

e Quantification of how well your model generalises between different domains at all
levels of the development.

1.2 Methodology

e Workpackage I - Literature and Code review: The aim of this task is to
develop a general understanding of the physics of ultrasound, ultrasound image



formation, ultrasound beamforming and simulation. In addition, the state of the
art in ML-based beamforming techniques will be assessed. Furthermore, neural
network architectures for image restoration and denoising will be evaluated. During
the literature review, a database of open code repositories and datasets will be
maintained, e.g. as a Markdown file in the project’s Gitlab repository.

Deliverables:
— D1: Fine Grained Project Plan and Gantt Chart.
— D2: Documentation of the literature review findings.
— D3: Maintained database of open code repositories and datasets.

Workpackage IT - Mockup: The main task of this work package is to setup a
naive but complete processing pipline. This testbench should include the simulation
environment and the neural network architecture as well as interfaces between each
other.

Deliverables:
— D4: Setup and documentation of the preliminary processing pipeline.

Workpackage III - Iteration A, Synthetic Data: The aim of this task is to
explore density phantom creation methods. An important aspect in these investi-
gations must be explainability. Why does one method work better than the other?
And how can I quantify accuracy and losses? It will be important to also establish
a statistical monitoring framework for quantification.

Deliverables:
— D5: Synthetic density maps with quantified accuracy measures.
— D6: Report the methods’ explainability and accuracy.

Workpackage IV - Iteration B, Interface Efficiency: After we have defined
and evaluated our model using synthetic data, we want to scale the training and
testing. Therefore, the modules (e.g. physical simulation and neural networks)
and the interfaces need to be as efficient as possible. How does scaling affect our
results? and if why?

Deliverables:
— D7: Report on the optimization of simulation and neural network modules.

— D8: Assessment of scalability impact on results.



e Workpackage V - Iteration C, Transfer to Real World Data: In this step
we want to apply our model to real world data. Are the results comparable to those
obtained with synthetic data? If not, how can I adapt my methodology to increase
accuracy. How robust is our model architecture to data coming from source (e.g.
instruments)?

Deliverables:
— D9: Results of applying the model to real-world data.
— D10: Assessment of the model’s robustness to various data sources.

e Workpackage VI - Report and Presentation: Work on the final report and
thesis presentation.

Deliverables:

— D11: Final report summarizing the entire project and clean and documented
code repository.

— D12: Prepared materials and presentation for the thesis run-through and
defense.

2 Project Realization

2.1 Project Plan

Within the first week of the project you will be asked to prepare a project plan. This
plan should identify the tasks to be performed during the project and sets deadlines for
those tasks. The prepared plan will be a topic of discussion of the first week’s meeting
between you and your advisers. Note that the project plan should be updated constantly
depending on the project’s status.

2.2 Meetings

Weekly meetings and reports must be held. The exact time and location of these meetings
will be determined within the first week of the project in order to fit the student’s and
the assistant’s schedule. These meetings will be used to evaluate the status and progress
of the project. Besides these regular meetings, additional meetings can be organized to
address urgent issues as well.



2.3 Report

Documentation is an important and often overlooked aspect of engineering. One final
report has to be completed within this project. The common language of engineering
is de facto English. Therefore, the final report of the work is preferred to be written
in English. Any form of word processing software is allowed for writing the reports,
nevertheless, the use of ITREX with Tgif' or any other vector drawing software (for block
diagrams) is strongly encouraged by the IIS staff.

Code Repository As many of our projects are heavily code-based, the documentation
of the code and its repository is also considered in the grading of the final report. We
suggest to follow coding standards and style guides when writing code, e.g. C [1], Python

2]...

Final Report The final report has to be presented at the end of the project and a digital
copy need to be handed in. Note that this task description is part of your report and
has to be attached to your final report.

2.4 Presentation

There will be a presentation (15 min for the semester thesis, and 20 min for the MS thesis
presentation followed by 5 min Q&A) at the end of this project in order to present your
results to a wider audience. The exact date will be determined towards the end of the
work.
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information/how-to/drawing-schematics.html.
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