
Institut für Integrierte Systeme
Integrated Systems Laboratory

DEPARTMENT OF
INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Fall Semester 2023

Self-supervised EEG
Representation for Motor-Imagery

Brain-Computer Interfaces

Semester Project

Sebastian Jäger
jaegeseb@student.ethz.ch

14.12.2023

Advisors: Thorir Mar Ingolfsson, thoriri@iis.ee.ethz.ch
Dr. Xiaying Wang, xiaywang@iis.ee.ethz.ch
Dr. Yawei Li, yawei.li@vision.ee.ethz.ch

Professor: Prof. Dr. L. Benini, lbenini@iis.ee.ethz.ch

Abstract

Transformer-based foundation models have yielded state of the art results in many
areas using electroencephalogram (EEG) data, such as seizure detection. In this work,
we attempt to bring this success to the setting of EEG Motor-Imagery (MI) tasks for
Brain-Computer Interfaces (BCI). To this end, we create a variety of transformer-based
foundation models starting from BrainBERT [1]. They feature the Short-Time Fourier
Transform (STFT) and convoultional embeddings as well as classical transformers and
vision transformers. During pretraining, we reconstruct the spectrum of the input
data, or the input data itself, from masked versions. We examine the architectures
in pretraining and the quality of the extracted features in downstream classification,
where we use a linear classifier. There, the convolutional embedding, as it was used
in EEGNet [2], helps increase performance. At the same time, we seem to struggle
to benefit from EEG foundation model approaches and the transformer. In a binary
downstream classification task, we are unable to reach the state of the art 84% accuracy of
EEGNet, but achieve up to 68% accuracy. This puts the performance significantly above
the random guessing accuracy of 50%. Our analysis indicates the need for compact
models and large pretraining datasets. Finally, we illustrate possible ways of improving
foundation models for EEG-based MI BCIs further in the future.

i

Acknowledgments

I want to thank my advisors, Thorir Mar Ingolfsson, Dr. Xiaying Wang and Dr. Yawei Li
for their guidance and the many interesting and helpful discussions.

ii

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

− I have documented all methods, data and processes truthfully.

− I have not manipulated any data.

− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

.

iv

Contents

1 Introduction 1
1.1 Focus of this Work . 1
1.2 Organization of this Work . 2

2 Background 3
2.1 Electroencephalogram . 3
2.2 Foundation Models . 3
2.3 Transformer and Vision Transformer . 4

3 Related Work 6
3.1 Foundation Models for EEG . 6

3.1.1 BrainBERT . 7
3.2 EEG Classification Models . 8

3.2.1 Transformers for Seizure Detection 8
3.2.2 EEGNet . 8
3.2.3 EEGformer . 10

4 Method 11
4.1 BrainBERT . 11
4.2 Architectures using Convolutional Embedding 12
4.3 Architectures using Vision Transformers 14
4.4 Partial Architectures . 15
4.5 Pretraining . 16

4.5.1 Masking Procedure . 16
4.5.2 Pretraining Loss . 16

4.6 Downstream Classification . 16

5 Results 18
5.1 PhysioNET Dataset . 18
5.2 Implementation Details . 18
5.3 Pretraining . 19
5.4 Downstream Classification . 22

v

Contents

5.5 Neural Scaling Law . 25

6 Conclusion and Future Work 29

List of Acronyms 30

List of Figures 31

List of Tables 32

Bibliography 33

vi

Chapter 1
Introduction

Motor-Imagery (MI) Brain-Computer Interfaces (BCI) process brain signals to predict
actions imagined by the subject. To this end, classical approaches use a form of feature
extraction followed by a classification method. Current state of the art approaches use a
single network to address both challenges. This results in networks specific to the task,
e.g. distinguishing imagining the actions opening the left fist and closing the left fist. Thus,
such a model needs to be retrained to solve a different task.

In contrast to this, developments in speech and language processing demonstrate the
strength of large foundation models, which separately perform feature extraction. These
models are trained by optimizing them on a surrogate pretraining task, using unlabeled
data. After pretraining, they serve as general feature extractors. The resulting features
are input into a classification network to solve the task at hand. This classification
network is trained on the task, while the foundation model is frozen after pretraining.
If a foundation model can produce expressive features, a small classification network
trained on few labeled data is sufficient to make accurate predictions. When considering
a different task, the foundation model can be reused, and only the prediction network is
retrained.

1.1 Focus of this Work

In this work, we attempt to bring the advantages of foundation models to MI BCI
classification tasks based on electroencephalogram (EEG) data. There, our goal is to
predict the action imagined by a subject from EEG recordings. To this end, we adapt
and combine the existing networks BrainBERT [1], EEGNet [2] and TSD [3] to create
transformer-based foundation models. This leads to the exploration of architectures
differing in the method of feature extraction and channel aggregation. For assessment,
they are trained and evaluated on the PhysioNET dataset [4].

1

1 Introduction

1.2 Organization of this Work

In Chapter 2, we introduce EEG and the general ideas of foundation models and trans-
formers. Concrete EEG foundation models and classification architectures are introduced
in Chapter 3 in detail. Chapter 4 describes the architectures we constructed and intro-
duces the pretrainig and downstream classification schemes. Implementation details,
results and analyses of our approach are found in Chapter 5.

2

Chapter 2
Background

2.1 Electroencephalogram

In EEG, brain signals are recorded using electrodes that monitor the electrical activity
of the brain. The individual electrodes, or channels, measure the electrical potential.
In neuroscience and clinical research, EEG is employed for detection of seizures and
brain injuries as well as sleep monitoring [5]. To help with such analyses, the EEG data
is often combined with video recordings of the subjects. Furthermore, EEG is used in
BCIs, where the action imagined by a subject is predicted. This allows to act based on
this prediction, e.g. steer a wheelchair or move a prosthetic. Typically, the electrodes are
placed on the subjects head. In contrast to this, intracranial EEG (iEEG) uses electrodes
that are surgically inserted into the subjects skull and placed on the surface of the brain.
This reduces noise and allows to monitor the signals in a more localized way, allowing
to more accurately detect activity in a specific area of the brain.

2.2 Foundation Models

A variety of different approaches to apply foundation models on EEG data have been
made recently. They are categorised as Auto-Encoders (AEs). During pretraining, a
prediction head is placed after the feature extraction network. The combined network
is optimized to reconstruct the inputs to the feature extractor network at the output of
the prediction head. Often, portions of the inputs are masked and the the predicted
reconstruction is optimized to be close to the unmasked input. The output of the feature
extraction network, termed the latent representation, is meant to encode meaningful
information about the input. It is meant to not only be helpful in reconstructing the
input, but also useful as a general feature set for solving other tasks. To this end, after
pretraining, the prediction head is no longer used, but a classification network is applied
after the feature extractor. In what we term downstream training, the classification
network is trained to solve the task at hand. During this phase, the feature extractors

3

2 Background

weights are either frozen or fine-tuned jointly with the classification network. An
advantage of foundation models is that the feature extractor network can be reused for
any task based on the same type of input. In the literature, the features extracted by EEG
foundation models are used in a variety of different task. These include MI classification
[6], emotion prediction [7] and sleep stage classification [8].

2.3 Transformer and Vision Transformer

Figure 2.1: Transformer network, figure from [9]

The transformer is a network component popular in deep learning, especially in
natural language processing (NLP). It considers a series of input vectors, named tokens,
and processes them in a multi-head self-attention mechanism. The detailed model is
introduced in [9] and shown in Fig. 2.1. We will consider transformers without the
embedding blocks in Fig. 2.1. A key characteristic is the use of attention layers. There,
relations between the input tokens, e.g. correspondences between words in NLP, are
estimated. Multiple such filters can be used in parallel, referred to as multiple heads.
The transformer is built from two parts, the encoder on the left and the decoder on the
right side of Fig. 2.1. The encoder is used to find a representation expressing the relations
between tokens in the input. The decoder processes this representation in combination
with the previous decoder outputs to predict the next output token.

In this work, we consider transformer stacks, i.e. multiple layers of multi-head
transformers. We refer to these simply as transformers. They are characterized by the

4

2 Background

number of layers n, the number of attention heads per layer h and the hidden layer
dimension.

For computer vision applications, [10] proposes splitting an image into patches, and
creating tokens from each patch individually. This way of applying a transformer to an
image is commonly referred to as a vision transformer.

5

Chapter 3
Related Work

3.1 Foundation Models for EEG

Wav2Vec [11] is an AE speech recognition network, that is pretrained to predict future
speech signal given the current input. The architecture features a convolution feature
extraction network and a Multilayer Perceptron (MLP) for the classifier. The similarity
in speech and EEG data both being time series with large amounts of noise, lead to the
development of EEG2Vec [12, 13]. There, a similar approach is taken to transfer the
idea to the realm of EEG. The downstream task considered was sentiment detection
(positive, neural, or negative), given the EEG input. In contrast to this, Speech2EEG [6]
directly takes an encoder network from a speech recognition model, pretrained on a
speech dataset. This network is applied on EEG data, separately on each channel. The
latent representations of the channels are aggregated in a convolutional network and
thereafter input into an MLP for classification. During downstream training, the encoder
is fine-tuned and the network is optimized to solve motor imagery tasks. A core idea
of this approach is that the model can benefit from pretraining on a very large speech
dataset, and is not limited to the size of available EEG data sets. [14] further makes use
of the similarities between EEG and speech to build a model for translation of neural
activity to speech.

In BENDR [8], a convolutional encoder is used, while the classifier is built as a trans-
former. The transformer is used during pretraining to reconstruct the full embeddings
produced by the feature extractor from masked versions of thereof. The pretraining
loss is augmented by a contrastive loss term, ensuring that non-corresponding inputs
lead to largely different latent representations. TS-MoCo [7] uses a linear layer and a
transformer for feature extraction, and a second linear layer for classification. It employs
momentum contrast to increase the robustness of the model to augmentations of the
input data. In downstream classification, the task of emotion prediction from EEG
is considered. The authors of [15] attempt to solve the task of classifying subjects as
obese or not obese based on EEG data recorded from them. It applies a convolutional
feature extractor and a MLP for classification. In MIN2NET [16], a convolutional feature

6

3 Related Work

extraction is applied before a classifier composed of convolutional layers and a linear
layer. The optimized loss features a contrastive loss term and the downstream tasks are
motor imagery classification.

There are also approaches to combine AEs for EEG with graph-based embeddings [17],
and Recurrent Neural Networks (RNN) [18]. Furthermore, [19] considers computing the
optimal latent representation size for EEG based AEs.

The AE model on which architectures considered in this work are based, BrainBERT
[1] is presented in detail in the following.

3.1.1 BrainBERT

Figure 3.1: Architecture of BrainBERT, figure from [1]

BrainBERT [1] is a foundation model applied to intracranial EEG signals. The general
setup is shown in Fig. 3.1. It uses a transformer achitecture for feature extraction
and is pretrained to reconstruct masked spectra of the input signals. In downstream
classification, a single layer MLP is used.

The iEEG data is collected while showing the subjects movies, i.e. audio and visual
stimuli. These stimuli are used to define the downstream tasks. The data is recorded
at 2’000 Hz. The model takes a single channel as input. As a preprocessing step, the
Short-Time Fourier Transform (STFT) of the input signal is computed. For this, the signal
is divided into segments of 400 data points, overlapping by 350 data points. Then, the
Discrete Fourier Transform (DFT) of each segment is computed. The intensity values of
40 frequencies evenly spaced between 0 and 200 Hz are chosen. This yields a 2D time
frequency representation of the signal. Since low frequencies contain most of the energy,
but not necessarily most information, the values of the spectrum are reweighted. To
this end, Mean-Standard Deviation Normalization, also known as z-Scoring, is applied
along the time dimension. Up to this point, only fixed preprocessing and no learnable
transformation is applied.

7

3 Related Work

During pretraining, certain frequency bands and time slots are chosen at random to
be masked. In a linear input encoding layer, the 40 frequency values per time slot are
encoded into 768 values. Then a transformer stack containing 6 layers, 12 attention
heads and hidden layer size 768 is applied. The output of the final layer are the extracted
features.

During pretraining a prediction head MLP containing containing 2 layers, hidden
dimension 768 and output dimension 40, is applied. Thus, its output is of the same size
as the input spectrum. The L1-loss of the masked portions is augmented by weighting
the values with large absolute value higher. The model is optimized to minimize this
loss using the LAMB optimizer.

In downstream classification, four different tasks are considered: Sentence onset
detection, speech vs. non-speech classification, volume classification and classification
estimation, all with respect to the video shown to the subjects. A single linear layer is
used to classify the features extracted by BrainBERT. For each task and each channel, an
individual classifier is trained. The information provided by the different channels is
not explicitly aggregated. Instead, the 10 best classifiers per task are selected and thus
only the 10 most accurate classifiers are considered.

3.2 EEG Classification Models

3.2.1 Transformers for Seizure Detection

TSD [3] is a seizure detection model for EEG signals based on STFT. Its main differences
from BrainBERT are the use of extracranial EEG data, the use of a vision transformer, it
not being a foundation model but a direct classifier and that the signals from the different
channels are aggregated early on in the network. This means that, instead of channel-
specific features, a single set of features is obtained for the entire multi-channel input.
Furthermore, the application of a vision transformer allows to work along temporal and
channel-wise dimensions, rather than processing features across time only.

The STFT of all input channels is computed. Then, as illustrated in Fig. 3.2, the
resulting 2D spectrum is divided into patches and each patch is vectorized and projected
to a vector of size 16 using a linear layer. This is input into a transformer stack of length
4, using 4 attention heads in each layer and hidden dimension 16. The transformer is
augmented with a classification token. The model is trained to classify the input as
seizure or no seizure in this token at the output of the transformer stack.

3.2.2 EEGNet

EEGNet [2] is a convolutional EEG classification network for BCI tasks. The architecture,
illustrated in Fig. 3.3, is compromised of two blocks. In block 1, the multi-channel EEG
input is convolved in time dimension, then in channel dimension. Multiple convolution
kernels are learned, leading to multiple representations. Then, average pooling in time
dimension is applied. In block 2, a separable convolution along time dimension and the
different representations of the different kernels is applied. Finally, a linear classification

8

3 Related Work

Figure 3.2: Architecture of TSD, figure from [3]

Figure 3.3: Architecture of EEGNet, figure from [2]

layer combines the outputs of block 2 into into a vector of the same size as the number
of classes. A softmax activation is used, such that this output can be interpreted as class
probabilities.

EEGNet is designed to be compact, employing a small number of trainable parameters.
It is considered state of the art in MI BCI classification tasks. Recently, [20] has combined
EEGNet with a transformer for the task of seizure detection. We will consider the original

9

3 Related Work

implementation as a reference for the results we achieve in this work on MI BCI tasks.

3.2.3 EEGformer

Another EEG classification model based on the transformer architecture is EEGformer
[21]. It is a compact transformer model for seizure detection, designed to run in real-
time on small processing units. A second model by the same name is introduced in
[22]. It employs a convolutional encoder to produce 3D data tensors, followed by three
transformers. The transformers are set up to process data across different encoding
dimensions, such that all three are covered. As downstream tasks, emotion prediction
and depression classification are considered.

10

Chapter 4
Method

In this chapter, the different architectures we use are described. In Section 4.1, we
describe how we adapt the architecture from BrainBERT [1] to the use in our extracranial
EEG MI classification setting. Section 4.2 shows how we changed the STFT to a learnable
convolutional embedding, as it is used in block 1 of EEGNet [2]. Finally, architectures
where we apply a vision transformer can be found in Section 4.3. There, we consider
both the STFT and convolutional embedding.

We consider inputs of 1280 time steps, which corresponds to 8s in the PhysioNET
dataset, which we use for pretraining and downstream classifier training. The dataset
and the input formation procedure are described in Section 5.1. The number of weights
in the networks is shown in Table 5.6.

4.1 BrainBERT

Figure 4.1: Adapted BrainBERT architecture.

Fig. 4.1 shows the architecture of BrainBERT [1], see also Section 3.1.1, adapted to our
setup. We input a single channel into the STFT, where we use time slots of 213 data
points per DFT calculation, which overlap by 190 data points. We obtain 47 time slots,
and calculate the intensity values for 40 frequencies, spaced evenly between 0 and 60
Hz. This change of frequency range is made since for extracranial EEG, typically this
lower frequency range is considered. The reason for this is that higher frequencies are
mostly associated with noise. Afterward, as in the original setup, We use a linear layer to
obtain tokens of size 768, apply a transformer with n = 6 layers, h = 12 attention heads

11

4 Method

and hidden layer dimension 768. During pretraining, the outputs of the last layer are
reduced to size 40 with a linear layer, such that the input spectrum can be reconstructed.
We pretrain the model on input data from all 64 available channels of the PhsyioNET
dataset. During downstream classification, we use the outputs of the last transformer
layer as the extracted features. Then, for each channel, we train an individual classifier.

4.2 Architectures using Convolutional Embedding

In this section, we describe the approach of using the BrainBERT [1] architecture, but
replacing the STFT with a learned convolutional embedding. The reasoning behind
this is that convolutions allow us to aggregate the information from the different input
channels already in the feature extraction network, before the transformer. This means
that with this embedding, we can use all channels simultaneously as input and make use
of the recorded spatial information. Moreover, the use of convolutions for EEG signal
processing has led to success in the EEGNet [2] BCI classification network, described in
Section 3.2.2. We use the convolutional embedding of block 1 of EEGNet. Additionally,
we also test architectures where we adjust the embedding by introducing temporal
downsampling, through pooling or through the use of stride in the temporal convolution.
We use the same transformer stack dimensions as in the BrainBERT architecture: n = 6
layers, h = 12 attention heads and hidden layer dimension 768.

During pretraining, the architectures reconstruct the masked raw EEG input signal. In
downstream classification, we again use the outputs of the last transformer layer as the
extracted features, which we input into a classifier.

Figure 4.2: Architecture with convolutional embedding, no downsampling.

Fig. 4.2 shows the architecture where we apply the convolutional embedding of EEG-
Net directly, without adding a way of downsampling. We first apply same convolution
with kernel size 64 in temporal dimension, keeping the number of samples in time
unchanged. We use 8 such filters, defined by different kernels. Afterward, batch normal-
ization is applied before the depth-wise valid convolution in channel dimension. The
kernel size is the same as the number of channels, so 64 in our case, yielding output size
1 in channel dimension. Since we have 2 depth-wise convolution kernels per temporal
convolution filter, we end up with a total of 16 embeddings per time point. A batch

12

4 Method

normalization, a ReLU activation and a dropout layer with dropout probability 0.5 are
used. Contrary to the original EEGNet implementation, we do not use the average
pooling layer in this architecture. This allows us to only consider the effect of the convo-
lutions at first, while we introduce a version with pooling in the following. A linear layer
brings the dimension per time point to 768, before the same transformer stack as in the
adjusted BrainBERT architecture is used. Contrary to before, the linear reconstruction
layer appended to the transformer now has output dimension equal to the number of
channels, to reconstruct the raw input signal.

Figure 4.3: Architecture with convolutional embedding, pooling.

In Fig. 4.3, we adjusted the architecture in Fig. 4.2 by introducing an average pooling
layer directly after the depth-wise convolution. It has kernel size 8, meaning that 8
consecutive values in time are replaced by their average. This reduces the number of
tokens input into the transformer by a factor of 8, from 1280 to 160. The output of
the transformer is upsampled back to 1280 data points by means of nearest neighbor
upsampling before being input into the linear reconstruction layer. In this case, each
sample is simply repeated 8 times. The nearest neighbor upsampling is used only during
pretraining for input reconstruction, not during downstream classification.

Figure 4.4: Architecture with convolutional embedding, stride.

Fig. 4.4 shows a second way of introducing temporal downsampling to the architecture
of Fig. 4.2. Instead of using a pooling layer, we adjust the temporal convolution by setting
the stride to 8. This reduces the number of samples in time by a factor of 8, thus the
downsampling ratio is the same as for the architecure with pooling. During pretraining,

13

4 Method

we increase the number of samples in time back to 1280 after the transformer. To this
end, we apply transposed convolution with stride 8.

4.3 Architectures using Vision Transformers

In this section, we describe architectures using a vision transformer. One is an imple-
mentation of TSD [3], which uses STFT embedding, the other replaces the STFT with
temporal convolution.

Figure 4.5: Vision Transformer architecture with STFT embedding.

In the architecture shown in Fig. 4.5, we apply the STFT using time slots of 213
data points, overlapping by 212 data points. We discard the part of the spectrum
corresponding to the 10 first and the 10 last time slots. The reason for this is that in
these time slots, the STFT shows effects that stem from a lack of data near the edge of
the input. This gives 1260 time slots, for which we calculate intensities for frequencies
evenly distributed from 0 to 60 Hz. This procedure is executed for each channel. We
apply the vision transformer regarding the spectrum as a 2D image, with the electrode
channels taking the role of the RGB channels in computer vision. We split the spectrum
into patches of size 12 in time dimension and size 20 in frequency dimension. Each
patch is reshaped to a vector and a linear layer with output dimension 16 is applied.
The transformer stack has the same dimensions as in TSD [3]: n = 4 layers with h = 4
attention heads each and hidden layer size 16 is used. The outputs of the last transformer
layer are the extracted features. During pretraining, we use a linear layer, followed by
reshaping, to obtain a reconstruction of the spectrum patches. From these, the input
spectrum is reassembled.

The architecture of Fig. 4.6 replaces the STFT with a convolutional embedding. Same
convolution in the time direct is applied using kernel size 64. We employ 8 different such
kernels, and interpret the result as a 2D image in time and filter dimension, with the
channels taking the role of the RGB channels in computer vision. It is split into patches
of size 16 in time dimension and size 4 in filter dimension, which are reshaped to vectors.
A linear layer reduces their size down to 16, before the same transformer stack as in
TSD[3] with n = 4, h = 4 and hidden layer dimension 16 is applied. The outputs of the
last transformer layer are the extracted features. During pretraining, they are processed

14

4 Method

Figure 4.6: Vision Transformer architecture with convolutional embedding.

by a linear layer and reshaped to reconstruct the patches, from which a layer of the same
dimensions as before patch extraction is assembled. Finally, a linear layer is used to
reduce the number of features per temporal data point and channel from 8 to 1, giving
an output of the dimension of the raw input signal.

4.4 Partial Architectures

Figure 4.7: Architecture using only convolutional embedding.

Figure 4.8: Architecture using only transformer.

To analyze the contribution of the convolutional embedding and the transformer
toward the extraction of useful features, feature extractors using these components
individually are created. Concretely, we start from the model using convolutional
embedding and no downsampling, see Fig. 4.2. Using only the convolutional embedder
as feature and leaving out the transformer, we obtain the architecture shown in Fig. 4.7.
On the other hand, only using a transformer and no convolutional embedding yields
the architecture in Fig. 4.8.

15

4 Method

4.5 Pretraining

4.5.1 Masking Procedure

During pretraining, we apply a masking procedure. If STFT is used, masking is ap-
plied after the STFT, if a convolutional embedding is used, masking is applied on the
raw input singal. In this way the signal is masked directly before the first embedding
transformation using learned parameters. This prevents the network from learning an
embedding that is simply easy to reconstruct, and potentially not expressive. For all ar-
chitectures, we employ the masking strategy of BrainBERT [1]. We randomly select time
intervals to be masked. Each interval has a random width in the range [stepmin

t , stepmax
t].

Similarly, random frequency or channel intervals are selected, depending on whether
the STFT or the raw input is masked. These intervals are chosen with random widths in
[stepmin

f c , stepmax
f c]. Each time point, frequency or channel is the start of an interval with

probability pmask. The interval width is chosen uniformly in the ranges described above.
Then, the values in the interval are left unchanged with probability pID, replaced by a
random interval from the input with probability preplace or set to 0 otherwise.

4.5.2 Pretraining Loss

Let Xij denote the input before masking and X̂ij the reconstruction, where i indexes time
and j indexes the channel. Using the set M to denote all masked locations, the loss for all
architectures where we reconstruct the raw input is the L1-loss of all masked locations

L =
1

|M| ∑
(i,j)∈M

|Xij − X̂ij|. (4.1)

Using the notation Yij for the spectrum before masking, Ŷij for the reconstructed
spectrum, where i denotes the time index and j the frequency index, and letting M be
the set of masked positions, the loss for all architecture where the STFT is masked is

L =
1

|M| ∑
(i,j)∈M

|Yij − Ŷij|+ Lca. (4.2)

This is the augmentation with the content aware loss

Lca = α
1

|{(i, j) : Yij > γ}| ∑
(i,j):(i,j)∈M,Yij>γ

|Yij − Ŷij| (4.3)

proposed in [1]. The introduction of the second loss term is meant to encourage
accurate reconstruction of signals where neural processes are likely to be happening.

4.6 Downstream Classification

In downstream classification, we use the features extracted by the pretrained feature
extractor to solve the binary classification task introduced in Section 5.1. The features

16

4 Method

are extracted as the output of the last transformer layers for all models. We employ a
linear layer with input size equal to the dimension of the output tokens and output
size 2. Then we apply the Softmax activation function, such that the outputs can be
interpreted as class probabilities. Such a set of probabilities is obtained for each output
token. We take the mean of these to obtain the predicted probabilities of classifying the
input as left fist or right fist. In the downstream training procedure we minimize the
Binary Cross-Entropy loss.

17

Chapter 5
Results

5.1 PhysioNET Dataset

Figure 5.1: Formation of input segments from the PhysioNET dataset.

In this work, we use the PhysioNET dataset [4] for both pretraining and downstream
training. This dataset contains extracranial EEG data from 109 subjects, recorded at 160
Hz with 64 channels. We discard 4 subjects due to variability in the number of runs, as
in [23]. Different runs with varying tasks are performed with each subject. We consider a
binary MI classification task. Here, the subjects imagine opening and closing either their
left or their right fist, depending on an indication shown to them on a screen. There are
three two-minute runs recorded for this task per subject. Each run alternates between 4
seconds of rest and 4 seconds corresponding to an event, i.e. left or right fist. For all of
our architectures, we consider 8 second segments as input, which corresponds to 1280
data points in time per channel. The inputs are formed from the 4 seconds of the event,
the 2 seconds of rest directly before and the 2 seconds of rest directly after the event, see
Fig. 5.1.

5.2 Implementation Details

We split the the PhysioNET dataset into a train and a test split. The train split is formed
by the first 85 subjects, the test split includes the remaining 21. From the training split,
1% of the data is randomly chosen and reserved for validation during pretraining. We
pretrain the model on the remaining portion of the train split. In our experiments, we set

18

5 Results

Architecture Ltrain Lval Lval
ca

BrainBERT 0.4078 0.3503 0.2637
STFT + Vision Transformer 2.8413 2.785 1.9631

Table 5.1: Pretraining losses of architectures with STFT embedding. BrainBERT is re-
constructing a single channel, STFT + Vision Transformer is reconstructing all
channels at once. For the latter, the loss is the average across all channels.

the ranges in which the masking interval lengths are chosen to [stepmin
t , stepmax

t] = [1,5]
and [stepmin

f c , stepmax
f c] = [1,2]. The masking probabilities are pmask = 0.05, pID = 0.1, and

preplace = 0.1. The adjustable parameters of the pretraining loss when applying STFT are
α = 2 and γ = 1. We use the LAMB optimizer with learning rate 10−4 and unless stated
otherwise, we perform 200′000 updates.

The downstream classifier is trained on the first 82 subjects of the same train split that
was used in pretraining. The remaining three subjects are kept as the validation set. This
is data seen by the network during pretraining, but not during downstream classifier
training. The test set remains unchanged compared to pretraining, meaning that no
part of the network was ever trained on it. We use the AdamW optimizer with learning
rate 10−4 and perform 1′000 training updates. During downstream training, we keep
the weights of the pretrained feature extractor unchanged. When experimenting with
simultaneously training the downstream classifier and finetuning the feature extraction
network, we could not improve results, contrary to [1].

5.3 Pretraining

The training and validation losses of the architectures with STFT embedding are shown
in Table 5.1. The BrainBERT architecture manages to reduce the loss to a much smaller
value than the architecture using the vision transformer. While the architectures are
trained on the same dataset, the BrainBERT architecture takes a single channel as input,
and not all channels at once. Thus, it cannot use channel information to solve the
pretraining task. On the other hand, this means that the number of training examples is
increased by a factor of 64, as we have 64 channels in the PhysioNET dataset. The loss
computed for the architecture using STFT and a vision transformer is the average loss
across all channels.

The increased number of training samples possibly contributes to the improved
results in the pretraining task. But the large differences in architectures also have to
be considered: The hidden layer dimension in the vision transformer is significantly
smaller (16 compared to 768 in BrainBERT). Such a bottleneck increases difficulty of the
pretrainng task, but can potentially lead to more expressive extracted features. Afterall,
the goal is not to solve the pretraining task well, but to extract features helpful in
downstream classification.

Table 5.2 shows the pretraining losses for the architectures with convolutional em-

19

5 Results

Architecture Ltrain Lval

Conv., no Downsampling 24.4167 26.8212
Conv., Pooling 25.9124 27.9238
Conv., Strided Convolution 25.5206 31.0337
Conv. + Vision Transformer 27.2257 28.8223

Table 5.2: Pretraining losses of architectures with convolutional embedding.

bedding. We obtain the smallest losses for the convolutional architecture without
downsampling. Looking at the proposed downsampling methods, the use of strided
convolution yields a smaller training loss, but in validation, it is outperformed by the
simpler pooling approach. Finally, the application of a vision trainsformer gives the
largest training loss.

The architecture without downsampling likely benefits from not having to reconstruct
from a decreased number of temporal features. The strided convolution approach is
expected to converge to a lower training loss than the pooling approach, as it generalizes
the latter: The srided convolution kernel can implement the average pooling operation
by converging to equal weights in all kernel entries. In validation however, the strided
convolution does not generalize as well as the pooling. As before, the vision transformer
again poses a much smaller bottleneck since it has a much smaller hidden layer dimen-
sion as the other architectures in this table (16 compared to 768), increasing the difficulty
of the pretraining reconstruction task.

Some example reconstructions for the different convolutional architectures are shown
in Fig. 5.2. The example input is taken from the PhysioNET dataset, subject 1, run 5,
the first segment. We visualize the middle 3 seconds of channel 6 in the figure. Here,
no masking was applied on the input. Thus, the plots are not representative of the
pretraining loss, but illustrate the different architectures’ approaches to reconstruction.
The top plot shows reconstruction for the architecture without downsampling. Since
no temporal downsampling is used, this model is not forced to compress temporal
information like the others, and therefore able to more accurately reconstruct high
frequency components of the input. This enables the most accurate reconstruction out of
the three architectures. The pooling architecture uses nearest neighbor upsampling in the
reconstruction network, yielding the piece-wise constant reconstruction of the middle
plot. Finally, the bottom plot shows the use of strided convolution. The reconstruction
by transposed strided convolution gives a smoothed signal compared to the input. Both
downsampling approaches yield reconstructions that appear to follow the running
average of the input signal. On the other hand, they fail to recreate high-frequency
components due to the forced temporal compression of the input information.

Table 5.3 shows the pretraining losses for the partial architectures. The one using
convolutional embedding without a transformer gives a lager training loss than the
architectures with transformer in Table 5.2, but a lower validation loss. The architecture
using only the transformer gives worse training and validation losses than the architec-

20

5 Results

Figure 5.2: Example input (red) and reconstruction (blue) when using the convolutional
architecture without downsampling (top), with pooling (middle) or with
strided convolution (bottom).

tures in Table 5.2 when it is trained for the same number of updates (200’000). However,
increasing the number of training updates decreases the loss significantly, giving a
comparable training loss to and the lowest validation loss out of the architectures with
convolutional embedding.

Is is noteworthy that the convolutional embedding architecture gives a much lower
validation than training loss, which is generally not expected in neural network training.
In this experiment, the effect may be attributed to the very small validation set. We
already employ a comparably small training set, see also Sections 5.1 and 5.5, and
only 1% of the pretraining data is used in validation. Thus, the occurrence may be
explained as an outlier due to small validation set size. The architecture using only
the transformer appears to need a larger number of pretraining samples to converge
and solve the pretraining task well. This slow rate of convergence is further illustrated
in Fig. 5.3, where reconstruction of an example input without masking is shown. As
in Fig. 5.2, the example input is taken from The PhysioNET dataset, subject 1, run 5,

21

5 Results

Architecture Npretrain Ltrain Lval

Conv. only 200’000 31.3775 25.8156
Transformer only 200’000 32.2890 35.6024
Transformer only 400’000 29.1659 25.3832
Transformer only 800’000 25.9633 22.5604

Table 5.3: Pretraining losses of partial architectures.

Architecture Atrain
ds Aval

ds Atest
ds

BrainBERT 52% 53% 52%
Conv., no Downsampling 67% 66% 63%
Conv., Pooling 70% 69% 68%
Conv., Strided Convolution 62% 65% 58%
STFT + Vision Transformer 55% 53% 53%
Conv. + Vision Transformer 63% 64% 54%

Table 5.4: Downstream classification accuracies.

the first segment. We visualize the middle 3 seconds of channel 6 in the figure. In the
top, middle, and bottom plot we use the architecture after 200′000, 400′000 and 800′000
updates, respectively. While the reconstruction in the top plot is close to 0 everywhere,
the reconstructions obtained after more updates follow the input signal more closely.
When comparing to Fig. 5.2, this indicates that the use of convolutional embedding
decreases the number of updates needed to accurately reconstruct the unmasked input.
It thus appears that the transformer is reliant on long taining and potentially also a large
training data set. This is supported by observations made in [3, 24]. Furthermore, for
the architectures using convolutional embedding and transformer together, the question
of how the different parts contribute to solving the pretraining task arises. The slow
convergence of the transformer could imply that the pretraining task is mostly solved
by the convolutional architecture of these networks.

5.4 Downstream Classification

In the following, we present the results of training the downstream classifier network
on the features extracted by the various architectures. As the dataset and all splits are
balanced with respect to the labels, the accuracy of random guessing is 50% for this task.
The EEGNet model, see Section 3.2.2 and [2], achieves a test accuracy of 84% on this
train-test split. We consider this as the state of the art result to compare to.

The training, validation and test accuracies of the considered architectures achieved in
downstream classification are presented in Table 5.4. Looking at the results from top to
bottom, we see that our adapted version of BrainBERT fails to significantly improve on

22

5 Results

Figure 5.3: Example input (red) and reconstruction (blue) when using only the trans-
former, after 200’000 (top), 400’000 (middle) or 800’000 (bottom) updates.

the baseline provided by random guessing. When swapping the STFT embedding for the
learned convolutional embedding, we observe test accuracies between 58% and 68% for
all three considered approaches. The most accurate among them is the one using pooling
for temporal downsampling, followed by the one without downsampling. The one with
strided convolution performs worst out of the three. Looking at the two architectures
with vision transformers, we see that the one using STFT embedding reaches accuracies
around the 50% mark, only being marginally better than random guessing. When using
the convolutional embedding together with the vision transformer, we achieve 63%
accuracy on the training split, but only reach 54% on the test split.

The BrainBERT network is shown to extract meaningful features that yield promising
downstream classification results in [1]. However, our approach to transfer BrainBERT
to the extracranial EEG setting and the PhysioNET dataset has not given the desired
results. This may partially be explained by the increased noise in extracranial EEG
data and the transfer from tasks based on videos shown to subjects during recording
to MI tasks. We think that another important component to this result is the lack of an
elaborate channel aggregation scheme. In the original iEEG setting, electrodes are placed

23

5 Results

Architecture Npretrain Atrain
ds Aval

ds Atest
ds

Conv. only 200’000 65% 65% 62%
Transformer only 200’000 50% 47% 52%
Transformer only 400’000 51% 57% 52%
Transformer only 800’000 53% 57% 52%

Table 5.5: Downstream classification accuracies for partial models.

at areas of interest on the brain. In our PhysioNET setup however, electrodes are placed
to cover the skull. Networks successfully working with extracranial EEG data, such
as [2, 6, 24], implement an elaborate form of channel aggragation using convolutional
layers or transformers. This leads us to the introduction of explicit channel aggregation
before application of the transformer, by integrating block 1 of the EEGNet architecture,
see Section 3.2.2 and [2].

The results obtained from the architectures with convolutional embedding show that
they manage to learn features that allow downstream classification with up to 68% testing
accuracy. This significantly improves on the baseline set by random guessing, indicating
that the learned features express information helpful for solving the motor imagery
task. The accuracy is however not in the realm of the state of the art 84% achieved
by EEGNet. Applying pooling has a positive effect on the downstream classification
accuracy compared to the model without downsampling. This could be attributed
to the imposed reduction of the number of features in team. It forces the network
to learn features that are helpful for the reconstruction network during pretraining,
while only having access to the averaged values. Interestingly, the network using
strided convolutions cannot profit from the reduction of features in time, despite being a
generalization of the pooling operation and thus potentially more expressive.

The architecture using STFT and a vision transformer is modeled after TSD [3]. It
combines the use of STFT as in BrainBERT with the idea of channel aggregation before
the transformer. Despite this promising approach and the successful application as
a classifier in the original paper, our adaption only yields slightly improved results
compared to random guessing. The network was already not performing well in pre-
training when compared to BrainBERT, see Table 5.1. As mentioned in Section 5.3, this
may be due to the reduction to a small number of features in the hidden layers of the
transformer. If the network is unable to learn representations useful for improving on the
pretraining loss, the representations are likely not helpful for downstream tasks either.
The second architecture employing a vision transformer is using temporal convolution
before it. It manages to achieve training and validation accuracies comparable to the
other architectures with convolutional embedding, but performs worse on the test split.
As this approach uses the same vision transformer as the one with STFT embedding, it
potentially also suffers from the small hidden layer size.

Table 5.5 shows the downstream classification results for the partial architectures. The
architecture using convolutional embedding and no transformer achieves results closely

24

5 Results

comparable to its counterpart with transformer, see Table 5.4. The architecture using
only the transformer on the other hand gives accuracies close to the guessing accuacy
of 50% after 200′000 updates. Increasing the number of updates slightly increases the
training accuracy, improves classification on the validation split and leaves the test
accuracy unchanged.

The similarity of the results when only using the convolutional embedding and the
results when using an additional transformer suggests that the extraction of expressive
features can probably be attributed mostly to the convolutional embedding. This was
already implied by the results of Table 5.2 and Table 5.3. Furthermore, using the trans-
former without the convolutional embedding gives accuracies not significantly above
guessing accuracy. The only exception from this is the increase in validation accuracy
for an increased number of training steps. It was not to be expected that these are signifi-
cantly larger than the respective training accuracies. This effect may be attributed to the
small validation split of only three subjects, as the small validation set size increases the
likelihood of outliers in accuracy estimation.

5.5 Neural Scaling Law

In this section, we consider the Chinchilla Scaling Law (CSL) introduced in [25]. It is a
relation describing the optimal relation of the following parameters in neural network
training: network size in number of trainable weights N, number of tokens for training
D, training effort in FLOPs C and training loss L. It assumes the relations

C = C0ND (5.1)

where C0 = 6 and

L =
A

Nα
+

B
Dβ

+ L0. (5.2)

The parameters A, α, B and β are statistically estimated from training on the Chinchilla
network introduced in the paper, a large language model employing a transformer. The
estimation is performed using Chinchilla model versions with 70 Million to 16 Billion
parameters and data sets containing 5 Billion to 500 Billion tokens. Plugging in the
estimated values and solving for minimal loss L gives

Nopt(C) = 0.6C0.45 (5.3)

and

Dopt(C) = 0.3C0.55 (5.4)

for fixed C. Combining Eq. (5.3) and Eq. (5.4) we obtain

Dopt(N) = 0.3
(

N
0.6

) 11
9

. (5.5)

25

5 Results

Architecture D N Dopt(N) Nopt(D)

BrainBERT 10’631’174 43’183’144 1’203’151’971 901’534
Conv., no Downsampling 4’523’904 42’593’152 1’183’091’534 448’106
Conv., Pooling 565’488 42’593’152 1’183’091’534 81’750
Conv., Strided Convolution 565’488 42’593’216 1’183’093’707 81’750
STFT + Vision Transformer 742’203 917’376 10’859’945 102’121
Conv. + Vision Transformer 565’488 546’201 5’762’214 81’750
Conv. only 42’593’152
Transformer only 4’523’904 2’492’224 36’840’083 448’106

Table 5.6: Number of input tokens and parameters, as well as optimal number of input
tokens and parameters according to CSL for the different architectures.

and

Nopt(D) = 0.6
(

D
0.3

) 9
11

. (5.6)

We now attempt to coumpute the optimal model size using the number of tokens in
our pretraining dataset. To this end, we first calculate the number of tokens D we obtain
from the PhysioNET dataset. The results of the following calculations are summarized
in Table 5.6. The value of D depends on the model we use. In the case of BrainBERT, we
have 85 subjects, 3 runs per subject used in pretraining, and 14 events per run. This gives
3570 events in total. Each one provides 64 input segments (one per channel). From all
such segments, we remove 1% for validation. The remainng ones are transformed into 47
tokens each using STFT. In total, we thus have D = 10′631′174 tokens. When using the
convolutional embedding without downsampling, we have the same number of events,
each provinding one input segment. After removing the validation split, each remaining
segment gives 1280 input tokens (one per input data point), which means we have
D = 4′523′904 tokens in total. The same holds for the architecture using the transfomer
without the convolutional embedding. The architectures with downsampling however
reduce the number of input tokens by a factor of 8, due to the reduction of samples in
time. This reduces the number of tokens to D = 565′488. For the architecture using
STFT and a vision transformer, we have 210 tokens per event in the training split (one
per extracted patch), which yields D = 742′203. Similarly, for the architecture using
convolutional embedding and a vision transformer, we have 160 tokens per event in the
training split, giving D = 565′488.

As comparison, the data set used to pretrain BrainBERT contains 4551 electrode-hours
of data recoreded at 2′000 Hz. In preprocessing, the data is split into 5-second segments,
and the STFT is applied with a window moving 25 data points between time slots, see
Section 3.1.1. Since each time slot’s DFT forms a token , we calculate 1’310’688’000 tokens
for this dataset.

With the above calculations and Eqs. (5.5) and (5.6), we obtain the results in Table 5.6.

26

5 Results

N represents the actual number of parameters in the architectures. For the architecture
using only a convolutional embedding and no transformer, no input tokens can be
calculated, as it does not feature a transformer. Comparing the calculated optimal
network sizes Nopt to the actual sizes Nactual , one can see that the architectures used in this
work contain much more parameters than CSL considers optimal. Similary, comparing
Dopt to D, we see that CSL suggests the use of larger data sets than PhysioNET to train
our architectures. Thus, applying this neural scaling law to our setting implies that our
architectures are too large, our dataset is too small, or both. In Sections 5.3 and 5.4, we
discuss that the architecture using only the transformer is taking a larger number of
pretraining updates to minimize the loss on the pretraining task, and cannot yield results
above guessing accuracy in downstream classification. When using a convolutional
embedding before the transformer, however, the pretraining loss is optimized in fewer
updates and downstream classification yields improved results. This could suggest
that the number of tokens in the training set is too small for the application of these
transformer architectures. The results obtained from the application of CSL - which was
estimated for a network using transformers - support this argument.

Looking specifically at the BrainBERT architecture, we see that the predicted number
of tokens Dopt matches the number of tokes used in [1] (1’310’688’000) quite closely.
This implies that we may attribute some of the difficulties we encounter in transfering
BrainBERT to the PhysioNET dataset to the the small size thereof. In our experiments,
we have access to over 100 times less pretraining tokens.

The problem of low data set size for pretraining could be solved by using a large,
publicly available dataset that is not recorded in the MI setting. Afterall, we pretrain
under self-supervision, i.e. no labels are needed. The Temple University Hosplital (TUH)
EEG Data Corpus [26], for example, contains 29.1 electrode-years of data, compared to
the 0.5 electrode-years used to pretrain BrainBERT in the original paper. It is sampled at
frequencies between 250 Hz and 500 Hz, compared to the 2’000 Hz iEEG signals used
in BrainBERT. To estimate a lower bound on the number of training tokens this dataset
provides, we assume a samling frequency of 250 Hz and 30 channels on average. In the
case of the convolutional architecture without downsampling, we obtain 7.64 Billion
tokens, and for the architectures with pooling or strided convolution, we get 956 Million
tokens. This means that it would overall give a far larger number of training tokens
than the PhysioNET dataset. For no downsampling, it surpasses the size CSL predicts
to be necessary, for pooling and strided convolution, it gets close. However, while the
pretraining procedure indeed does not require labeled data, it is still assumed that the
data is of the same or very similar characteristics as the one considered in downstream
classification. Pretraining on the TUH dataset therefore is likely to improve performance
compared to our approach, but may not lead to the results we could achieve if we had
the same amount of data recorded from subjects performing MI tasks. Furthermore, the
TUH dataset considers varying sampling frequencies and electrode configurations. If
one uses this data in pretraining, these aspects have to be considered, e.g. by adequate
preprocessing.

It is important to note that the results in this section are to be taken with caution. They
may only provide a rough indication of the optimal network size in our case, since the

27

5 Results

setting in which the parameters of CSL were estimated differs much from ours. Namely,
the scaling law was computed for much larger model and dataset sizes. Furthermore, the
architecture of the Chinchilla model differs to ours both in the transformer dimensions
and the layers surrounding it. Finally, the meaning of the number of tokens differs
largely across the two settings. In natural language processing, a token typically is a
word, a syllable, or as in the case of Chinchilla, a fixed number of characters. The number
of tokens D in the training set is thus very indicative of the the size of the text it contains.
In our case however, D is arguably a weaker indication of the training set size, as it
varies considerably depending on the embedding we apply.

28

Chapter 6
Conclusion and Future Work

The experiments conducted in this work show that our approach of transfering Brain-
BERT to the extracranial EEG MI setting did not work as desired. Exchanging the STFT
for a learned convolutional embedding increases classification accuracy, although not
to the state of the art achieved by EEGNet. Still, the embedding seems to provide the
network with the temporal and depth-wise processing needed to learn meaningful latent
representations. The same is observed when applying a vision transformer: We cannot
solve the MI classification task with an STFT embedding, but improve when introducing
a convolutional architecture.

Overall, our efforts to bring transformer-based foundation models to the realm of MI
EEG tasks show most success when building on EEGNet [2]. Thus, it may be beneficial
for future work to attempt to build a model based on EEGNet. Then transformers
and foundation model approaches could be introduced, which potentially enable the
extraction of more meaningful features.

Using partial architectures, we obtain results that suggest that the convolutional ar-
chitecture contributes to the extraction of expressive features, whereas the transformer
architecture on its own struggles to do so. Considering the pretraining procedure, it
appears that the transformer converges slowly compared to the convolutional architec-
ture. Thus, one needs a longer pretraining time and possibly more pretraining data,
to optimize it. We conclude that the architectures suffer from the small amount of
pretraining data we use - or have too many parameters for the small pretraining dataset.
This is supported by calculating optimal dataset and model sizes by means of CSL. This
leads us to suggest the use of a larger pretraining dataset, such as the TUH corpus we
discuss. With such an increased pretraining dataset, one may be able to extract more
expressive features using transformer-based foundation models.

29

List of Acronyms

AEAuto-encoder

BCIBrain-Computer Interface

CSLChinchilla Scaling Law

EEGElectroencephalography

iEEG Intracranial electroencephalography

MIMotor Imagery

MLPMultilayer Perceptron

NLPNatural Language Processing

RNNRecurrent Neural Network

STFTShort-Time Fourier Transform

TUHTemple University Hospital

30

List of Figures

2.1 Transformer network, figure from [9] . 4

3.1 Architecture of BrainBERT, figure from [1] 7
3.2 Architecture of TSD, figure from [3] . 9
3.3 Architecture of EEGNet, figure from [2] 9

4.1 Adapted BrainBERT architecture. 11
4.2 Architecture with convolutional embedding, no downsampling. 12
4.3 Architecture with convolutional embedding, pooling. 13
4.4 Architecture with convolutional embedding, stride. 13
4.5 Vision Transformer architecture with STFT embedding. 14
4.6 Vision Transformer architecture with convolutional embedding. 15
4.7 Architecture using only convolutional embedding. 15
4.8 Architecture using only transformer. 15

5.1 Formation of input segments from the PhysioNET dataset. 18
5.2 Example input (red) and reconstruction (blue) when using the convolu-

tional architecture without downsampling (top), with pooling (middle)
or with strided convolution (bottom). 21

5.3 Example input (red) and reconstruction (blue) when using only the trans-
former, after 200’000 (top), 400’000 (middle) or 800’000 (bottom) updates.

. 23

31

List of Tables

5.1 Pretraining losses of architectures with STFT embedding. BrainBERT is
reconstructing a single channel, STFT + Vision Transformer is reconstruct-
ing all channels at once. For the latter, the loss is the average across all
channels. 19

5.2 Pretraining losses of architectures with convolutional embedding. 20
5.3 Pretraining losses of partial architectures. 22
5.4 Downstream classification accuracies. 22
5.5 Downstream classification accuracies for partial models. 24
5.6 Number of input tokens and parameters, as well as optimal number of

input tokens and parameters according to CSL for the different architectures. 26

32

Bibliography

[1] C. Wang, V. Subramaniam, A. U. Yaari, G. Kreiman, B. Katz, I. Cases, and A. Barbu,
“Brainbert: Self-supervised representation learning for intracranial recordings,”
2023.

[2] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and
B. J. Lance, “Eegnet: a compact convolutional neural network for eeg-based
brain–computer interfaces,” Journal of Neural Engineering, vol. 15, no. 5, p. 056013,
Jul. 2018. [Online]. Available: http://dx.doi.org/10.1088/1741-2552/aace8c

[3] Y. Ma, C. Liu, M. S. Ma, Y. Yang, N. D. Truong, K. Kothur, A. Nikpour, and
O. Kavehei, “Tsd: Transformers for seizure detection,” bioRxiv, 2023. [Online].
Available: https://www.biorxiv.org/content/early/2023/01/25/2023.01.24.525308

[4] G. Schalk, D. McFarland, T. Hinterberger, N. Birbaumer, and J. Wolpaw, “Bci2000:
a general-purpose brain-computer interface (bci) system,” IEEE Transactions on
Biomedical Engineering, vol. 51, no. 6, pp. 1034–1043, 2004.

[5] M. Soufineyestani, D. Dowling, and A. Khan, “Electroencephalography (eeg)
technology applications and available devices,” Applied Sciences, vol. 10, no. 21,
2020. [Online]. Available: https://www.mdpi.com/2076-3417/10/21/7453

[6] J. Zhou, Y. Duan, Y. Zou, Y.-C. Chang, Y.-K. Wang, and C.-T. Lin, “Speech2eeg:
Leveraging pretrained speech model for eeg signal recognition,” IEEE Transactions
on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 2140–2153, 2023.

[7] P. Hallgarten, D. Bethge, O. Özdenizci, T. Grosse-Puppendahl, and E. Kasneci,
“Ts-moco: Time-series momentum contrast for self-supervised physiological repre-
sentation learning,” 2023.

[8] D. Kostas, S. Aroca-Ouellette, and F. Rudzicz, “Bendr: using transformers and a
contrastive self-supervised learning task to learn from massive amounts of eeg
data,” 2021.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” 2023.

33

http://dx.doi.org/10.1088/1741-2552/aace8c
https://www.biorxiv.org/content/early/2023/01/25/2023.01.24.525308
https://www.mdpi.com/2076-3417/10/21/7453

Bibliography

[10] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An
image is worth 16x16 words: Transformers for image recognition at scale,” 2021.

[11] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A framework for
self-supervised learning of speech representations,” 2020.

[12] D. Bethge, P. Hallgarten, T. Grosse-Puppendahl, M. Kari, L. L. Chuang, O. Özdenizci,
and A. Schmidt, “Eeg2vec: Learning affective eeg representations via variational
autoencoders,” 2022.

[13] Q. Zhu, X. Zhao, J. Zhang, Y. Gu, C. Weng, and Y. Hu, “Eeg2vec: Self-supervised
electroencephalographic representation learning,” 2023.

[14] Y. Guo, X. Zhang, Z. Gong, A. Wang, and W. Wang, “End-to-end translation of
human neural activity to speech with a dual-dual generative adversarial network,”
2022.

[15] Y. Yue, J. D. Deng, D. D. Ridder, P. Manning, and D. Adhia, “Variational autoencoder
learns better feature representations for eeg-based obesity classification,” 2023.

[16] P. Autthasan, R. Chaisaen, T. Sudhawiyangkul, P. Rangpong, S. Kiatthaveephong,
N. Dilokthanakul, G. Bhakdisongkhram, H. Phan, C. Guan, and T. Wilaiprasitporn,
“Min2net: End-to-end multi-task learning for subject-independent motor imagery
eeg classification,” IEEE Transactions on Biomedical Engineering, vol. 69, no. 6, p.
2105–2118, Jun. 2022. [Online]. Available: http://dx.doi.org/10.1109/TBME.2021.
3137184

[17] T. Behrouzi and D. Hatzinakos, “Graph variational auto-encoder for deriving
eeg-based graph embedding,” Pattern Recognition, vol. 121, p. 108202,
2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0031320321003848

[18] X. Li, Z. Zhao, D. Song, Y. Zhang, J. Pan, L. Wu, J. Huo, C. Niu, and D. Wang,
“Latent factor decoding of multi-channel eeg for emotion recognition through
autoencoder-like neural networks,” Frontiers in Neuroscience, vol. 14, 2020. [Online].
Available: https://www.frontiersin.org/articles/10.3389/fnins.2020.00087

[19] T. Ahmed and L. Longo, “Examining the size of the latent space of convolutional
variational autoencoders trained with spectral topographic maps of eeg frequency
bands,” IEEE Access, vol. 10, pp. 107 575–107 586, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:252796174

[20] Y. Zhu and M. D. Wang, “Automated seizure detection using transformer models
on multi-channel eegs,” in 2023 IEEE EMBS International Conference on Biomedical
and Health Informatics (BHI), 2023, pp. 1–6.

34

http://dx.doi.org/10.1109/TBME.2021.3137184
http://dx.doi.org/10.1109/TBME.2021.3137184
https://www.sciencedirect.com/science/article/pii/S0031320321003848
https://www.sciencedirect.com/science/article/pii/S0031320321003848
https://www.frontiersin.org/articles/10.3389/fnins.2020.00087
https://api.semanticscholar.org/CorpusID:252796174

Bibliography

[21] P. Busia, A. Cossettini, T. M. Ingolfsson, S. Benatti, A. Burrello, M. Scherer, M. A.
Scrugli, P. Meloni, and L. Benini, “Eegformer: Transformer-based epilepsy detection
on raw eeg traces for low-channel-count wearable continuous monitoring devices,”
in 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2022, pp. 640–644.

[22] Z. Wan, M. Li, S. Liu, J. Huang, H. Tan, and W. Duan, “Eegformer: A
transformer–based brain activity classification method using eeg signal,” Frontiers
in Neuroscience, vol. 17, 2023. [Online]. Available: https://api.semanticscholar.org/
CorpusID:257744035

[23] X. Wang, M. Hersche, B. Tömekce, B. Kaya, M. Magno, and L. Benini, “An accu-
rate eegnet-based motor-imagery brain–computer interface for low-power edge
computing,” in 2020 IEEE International Symposium on Medical Measurements and
Applications (MeMeA), 2020, pp. 1–6.

[24] D. Zhang, Z. Yuan, Y. Yang, J. Chen, J. Wang, and Y. Li, “Brant:
Foundation model for intracranial neural signal,” in Thirty-seventh Conference
on Neural Information Processing Systems, 2023. [Online]. Available: https:
//openreview.net/forum?id=DDkl9vaJyE

[25] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford,
D. de Las Casas, L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland,
K. Millican, G. van den Driessche, B. Damoc, A. Guy, S. Osindero, K. Simonyan,
E. Elsen, J. W. Rae, O. Vinyals, and L. Sifre, “Training compute-optimal large lan-
guage models,” 2022.

[26] I. Obeid and J. Picone, “The temple university hospital eeg data corpus,” Frontiers
in Neuroscience, vol. 10, 2016. [Online]. Available: https://www.frontiersin.org/
articles/10.3389/fnins.2016.00196

35

https://api.semanticscholar.org/CorpusID:257744035
https://api.semanticscholar.org/CorpusID:257744035
https://openreview.net/forum?id=DDkl9vaJyE
https://openreview.net/forum?id=DDkl9vaJyE
https://www.frontiersin.org/articles/10.3389/fnins.2016.00196
https://www.frontiersin.org/articles/10.3389/fnins.2016.00196

	Introduction
	Focus of this Work
	Organization of this Work

	Background
	Electroencephalogram
	Foundation Models
	Transformer and Vision Transformer

	Related Work
	Foundation Models for EEG
	BrainBERT

	EEG Classification Models
	Transformers for Seizure Detection
	EEGNet
	EEGformer

	Method
	BrainBERT
	Architectures using Convolutional Embedding
	Architectures using Vision Transformers
	Partial Architectures
	Pretraining
	Masking Procedure
	Pretraining Loss

	Downstream Classification

	Results
	PhysioNET Dataset
	Implementation Details
	Pretraining
	Downstream Classification
	Neural Scaling Law

	Conclusion and Future Work
	List of Acronyms
	List of Figures
	List of Tables
	Bibliography

