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This thesis tackles the challenge of distinguishing fine-grained visual sim-
ilarities among nearly identical images, a critical foundation for advanced
search applications in visual quality inspection. We identified gaps in current
solutions regarding the distinguishability, representativeness, and efficiency
of image embeddings used as search indices. To address these, we proposed
a novel deep learning-based approach, starting with curating a new dataset
comprising defect images from open-source domain datasets annotated with
human preference data to represent fine-grained visual similarity. The dataset
is used to train the model and evaluate the performance of fine-grained visual
similarity searches. Then, we improved the distinguishability of search indices
at the fine-grained level by fine-tuning an embedding model with a contrastive
learning framework in both supervised and self-supervised learning manners.
We also established a comprehensive evaluation protocol to assess the perfor-
mance of the proposed solutions on the dataset. In summary, the proposed
method demonstrated significant performance gain and generalizability across
different products and defect types and scalability to large-scale and unan-
notated datasets. Finally, we present a prototypical search application that
showcases how the proposed solution works in real-world scenarios. The pro-
posed solution provides a solid foundation for developing advanced image
search applications for visual quality control in manufacturing and other in-
dustries.
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1. Introduction

1.1. Background

In today’s fast-paced industrial environment, ensuring the highest product quality is
paramount. Visual quality inspection systems play a crucial role because they help
identify and address defects that could compromise product integrity and customer sat-
isfaction. However, traditional inspection methods often fail to provide insights to tackle
recurring problems effectively. Consider a scenario where an industry professional en-
counters a new defect on the production line that can halt operations and incur significant
costs. An advanced, interactive application capable of analyzing an extensive database
of past defects would offer valuable insights and comparisons to previously encountered
similar issues. This tool streamlines troubleshooting processes and enhances the abil-
ity to predict and prevent future defects. By leveraging sophisticated search capabilities
based on visual defect similarities, industry experts can quickly pinpoint potential causes
and solutions, fostering a more proactive quality control approach.

Considering these crucial industry requirements, researchers have long sought to develop
practical search applications. The most recent solutions leverage computer vision tech-
nologies, particularly deep learning-based techniques. Among the available techniques,
a popular approach is vector-based semantic search. This method uses embeddings gen-
erated by deep learning models to represent images. These embeddings capture the
semantics of the corresponding images. They can be used as search indices for similarity-
based retrieval, enabling the identification of similar images based on the similarity of
their embeddings.

However, despite previous achievements, we have found that current applications do not
meet the growing needs of industry professionals. More specifically, in an industrial
setting, the defect database often contains various defect images that appear very similar
on the entire product image, with tiny yet distinctive differences at the defect level. It is
referred to as the fine-grained visual similarity problem, whose key challenge lies in
understanding fine-grained visual differences that sufficiently discriminate between highly
similar objects in overall appearance but differ in fine-grained features.

Considering these developments, the underlying vector-based semantic search systems
should be improved to capture the fine-grained visual similarity between defect areas.
Typically, in such systems, the quality of the embeddings is a critical factor for successful
image retrieval. We determined that the insufficient performance of the current systems
can be attributed to the following three main characteristics of these embeddings that
are not well addressed:



e Distinguishability: The embeddings of similar regions should be similar, while
those of different regions should be dissimilar; however, the current model train-
ing recipe does not explicitly enforce similarity over embeddings for similar
objects.

o Representativeness: the embeddings should capture the visual characteristics
to facilitate performative retrieval; however, the current pre-trained backbones’
performance on domain-specific datasets like visual inspection is still
limited, especially when it comes to fine-grained features.

e Efficiency: the embeddings should be computationally and memory-efficient to
minimize costs; however, previous methods have primarily focused on feature ex-
traction from the whole image, which involves processing a massive amount of
data, where only specified small regions are of interest.

Therefore, we laid the foundation of this thesis on enhancing the performance of image
search applications by improving the embedding characteristics. Through this work, we
empower professionals with the tools they need to maintain excellent quality standards
and drive continuous improvement in their operations.

1.2. Main Contributions

In this thesis, we have developed a simple yet effective deep-learning solution to dis-
tinguish fine-grained visual similarities among industrial defect images. Our primary
contributions are as follows:

e New Annotated Dataset: We curated the Fine-Grained Defect Similarity (FGDS)
dataset comprising defect images from open-source domain datasets and annotated
human preference data to represent fine-grained visual similarity using triplets.
The proposed dataset can be used to train the embedding model and evaluate the
performance of fine-grained visual similarity searches.

e Innovative Search Index: We propose an innovative method to generate search
indices from a Vision Transformer (ViT) embedding model fine-tuned with a SimCLR-
based contrastive learning framework. This process was performed in supervised
and self-supervised modes using the training subset of the FGDS dataset. The in-
dices were used for similarity-based retrieval from the database subset of the FGDS
dataset using the evaluation subset.

e Comprehensive Evaluation Protocol: We established a comprehensive set of
metrics to accurately assess similarity-based retrieval performance at both the de-
fect category (label) and fine-grained levels. This setup uses triplet-based evalua-
tion metrics to directly leverage the triplet annotations collected from humans to
evaluate the retrieval performance at the fine-grained level.
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Figure 1: The overall pipeline of the thesis work.

Figure [I] illustrates the overall workflow of our work. The process begins by extracting
defect croppings from the original defect images in the open-sourced domain datasets,
which are then used for training and evaluation. More specifically, the croppings for
evaluation were further divided into two subsets: evaluation and database. Then, human
annotators provide triplet annotations to identify which defect image from the database
subset is more similar to a reference image from the evaluation subset than another
image. These annotations are used as the ground truths to evaluate the search results,
together with product and defect category labels extracted from the original dataset. The
pre-trained embedding backbone is fine-tuned with the training samples via a SimCLR-
based training framework (with label information for the supervised setting). Then, the
fine-tuned embedding backbone encodes the defect images into embeddings and indexes
them with these embeddings. For similarity indexing and search, the query embedding
is compared to the indices using some similarity metric function sim(-). The returned
results are rank lists based on similarity, and the performance is evaluated in both label-
wise and triplet-wise manners using the rank lists and ground truths collected earlier.
Note that the green boxes represent the components of the FGDS dataset.

Through evaluation of the FGDS dataset with the established metrics, we realized the
following capabilities with the proposed solution:

e Effectiveness: Notable performance gain after fine-tuning in terms of label-level
precision (5-8%) and triplet-level precision (>10%), compared to zero-shot perfor-



marnce.

e Generalizability: Notable performance gains were observed for unseen products
and defect types after fine-tuning with a self-supervision signal (5-7%), compared
to zero-shot performance, indicating the generalizability of the self-supervised so-
lution.

e Scalability: Comparable and better performance of self-supervised methods to
that of supervised methods in fine-grained visual similarity search tasks, indicating
the scalability of self-supervised solutions to large, unannotated datasets.

In addition, we present an interactive demonstration application that showcases the use
of the proposed solution in real-world scenarios.

1.3. Thesis Structure

The remainder of this thesis is structured as follows:

e Section Related Works provides an overview of the existing literature on
fine-grained image retrieval and contrastive representation learning.

e Section The FGDS Dataset describes the curating process of the FGDS
dataset, including defect cropping extraction, data splitting, and data annotation.

e Section Training Methods details the proposed method for fine-tuning the
embedding model, including the self-supervised learning framework and other train-
ing details.

e Section [5; Evaluation Metrics and Tools presents the evaluation metrics and
protocols used to assess the performance of the proposed solution on the FGDS
dataset.

e Section [} Experiment Design and Result Analysis outlines the experimen-
tal setup for both vertical and horizontal comparisons and analyzes the obtained
results.

e Section 7} Prototype introduces the interactive image search application proto-
type, showcasing the capabilities of the proposed solution.
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2. Related Works

2.1. Fine-grained Image Retrieval

Fine-grained image analysis(FGIA) is the primary focus of this thesis.

According to [I], FGIA involves understanding subtle visual differences that distinguish
similar objects with overall appearance but differ in fine-grained features. FGIA tasks
can be categorized as recognition and retrieval. In fine-grained retrieval tasks, the goal
is to retrieve images related to a given query based on relevant fine-grained features. It
can be formalized as follows: Given an input query ¢, the goal of a fine-grained retrieval

. . . . Ny M
system is to rank all instances in a retrieval set {2 = {w(l) }i:I of the same category based

on their fine-grained relevance to the query. Let Sq = {s(i)}i]\il represent the similarity
between x? and each (¥ measured via a predefined metric applied to the corresponding
fine-grained representations, i.e., h (x?;§) and h (w(i); 5). Here, 6 denotes the parameters
of a retrieval model h. For instances whose labels are consistent with the fine-grained
category of x?, we form them into a positive set P, and obtain the corresponding Sp
The retrieval model A(-;J) can be trained by maximizing the ranking-based score

R (i,Sp)

max — ——5—

5 R (i,SQ)

w.r.t. all query images, where R (i,Sp) and R (i, Sq) refer to the rankings of instance 4
in P, and (2, respectively.

Fine-grained image retrieval tasks can be further categorized into content-based and
sketch-based approaches. The former focuses on analyzing the content of the query
image, while the latter utilizes hand-drawn sketches as queries. In this thesis, we focus
on content-based fine-grained image retrieval tasks.

While [I] appraises the success of supervised deep metric learning-based approaches that
map image data to an embedding space, where similar fine-grained images are close
together, and dissimilar images are distant, it failed to catch up to the more recent
trends of contrastive representation learning techniques to achieve this goal. In the next
section, we introduce contrastive representation learning.

2.2. Contrastive Representation Learning

According to [2], the goal of (deep-metric) contrastive representation learning is to learn
an embedding space in which similar sample pairs remain close while dissimilar samples
are distant from each other. This goal aligns with the deep metrics learning approach
for fine-grained image retrieval tasks, as described in Section [2.J] and addresses the dis-
tinguishability characteristics discussed in Section [1.1

11



More specifically, contrastive representation learning techniques can be applied in both
supervised and unsupervised settings and can be scaled gradually from a completely
supervised setting to data without extra supervision signals [3]. Although supervised
methods have shown promising results previously, as stated in we are interested
in exploring the potential of self-supervised contrastive learning techniques, where data
annotations are not required, and we compare their performance to that of supervised
methods in fine-grained image retrieval tasks.

There are various approaches to self-supervised contrastive learning. According to [4],
we can categorize these into four categories:

e Deep-metric Learning Family: As previously mentioned, these methods pro-
mote similarity between semantically transformed versions of an input. Typically,
contrastive loss is used to convert this principle to a learning objective. A well-
known method in this category is SImCLR [5], which learns visual representations
by fostering the similarity between two augmented views of an image. After en-
coding each view, SimCLR employs a projector to map the initial embeddings into
another space where contrastive loss is applied to encourage similarity between the
views. Section [£.2) will provide more details on SimCLR.

e Self-Distillation Family: Unlike the deep metric learning family, these methods
process two views of the same image using two encoders, mapping one view to the
other via a predictor. Self-distillation prevents the encoders from collapsing by
predicting a constant for any input. Several notable contrastive learning methods,
such as BYOL [6], MoCo [7], and DINO [§], fall into this category. BYOL, which
stands for Bootstrap Your Own Latent, was the first to introduce self-distillation.
It uses a target network to generate the target representation of the input through
image augmentations and a predictor to map the online/student network’s output
to the target/teacher representation. The student network is updated throughout
training using gradient descent, while the teacher network is updated with exponen-
tial moving average (EMA) updates of the weights of the online network. MoCo,
which stands for Momentum Contrast, maintains a queue of negative samples and
updates the momentum encoder with the current encoder’s parameters. DINO,
which stands for DIstillation of knowledge with NO labels, applies self-distillation
in the context of Vision Transformers (ViT) [9]. Like BYOL, DINO employs a
teacher and a student network but centers the output of the student network us-
ing a running mean (to avoid sensitivity to mini-batch size) and discretizes the
representations smoothly using softmax and the temperature parameter 7.

e Canonical Correlation Analysis (CCA) Family: These methods leverage the
principles of CCA to maximize the correlation between two augmented views of
the same data. These ideas were extended to deep learning in Deep Canonically
Correlated Autoencoders (DCCAE), which uses an autoencoder regularized via
CCA. Among these, two notable methods are SwAV [10] and VICReg [11]. SwAV
computes the corresponding codes, and the loss quantifies the fit by swapping two

12



codes using the loss to measure the fit between a feature and a code. The swapped
fit prediction depends on the cross-entropy between the predicted code and a set of
trainable prototype vectors. The model is optimized by maximizing the similarity
between the features and the prototypes [2]. VICReg, which stands for Variance-
Invariance-Covariance Regularization, addresses the collapse problem by introduc-
ing three regularization terms: variance, invariance, and covarianceThe variance
term ensures that the embeddings have nonzero variance along each dimension,
thereby preventing collapse. The invariance term maximizes the similarity between
the embeddings of different views of the same image, whereas the covariance term
reduces redundancy by de-correlating different dimensions of the embeddings.

e Masked Image Modeling: These methods apply degradations to training im-
ages, such as decolorization, noise, or shuffling image patches, and teach models to
undo these degradations. Although these early self-supervised methods have failed
to prosper, some self-distillation methods like iBOT [12] and DINOv2 [13] also em-
ploy masked image modeling techniques. iBOT (Image BERT Pre-Training with
Online Tokenizer) is an update of DINO, where students predict tokens for masked
image patches from the representations of the entire image generated by the teacher
network. DINOv2 [I3] further builds on iBOT and improves its performance by
improving several engineering aspects, such as training recipes and architecture
choices. Now, DINOv2 is generally considered the state-of-the-art self-supervised
contrastive learning method.

It is noteworthy that while some research papers like [8], [11], [12], and [I3] do evaluate
the performance of image retrieval tasks on the open-sourced benchmark datasets, it is
mainly performed using the k-nearest neighbor search of labels on natural images like
ImageNet [I4]. To the best of our knowledge, no study has evaluated their performance
at the fine-grained level in an industry scenario. Thus, it leaves a gap in the existing
literature that we aim to fill with this thesis.

13



3. The FGDS Dataset

3.1. Introduction

As discussed in Section the current image search system in the visual quality in-
spection domain faces a significant challenge in addressing fine-grained visual similarity.
However, no existing datasets are available for training the model and evaluating fine-
grained similarity search results. To overcome this, we must construct a dataset with
fine-grained similarity annotations to evaluate the performance improvements of image
search systems with our proposed methods.

Constructing this dataset involves answering two key questions:

e What type of data should be used to construct the dataset?

e How should the fine-grained similarity be represented when annotating the dataset?

To address the first question, we observed that the search application requires only
defect areas, rather than entire images, for comparison with other defect areas. Based
on this fact, we constructed our dataset by extracting only the defect areas from existing
datasets. We refer to these as defect croppings, which will be used for training and
evaluation.

To address the second question, we must first define a data structure that effectively
represents fine-grained visual similarity. Inspired by Wang et al. [I5], we chose to use a
set of triplets in the form of (p,p*,p~), where p is the reference image and p™ is more
similar to the reference image (positive) than p~ (negative), to characterize the relative
similarity ordering.

Following these observations and decisions, this section describes the process of con-
structing the dataset. The dataset is named the Fine-Grained Defect Similarity (FGDS)
dataset. It comprises defect croppings extracted from large-scale, open-source domain
datasets and fine-grained similarity annotations in triplets collected from human prefer-
ences.

It is important to note that, in this scenario, we evaluate visual similarity based solely
on the visual appearances of these defect croppings without considering domain knowl-
edge (e.g., defect nature). Although this approach can introduce some subjectivity, we
mitigate this effect by collecting multiple annotations from different annotators for each
triplet and using majority voting to determine the ground truth.

14



3.2. Data Source

There are several open-sourced datasets of defect images available for industrial inspec-
tion. Among them, we consider using the MVTec anomaly detection dataset (MVTec
AD) [16] and VISION dataset [17] as the source to construct our dataset due to their
popularity and sizes.

3.2.1. MV Tec AD

MVTec AD is a dataset for benchmarking anomaly detection methods in industrial in-
spection. It contains 5354 high-resolution images from 15 products and 73 defects [16].
Each category comprises a set of defect-free training images and a test set of images with
defects. For each defect image, MVTec provides pixel-accurate ground truth regions.

Figure [2| shows some example images from the MVTec AD dataset.

(a) capsule (b) tile (c) zipper

Figure 2: Example images from the MVTec AD dataset. The top row shows the original
images, while the bottom row shows the images with the defect areas masked
and the defect categories annotated.
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3.2.2. VISION

The VISION dataset is a collection of 14 industrial inspection products, with 18422
images encompassing 44 defect types [17]. Each product has object detection and instance
segmentation annotations in training and validation splits, while the test splits are not
annotated.

Figure [3] shows some example images from the VISION dataset.

(a) lens (b) pcb_2 (c) hemisphere

Figure 3: Example images from the VISION dataset. The top row shows the original
images, while the bottom row shows the images with the defect areas masked.
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3.3. Create Defect Croppings

As discussed in Section [3.I] we constructed our dataset by starting from cropping out
the defect areas from the annotated subsets of the MVTec AD and VISION datasets,
using the provided segmentation masks with the tightest bounding boxes. We also left
out the 4 "combined" defects in MVTec AD, as they contain more than one defect per
image without specifications of defect categories. The defect croppings were saved as
individual images, along with their source dataset, product type, and defect category
information.

The resulting dataset comprises 5731 croppings, covering 29 products and 113 unique
defects. Of these, 1258 croppings are from the MVTec AD dataset, while the remaining
4473 croppings are from the VISION dataset.

Figure [4] shows some example defect croppings from the dataset, echoing the examples
from Figure [2] and

Figure 4: Example defect croppings from the dataset, aligning with the respective images
shown in Figures [2] and [3|

In practice, the resulting dataset is created and managed using FiftyOne [I§], an open-
source Python package for building high-performance computer vision datasets.

17



3.4. Data Splits
3.4.1. Split Definition

As discussed in Section the defect croppings will be used for training and evaluation.
Consequently, it is necessary to divide the defect croppings into specific subsets tailored
for different tasks. More specifically, to evaluate the performance of the image search
system, two distinct subsets need to be established:

e Evaluation Subset: This subset contains samples with known product and defect
information, which are used as queries to search for similar samples.

e Database Subset: This subset comprises samples with known product and defect
information, which will be inferred and queried by the samples from the evaluation
subset.

In addition to these subsets, a training subset is required for fine-tuning. Therefore, the
defect croppings should be divided into training, evaluation, and database subsets.

3.4.2. Split Criteria

For constructing the evaluation and database subset, we randomly chose three samples
from every defect category in the defect croppings as the evaluation subset and at least
five samples, or ten if the number of samples is more than 15, as the database subset.

We determined the training subset based on product-level and defect-level difficulty using
zero-shot performance of a pre-trained ViT-L-14 backbone from DINOv2 [I3]. We also
left some products out of the training set to test the generalization ability of the training
methods. More specifically, we define the label-level performance thresholds as follows:

e High Precision: mean precision@10 > 0.9
e High Average Precision: mean APQ10 > 0.9
e Low Precision: mean precision@10 < 0.3
e Low Average Precision: mean APQ10 < 0.3

where Precision@K is defined as the number of relevant documents retrieved by the search
engine divided by the total number of documents retrieved, and APQK is defined as the
precision of the top k documents averaged by the number of relevant documents in the
top k search results [19]. More detailed definitions are in Section We define the

defect-level difficulty as follows:

e Easy Defects: defects that have both high precision AND high AP
e Hard Defects: defects that have either low precision OR low AP

18



e Medium Defects: the rest of the defects

These defects are then grouped by their respective product types. Among them, the two
products containing only easy and medium defects and seven containing only medium
defects are left out from training to test the generalizability of the propose method. The
remaining five products, which have a standard deviation of product-wise precision@10
OR AP@10 > 0.2, are still used for training due to their large variance in performance.
This way, the left-out products contain mostly medium defects with low product-wise
standard deviations. We call them non-train products in the rest of the report.

3.4.3. Split Statistics

As a result, the evaluation subset contains 339 croppings, and the database subset con-
tains 1021 croppings respectively. The training subset consists of 3079 croppings in total.
Among them, 20 out of 113 defect categories are considered "hard" defects, and 9 out of
29 products (containing 35 defects) are left out from the training set to test the general-
ization ability of the training methods. Appendix [A]shows a detailed list of these defects
and products.

3.5. Create Triplets

Following the definition of triplets in Section [3.I] and the subsets obtained in Section
we use each image R in the evaluation subset as the reference image. Every image pair
(A, B) within the same defect category in the database subset is then used to construct
the triplet (R, A, B). Annotators are subsequently asked to choose one of three options:

e Image A is more similar to the reference image.
e Image B is more similar to the reference image.

e Cannot determine which image is more similar.

This method allows us to obtain positive and negative samples as perceived by humans
within the triplet framework.

As a result, we obtained a total of 13,008 triplets. Of these, 4,305 (33.1%) are triplets in
the same defect category as the non-train products. Among the remaining 8,703 triplets,
1,944 (22.3%) belong to the same defect category as the hard defects.

19



3.6. Annotation Pipeline

We use the Amazon Sagemaker GroundTruth service to get the human preference anno-
tation for the triplets obtained in[3.5 It is a managed data labeling service that makes it
easy to collect data annotations for machine learning using other AWS services. In par-
ticular, Sagemaker GroundTruth gives access to the Amazon Mechanical Turk workforce,
an on-demand, scalable human workforce that can help process large datasets quickly and
accurately. This section describes the design of the annotation pipeline using Amazon
Sagemaker GroundTruth.

3.6.1. Design Overview

Figure [f] shows the diagram of the annotation pipeline.

SageMaker
E] Amazon S3 (1) Aws Lambda 5 s

defect

O S
/\<\ croppings

URI

o My e L
upload |||—| manifests

pre-processing

pmt

. . labeling jobs
implement and monitor soyrce annotate and submit

|
) o 2ot

Amazon MTurk

requester
workers

uplpad

output post-processing
manifests (consolidate labels)

Figure 5: Annotation pipeline using Amazon Sagemaker GroundTruth.

On the SageMaker GroundTruth platform, the requester, who issues labeling tasks to
the workforce, needs to prepare and upload to Amazon S3 storage service three essential
components: images to be labeled (in our case, defect croppings), input manifests (JSON
files as entry points for labeling), and an HTML file for the annotation UI. The requester
must also prepare and upload a pre-processing function and a post-processing function
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to consolidate the labeling results using the AWS Lambda service, which runs serverless
functions triggered by various AWS services.

Once a labeling job is launched on the SageMaker GroundTruth platform, the pre-
processing function is invoked to process the input manifest files for correct display in the
annotation Ul If the data pre-processing is successful, the labeling jobs are published
to the Amazon MTurk workers, who then annotate and submit their labeling tasks us-
ing the Ul interface. Upon completion, the labeled data is re-uploaded to Amazon S3
storage. The post-processing function is invoked to consolidate the labels, ensuring all
annotations are correctly combined. The final outputs are stored as JSON manifests,
containing the fully labeled and processed data.

3.6.2. User Interface

As mentioned in specifically for the triplet annotation task, we need a custom Ul
for the Amazon Mechanical Turk workers to annotate the triplets.

Figure [6] shows the example UI interface for annotating triplets.

Instructions | | Shorteuts | Which image is more simiar to the reference image, image A or B7 ®

Select an option
Reference Image Image A is more similar to the reference image !
» Image B is mor

- . N
- Cannot tell which is more similar

ilar to the reference image 2

Submit

Figure 6: Example Ul interface for annotating triplets.

The two images for comparison are placed at an equal distance from the reference image,
and the annotators can choose one of the three options as defined in The short and
full instructions provided to the annotators are attached in the Appendix [B]
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3.6.3. Annotation Process

For each labeling job, we requested five workers from Amazon Mechanical Turk. The final
decision was made using majority voting, with a threshold of three out of five workers:
if no less than three workers marked the triplet as "Cannot tell which is more similar"
or a consensus could not be reached, the triplet was denoted as "indistinguishable."

3.7. Annotation Results
3.7.1. Annotation Statistics

Consequently, among the 13008 triplets, 1075 were marked as "indistinguishable" by
the workers, accounting for 8.26% of the total triplets. More than 90% of the samples
are visually distinguishable by humans. These statistics indicate that the dataset is
well-annotated and can be used to evaluate the similarity search performance.

3.7.2. The Ground Truth Table

To store the annotation results, we designed a relational database table named TripletGTs.
The fields are as follows:

e FileNameRef (Primary Key): The file name of the reference image.

FileNameFirst (Primary Key): The file name of the first sample in the triplet.

FileNameSecond (Primary Key): The file name of the second sample in the triplet.

GroundTruth: The ground truth label.
— 1 means the first sample is more similar to the reference image, and
— 2 means the second sample is more similar to the reference image

— 0 means the similarity of the two samples is not distinguishable by humans.

The table is populated from the output manifest files to the same SQLite database as
the evaluation results mentioned in Section [5.2] for unified and centralized storage.
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3.8. Conclusion

This section describes the process of constructing the Fine-Grained Defect Similarity
(FGDS) dataset. It consists of defect croppings extracted from the MVTec AD and VI-
SION datasets, along with fine-grained similarity annotations in triplets collected from
human preferences. The dataset is divided into training, evaluation, and database sub-
sets, and the triplets are annotated using the Amazon Sagemaker GroundTruth service.
The resulting dataset can serve as a benchmark for evaluating the fine-grained visual
similarity search performance of industrial defect search applications.
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4. Training Methods

This section describes the training methods used to fine-tune the embedding model for
the retrieval task. We first explain why we do both supervised and self-supervised con-
trastive learning. We then introduce the contrastive learning framework we used in
the thesis, followed by training recipes like data augmentation, model architecture, and
hyperparameter settings.

4.1. Supervised vs Self-supervised Contrastive Learning

As explained in Section contrastive learning can be supervised and self-supervised.
We find both worthy of exploration, as on the one hand, supervision labels are strong
and efficient training signals if the defects are still not well classified, but using them
for image-level supervision often drastically reduces the rich visual information in the
image down to a single concept selected from a predefined set of object categories, which
may destroy the fine-grained semantic features [§]; on the other hand, self-supervision
methods, though works less efficiently, generates better features and retains the image
details [20]; in addition, self-supervision does not require any labeling, so they have the
potential to scale to large-scale and unlabeled datasets.

4.2. SimCLR-based Contrastive Learning Framework

As discussed in Section many different contrastive learning frameworks are available.
We use the SimCLR-based contrastive learning framework introduced in [5] due to its
simplicity and effectiveness. In [5], the model learns representations by maximizing agree-
ment between differently augmented views of the same data example via a contrastive
loss in the latent space.

Figure [7] illustrates the SimCLR-based contrastive learning framework. Given an input
batch of data, we first apply data augmentation twice to obtain two copies of the batch.
Both copies are forward propagated through the encoder network to obtain a normalized
embedding. This representation is further propagated during training through a projec-
tion network discarded at inference time. The supervised contrastive loss is computed
on the outputs of the projection network [3].

To construct the training batch for SimCLR-based contrastive learning, we randomly
sample a minibatch of N examples and define the contrastive prediction task on pairs of
augmented examples derived from the minibatch, resulting in 2V data points. We call
this a multi-viewed batch.

The supervised and self-supervised training is achieved by using different contrastive
losses. To describe the losses, we first define some common denotations: within a multi-
viewed batch, let i € I = {1...2N} be the index of an arbitrary augmented sample,
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Maximize Agreement

9(-) 9(")

h; <— Representaton —> h;
A A
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o7 T

Figure 7: SimCLR-based contrastive learning framework. Two separate data augmenta-
tion operators are sampled from the same family of augmentations (¢ ~ 7 and
t' ~ T ) and applied to each data example to obtain two correlated views. A
base encoder network f(-) and a projection head g(-) are trained to maximize
agreement using a contrastive loss. After training is completed, we throw away
the projection head g(-) and use encoder f(-) and representation h for down-
stream tasks. Reproduced from [5]

and let j(i) be the index of the other augmented sample originating from the same
source sample, and A(i) = I'\{i} to denote the indices of all augmented samples in the
multi-viewed batch distinct from 1.

Following the denotations above and in Figure[7] we define the self-supervised contrastive
loss in Section [4.2.1| and supervised contrastive loss in Section 4.2.2

4.2.1. Self-Supervised Contrastive Loss

In self-supervised contrastive learning, a common choice for the contrastive loss is the
InfoNCE loss introduced in Contrastive Predictive Coding [2] (or referred to as NT-Xent
loss in the SimCLR paper [5]).It is defined as:

[infonce _ Einfonce _ 1o exp (Zi 210 /7’)
iezl ZEZI ® 2 ac @) €XP (Zi* Za/T)

where

e the index i is called the anchor, i € I = {1...2N}
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e index j(i) is called the positive, and the other 2(N — 1) indices (k € A()\{j(i)})
are called the negatives

e 7 € RT is a scalar temperature parameter

following the denotations in [3]. This temperature parameter is initially used as an
adjustment to the softmax function, which controls the entropy of the distribution. In
the context of contrastive learning, it is interpreted as an implicit control of the hard
negative mining behavior, which we will investigate further in Section

Note that each anchor ¢ has 1 positive and 2N — 2 negative pairs. The denominator has
a total of 2N — 1 terms (the positive and negatives). For convenience, we refer to this
loss as "InfoNCE" in the rest of this report.

4.2.2. Supervised Contrastive Loss

The supervised contrastive loss introduced in [3] is a generalization of the InfoNCE loss
to contain multiple positives (i.e., samples with the same label). It is defined as:

-1 exp (z; - z2p/T)
supcon supcon p
£ 2 2. TR GZPU 5>
P i

i€l i€l acA(i) XP (zi - 2za/T)

where
e the index i is called the anchor, i € I = {1...2N}

o P(i)={pe€ A(i) : g, = ,} is the set of indices of all positives in the multi-viewed
batch distinct from 4, and |P(7)] is its cardinality.

e 7 € RT is a scalar temperature parameter

following the denotations in [3]. This temperature parameter is initially used as an
adjustment to the softmax function, which controls the entropy of the distribution. In
the context of contrastive learning, it is used to control the hard negative mining behavior,
which we will investigate further in Section [6.1

In this way, for any anchor, all positives in a multi-viewed batch (i.e., the augmentation-
based sample as well as any of the remaining samples with the same label) contribute
to the numerator instead of only using the augmented sample as the only positive as in
InfoNCE. For convenience, we refer to this loss as "SupCon" in the rest of this report.
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4.3. Data Augmentation

As mentioned in SimCLR-based contrastive learning requires data augmentation
to create noisy training sample versions. Proper data augmentation setup is critical for
learning representative and generalizable embedding features, as the augmentation should
significantly change its visual appearance but keep the semantic meaning unchanged,
which encourages the model to learn the essential part of the representation [2].

However, in visual quality inspection, the semantic invariances of the defects are intrinsi-
cally heterogeneous. For example, a specific type of augmentation can create a meaningful
representation of some defects while destroying others simultaneously: flipping an image
can be a meaningful augmentation for a "scratch" defect, but it can be nonsensical for
a "flip" defect where a part is not assembled in the right direction and creates a flip
phenomenon as a consequence. This results in a dilemma: we want to use augmentations
agnostic to the defect types for a large-scale dataset while also ensuring that the augmen-
tations are meaningful for the invariances intrinsic to the defects. To address this issue,
we manually chose a set of augmentations and experimented with different combinations
to find the best-performing ones with all the data. The following subsections will discuss
the basic augmentations and the resulting augmentation recipe.

4.3.1. Basic Augmentations

Over the years, the computer vision community has developed a set of basic augmentation
techniques widely used in practice. These include spatial and geometric transformations
(e.g., cropping, flipping, affine transformation), pixel-level transformations (e.g., noise,
color jittering, brightness), and more advanced transformations (e.g., cutout, mixup) that
encourage different semantic invariances. We briefly explain the basic augmentations we
have experimented with in our experiments below (with names in the fashion of the
Albumentations [22] library).

Spatial and Geometric Transformations

e Affine: it applies geometric changes to images, including scaling, rotation, trans-
lation, and shearing. This technique can simulate different viewpoints and object
orientations.

e Flip: it flips the image horizontally (HorizontalFlip) or vertically (VerticalFlip).
e Transpose: transposes the image.

e OpticalDistortion simulates lens effects by warping the image, typically in a
radial pattern. This augmentation can mimic the distortions found in real-world
camera systems, such as barrel or pincushion distortions.
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e PixelDropout randomly sets individual pixels in an image to zero or a specified
value. This technique can help models become more robust to noise and partial
occlusions.

e RandomResizedCrop combines random cropping and resizing operations. It crops
a random portion of the input image and then resizes it to a specified size.

e RandomRotate90: rotates the image by 90 degrees.
Pixel-level Transformations

e GaussNoise adds random Gaussian noise to the image. This augmentation simu-
lates camera sensor noise and can help models become more robust to low-quality
or noisy inputs.

e ISONoise: it simulates noise patterns typically found in digital camera images
with high ISO settings. This augmentation adds both color and luminance noise
to the image. It benefits training models that need to work with low-light or high-
sensitivity photography.

e MultiplicativeNoise: it applies element-wise random multiplication to the pixel
values. It can create more realistic noise patterns than additive noise, as it preserves
the relative brightness of different image regions. It is useful for simulating various
lighting conditions and sensor artifacts.

e UnsharpMask: a sharpening technique that enhances image edge contrast. It works
by subtracting a blurred version of the image from the original. This augmentation
can help models focus on important features and edges.

e RandomToneCurve: it applies random adjustments to the image’s tone curve, affect-
ing brightness, contrast, and color balance. This augmentation simulates variations
in image processing and color grading.

4.3.2. Augmentation Recipe

We experimented with all the augmentation methods and their parameters listed in[4.3.1]
Among them, we figured out five basic augmentation methods that achieved the best per-
formance when used in combination: Flip, PixelDropout, OpticalDistortion, Affine,
and GaussNoise. The detailed configuration of these augmentations is in Appendix [C]
The detailed analysis of how these augmentations affect the model performance is dis-
cussed in Section [6.21
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4.4. Model Architecture

We use the Vision Transformer (ViT) [9] as the backbone for our contrastive learning
framework due to its strong performance in various computer vision tasks. ViT is based
on the transformer architecture, which leverages self-attention layers. It divides the input
image into fixed-size patches and flattens them into a sequence of tokens, which are then
fed into the transformer encoder. The transformer encoder processes the images as
these sequences of tokens to learn the image representation. Then, FFN (Feed-Forward
Network) layers are used to project the learned representation into the final embedding
space. The transformer encoder is a stack of multiple layers containing a multi-head
self-attention mechanism and a position-wise feed-forward network.

More specifically, in training, we use a ViT-B-14 backbone pre-trained by DINOv2 [13],
which receives a patch size of 14 as the input and has 12 attention layers in the encoder
with an output embedding size of 768, resulting in 86M parameters in total. We also
used a single layer of MLP of size 512 as the projection head, following the design in [3]
and [5].

4.5. Training Details

After experimenting with different training recipes, we found the following hyperparam-
eters and implementation details to be the most effective for our task.

4.5.1. Hyperparameters

We used a layer-wise fine-tuning strategy to train the model. First, we used a constant
learning rate of 4 to tune the MLP head for 50 epochs while keeping the backbone
frozen, and then unfroze the last six attention layers of the backbone (more on this in
Section and fine-tuned them with an initial learning rate of 5e-2, together with
the projection head. We used a cosine decay learning rate scheduler for the backbone
and the projection head with a minimum learning rate 5e-3. We used the LARS [23]
optimizer, a variation of SGD targeting large batch-size scenarios with a momentum of
0.9, trust coeflicient of 1le-3, weight decay of le-4, and epsilon of 1le-8. The training was
performed for 300 epochs with an early stopping patience of 20 and a minimum delta of
le-4, which typically takes 1.5 hours. The batch size was set to 256. The training was
performed on an AWS gb.2xlarge EC2 instance with an NVIDIA A10G 24GB GPU.

4.5.2. Implementation Details

According to [24], it is sufficient to fine-tune the attention layers of the vision transformers
to achieve good performance while costing 10% less memory and speeding up the training
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by 10%. Figure|8|illustrates the attention-only fine-tuning strategy compared to full fine-
tuning.

Multi-head Attention

Layer Norm

Patch Projection ﬂ Patch Projection

Full Fine-tuning Attention-only
Fine-tuning

ﬂ Layer Norm

Figure 8: Attention only fine-tuning. Other parameters like FFN and normalization lay-
ers are frozen during training. Inspired by [24]

Moreover, to further reduce memory consumption and accelerate training, we use true
half-precision training with BF16 (brain floating point). It is a floating-point format that
uses 16 bits to represent a number. It compromises the memory efficiency of half-precision
(FP16) and the numerical stability of single-precision (FP32). BF16 can accurately
represent a wide range of values while providing significant memory savings compared to
FP32.

Finally, to further accelerate the training process, we use xFormers [25] used by DI-
NOv2. xFormers is a library that provides efficient implementations of various trans-
former models. It is designed to improve transformer models’ training and inference
speed by leveraging kernel fusion, memory optimization, and parallelization techniques.
By using xFormers in our code, we can benefit from its optimizations and accelerate the
fine-tuning of the ViT backbone.

Combining these strategies allows us to efficiently fine-tune the ViT backbone with re-
duced memory consumption and faster training speed.
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5. Evaluation Metrics and Tools

As briefly discussed in Section [3.4] we use the evaluation subset of the FGDS dataset
defined in Section [3.I]to search for similar samples in the database subset to evaluate how
well different training setups contribute to the retrieval performance. More specifically,
we

e build a search index with the model on the database subset by encoding every
sample in it with the model into embeddings and use the embeddings as the index
of the corresponding samples in the database subset,

e encode every sample in the evaluation subset into query embeddings using the same
model as the one used for building the search index,

e search for the most similar samples in the database subset with the query embed-
dings of the evaluation samples by computing the similarity between the query
embeddings and the embeddings of the samples in the database subset,

e return a rank list of the search results for each evaluation sample and

e calculate the performance metrics with the rank lists of the search results.

For the distance metrics used for computing similarity, we use the Euclidean distance
between embeddings with the Milvus [26] vector database backend.

Figure [9a] and [9b] show how we build the indices on the database subset and evaluate the
retrieval performance of the model using the evaluation subset of the FGDS dataset.

More specifically, for our retrieval system, we want to know that, given a search sample:

e how well the model can pick out the samples of the same defect category from all
the samples of the same product type and

e how well the model can tell the fine-grained difference between all the database
samples of the same defect category based on how visually similar they are to the
search sample.

We call these two aspects label-level precision and triplet-level precision, respectively.
Based on these two aspects, we can comprehensively evaluate the retrieval system’s per-
formance to match our use case and training goal.
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(b) Search for similar samples in the database subset with the embeddings of evalu-
ation samples

Figure 9: Building the search index and searching for similar samples

5.1. Evaluation Metrics
5.1.1. Label-level Precision

The label-level precision is the precision of spotting the same defect categories when
searching within the same product type, similar to k-nearest neighbor classification.
In information retrieval, precision-based metrics are often used to evaluate search per-
formance. Here, we use precision@k and AP@k, as briefly introduced in Section [3.4.2]

e Precision@k is defined as the number of relevant documents retrieved by the
search engine divided by the total number of documents retrieved:

o number of relevant documents among top k
precision@k =

total number of documents (k)

It is important to note that precision@k can be suboptimal if k is greater than the
total number of relevant results. Additionally, if all relevant samples are included
(no false negatives), the precision@k value will decrease as k increases due to more
false positives. Also, it is worth mentioning that precision@k does not take into
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account the order of relevant items appearing among retrieved documents, so APQ@k
is introduced to address this issue.

e APQk is defined as the precision of the top k documents retrieved by the search
engine, averaged by the number of relevant documents in the top k search results:

k
1
APQk = — Z precision@i - R;
T
i=1
r = number of relevant items
R {1, if document i is relevant
1: =

0, if document ¢ is not relevant

Compared to precision@k, AP@Qk considers the order of relevant items appearing
among retrieved documents.

In this work, we use k = 5 and k = 10 for precision@k and APQk.

5.1.2. Triplet-level precision

The triplet-level precision is the precision of ranking the similarity triplets annotated
by humans when searching within a certain defect category. We used the two metrics,
similarity precision and score-at-top-K, introduced by Wang et al. in [I5]. For evaluating
triplet-level precision:

e Similarity precision is defined as the percentage of triplets being correctly ranked.

number of correctly ranked triplets

Similarity Precision =
Y total number of triplets

Given a triplet ¢; = (pi,pj,pi_ ), where pj should be more similar to p; than p; .
Given p; as query, if p;." is ranked higher than p;”, then we say the triplet ¢; is
correctly ranked.

e Score-at-top-K is defined as the number of correctly ranked triplets minus the
number of incorrectly ranked ones on a subset of triplets whose ranks are higher
than K.

Score-at-top-K = (number of correctly ranked triplets at top k)—

(number of incorrectly ranked triplets at top k)

One triplet’s rank is higher than K if its positive image p;r or negative image p,
is among the top K nearest neighbors of the query image p;.

According to [I5], Score-at-top-K is similar to precision-at-top-K, widely used to
evaluate retrieval systems. Intuitively, score-at-top-K measures a retrieval sys-
tem’s performance on the K most relevant search results. This metric can better
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reflect the performance of the similarity models in practical image retrieval systems
because users pay most of their attention to the first few results returned.

In this work, we use k = 5 and k = 10 for score-at-top-K.

5.2. Database Design

To effectively and conveniently store and calculate the evaluation results, we designed
a database to store the results of the experiments. We created three tables: Results,
RankListLabel, and RankListTriplet, to store the aggregated evaluation results and
the returned rank lists when searching at the label-level and triplet-level. In practice,
we stored these tables in the same SQLite database as TripletGTs mentioned in Section
The following sections briefly describe the design of these tables, and the detailed
schema is in Appendix

5.2.1. Results

This table stores the evaluation results of different experiments. Each row represents
the performance metrics calculated by searching the database subset with the respective
sample from the evaluation subset of the FGDS dataset in a single experiment.

5.2.2. RankListLabel

This table stores the rank lists of the samples when searching at the label level. Each row
in the table corresponds to the rank of a database sample when searching for samples
with the same defect category as the evaluation sample in a single experiment.

5.2.3. RankListTriplet

This table stores the rank lists of the samples when searching at the triplet level. Each
row in the table corresponds to the rank of a database sample when searching within the
same defect category with an evaluation sample in a single experiment. Note that we
reconstructed the ground truth rank (RankGT) from the triplet annotations, but some of
the rankings cannot be reconstructed due to the nature of the triplet annotations. This
field only serves as a reference for the evaluation.
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6. Experiment Design and Result Analysis

Using the training methods described in Section [ and the evaluation metrics described in
Section p], we conducted a series of experiments to evaluate and compare the performance
of different training recipes.

More specifically, we grouped our experiments into vertical and horizontal experiments.
Vertical experiments aim to understand the effects of different training configurations on
model performance. In contrast, horizontal experiments aim to compare the effects of
different training paradigms (i.e., supervised and self-supervised contrastive learning) on
model performance.

For vertical experiments, according to [2], three critical components in contrastive learn-
ing are heavy data augmentation, large batch size, and hard negative mining. As briefly
introduced in Sections and the loss temperature hyperparameter of SupCon
and InfoNCE inherently facilitates hard negative mining. Additionally, the batch size
must be as large as possible to ensure hard negative samples are observed [4]. Therefore,
we primarily investigate the effects of loss temperature and augmentation methods on
model performance for a specific experimental setting.

6.1. Vertical Experiments on the Effects of Loss Temperatures

Hard negative samples are defined as the samples with different labels from the an-
chor sample but have embedding features very close to the anchor embedding [2]. It is
mathematically proven in [3] that the contrastive loss provides an intrinsic mechanism for
hard negative mining during training: using low temperatures is equivalent to optimizing
for hard positives/negatives. However, high temperatures also have competing effects,
which can result in smaller magnitude gradients (making optimization easier) and make
the model more tolerant to semantically consistent samples [27]. In light of this, we need
to experiment with different loss temperatures to evaluate how they affect the model
performance in search results.

6.1.1. Experimental Setup

We evaluate the overall performance and the performance on the hard and non-hard
defects defined in section at both label and triplet levels. The parameter setting is
the same as the default setting in Section except for the loss temperatures, which
are set to 0.01, 0.05, 0.1, 0.2, and 0.5, respectively, for both supervised and self-supervised
settings.
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6.1.2. Results and Analysis

Table [I| shows the overall performance of the model with different loss temperatures,
and Figure [10] and [L1| shows the performance of the model on hard and non-hard defects

defined in Section both at both label and triplet levels.

. Temperatures Zero-shot 0.01 0.05
Metrics

0.1 0.2 0.5
PrecisionAt5 0.7292 0.7546 0.7794 0.7900 0.7929 0.7841
PrecisionAt10 0.5882 0.6071 0.6295 0.6389 0.6419 0.6440
APAt5 0.8648 0.8942 0.9009 0.9078 0.8989  0.9029
APAt10 0.8222 0.8461 0.8604 0.8690 0.8676 0.8646
(a) supervised, label-level
Temperatures
. Zero-shot 0.01 0.05 0.1 0.2 0.5
Metrics
SimilarityPrecision 0.6837 0.7611 0.7587  0.7571 0.7580  0.7503
ScoreAtTop5 11.2124  15.6696 15.6431 15.6637 15.4838 15.0442
ScoreAtTopl0 12.3333  17.7198 17.5664 17.5723 17.5428 17.0708
(b) supervised, triplet-level
Temperatures
. Zero-shot  0.01 0.05 0.1 0.2 0.5
Metrics
PrecisionAth 0.7292 0.7764 0.7799 0.7776 0.7811 0.7835
PrecisionAt10 0.5882 0.6360 0.6319 0.6354 0.6339 0.6372
APAt5 0.8648 0.9019 0.9090 0.9123 0.9122 0.9152
APAt10 0.8222 0.8561 0.8649 0.8656 0.8689 0.8675
(c) self-supervised, label-level
Temperatures
. Zero-shot 0.01 0.05 0.1 0.2 0.5
Metrics
SimilarityPrecision 0.6837 0.7659  0.7595  0.7635  0.7622  0.7575
ScoreAtTop5 11.2124  16.0295 15.7611 15.8938 15.8348 15.7050
ScoreAtTopl0 12.3333  18.3451 17.7847 18.0737 18.0678 17.7847

(d) triplet-level

Table 1: Effects of different loss temperature, self-supervised. The bold numbers indicate

the best performance in each metric.
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Effects of Different Loss Temperature (Supervised), Label-Level
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Figure 10: Effects of different loss temperatures, supervised. The vertical dashed lines
with percentages indicate the performance gain between the two adjacent
experiments.
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Effects of Different Loss Temperature (Self-supervised), Label-Level
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Figure 11: Effects of different loss temperatures, self-supervised. The vertical dashed
lines with percentages indicate the performance gain between the two adjacent
experiments.
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Overall, the results showed that the training increases performance in all cases, but the
optimal loss temperature varies depending on the training method and the precision level.
Specifically:

e For supervised settings, the optimal temperature generally lies between 0.1 to 0.2
for label-level precision, while the optimal temperature is consistently 0.01 for
triplet-level precision.

e For self-supervised settings, the optimal temperature is generally around 0.5 for
label-level precision, while the optimal temperature is consistently 0.01 for triplet-
level precision.

e As for the hard defects, at the label level, the performance on hard defects benefits
from using a smaller loss temperature only for the self-supervised setting, with the
two APQ@Ks, while in supervised settings, the performance for the non-hard and
hard defects are roughly the same. In contrast, at the triplet level, the optimal
temperatures for hard defects are larger than those for non-hard defects.

From the above observation, we can see that, on the one hand, at the label level, using
relatively larger loss temperatures benefits self-supervised learning more than supervised
learning. This observation aligns with the findings from [27]: using a larger temperature
makes the embedding space more tolerant to similar samples. As there are more positives
in the supervised loss than in the self-supervised loss, one has to use a larger temperature
for the self-supervised loss to accommodate the samples with the same label to achieve
similar performance to the supervised loss, given that other factors are the same.

On the other hand, at the triplet level, both supervised and self-supervised settings
benefit from using relatively smaller loss temperatures compared to the label level. This
observation is also in line with the findings from [27]: contrastive loss with a small
temperature tends to make the local structure of each sample more separated so that
the similarity will be more discernable at more fine-grained level (i.e., triplet-level in our
case). It is also the underlying reason that causes the effects of hard negative mining
with small temperatures, as discussed at the start of this section; in other words, the
triplet level task is more challenging than the label level counterpart, so it is supposed
to benefit more from using a smaller temperature.

As for the performance on the hard defects, as AP@KSs consider the relative ranking of
the positives in the rank list compared to Precision@QK metrics, as explained in Section
higher APQKs require more discernable similarity between the samples, so here
we can still see the effect of hard negative mining using a smaller temperature. However,
it is still interesting to see that smaller temperature benefits the hard negative mining
at the label level only by a small margin.

On the contrary, at the triplet level, the hard defects require larger loss temperatures
to achieve optimal performance than non-hard defects, which goes against the above-
mentioned findings. However, one possible explanation is that since the hard defects are
defined based on the zero-shot performance at the label level, it can be inconsistent with
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the triplet-level performance. More specifically, while the hard defects may be confused
with other defects when searching within the product scope, at the triplet level, where
we search within the same defect category instead, the embeddings of these defects could
be more properly arranged in the embedding space — the embeddings of the more similar
images are closer to that of the anchor image.

In conclusion, the results suggest we need different optimal loss temperature settings
for different similarity levels. These findings align with the theoretical analysis of the
contrastive loss function, even though the hard negative mining effects may not be promi-
nent at the label level. Finally, the results also suggest that there can be inconsistencies
between the "difficulty" of the defects at different similarity levels.

6.2. Vertical Experiments on the Effects of Augmentation Methods

As mentioned in Section [4.3] for SimCLR-based contrastive learning, data augmenta-
tion plays a crucial role in enforcing semantic invariances of the training images, and
we have chosen five augmentation categories to achieve the best performance: Flip,
PixelDropout, OpticalDistortion, Affine, and GaussNoise, as discussed in Section
In this section, we detail the evaluation of how these augmentation methods affect
the model performance when used separately and in combination.

6.2.1. Experimental Setup

We evaluate the overall performance at label and triplet levels using each of the five
augmentation methods separately and combine all of them. We use the temperature
7 = 0.1 for the supervised setting and 7 = 0.5 for the self-supervised setting, which are
the best-performing temperatures as discussed in Section [6.1.2] The hyperparameters
are the same as the default setting in Section [4.5.1]

6.2.2. Results and Analysis
Table 2| shows the overall performance of the model with different augmentation methods

at label and triplet levels. Note that the Dropout, Distortion, and Noise in the tables
refer to PixelDropout, OpticalDistortion, and GaussNoise, respectively.
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Augmentations . . . .
. UBMEIEALONS 7 o o-shot Flip  Dropout Distortion Affine Noise All
Metrics

PrecisionAtb 0.7292 0.7510  0.7504 0.7658 0.7829 0.7646 0.7900
PrecisionAt10 0.5882 0.6159  0.6153 0.6192 0.6363 0.6215 0.6389
APAt5 0.8648 0.8848  0.9008 0.8933 0.9038 0.8988 0.9078
APAt10 0.8222 0.8403  0.8558 0.8514 0.8644 0.8557 0.8690

(a) supervised, label-level

. Augmentations Zero-shot Flip Dropout Distortion — Affine Noise All
Metrics

SimilarityPrecision 0.6837 0.7113 0.7099 0.7181 0.7366  0.7097  0.7571
ScoreAtTop5 11.2124 12,9027 12.6136 12.9646 14.1121 13.0914 15.6637
ScoreAtTopl0 12,3333  14.1268 14.1917 14.5575 15.7906 14.3982 17.5723

(b) supervised, triplet-level

N -
Motrics ugmentations Zero-shot  Flip  Dropout Distortion Affine Noise All

PrecisionAtb 0.7292 0.7451  0.7516 0.7233 0.7546 0.7575 0.7835
PrecisionAt10 0.5882 0.6018  0.6047 0.5914 0.6127 0.6147 0.6372
APAt5 0.8648 0.8825  0.8768 0.8705 0.8815 0.8948 0.9152
APAt10 0.8222 0.8363  0.8342 0.8220 0.8371 0.8496 0.8675

(c) self-supervised, label-level

A ntations
. ugmentations Zero-shot Flip Dropout Distortion  Affine Noise All
Metrics

SimilarityPrecision 0.6837 0.6893 0.7195 0.7029 0.7348  0.7138  0.7575
ScoreAtTop5 11.2124  11.6313  13.5162 12,3186  14.1947 13.1888 15.7050
ScoreAtTop10 12.3333  13.0826  15.0649 13.8732  16.2035 14.5752 17.7847

(d) self-supervised, triplet-level

Table 2: Effects of different augmentation methods. The bold numbers indicate the best
performance in each metric.

Generally speaking, among individual augmentations, Affine and GaussNoise yield
higher performance improvements across different settings and metrics, suggesting that
most defects are invariant to affine transformations and Gaussian noises. PixelDropout,
OpticalDistortion, and Flip also show good performance gains, but their effectiveness
varies depending on the metric and the training setup. More specifically, the relative
performance of different augmentation methods for overall performance:

e Supervised Learning: Affine > Noise > Distortion > Dropout > Flip

e Self-supervised Learning: Affine > Noise > Dropout > Flip > Distortion

At label-level:
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e Supervised Learning: Affine > Noise > Dropout > Distortion > Flip

e Self-supervised Learning: Noise > Affine > Flip > Dropout > Distortion
At triplet-level:

e Supervised Learning: Affine > Distortion > Noise > Flip > Dropout

e Self-supervised Learning: Affine > Dropout > Noise > Distortion > Flip

Also, the additive effects are apparent when combining all the augmentation methods.
The best performance is achieved when all the augmentation methods are combined and
consistent across different settings and metrics. This observation suggests that these
augmentation methods complement each other, and combining them can lead to better
performance.

6.3. Horizontal Experiments on the Effects of Training Methods

As discussed in Section we have two training paradigms: supervised and self-
supervised contrastive learning, each with its own benefits. In this section, we compare
these two paradigms to see whether and to what extent supervised and self-supervised
signals benefit the model performance at label and triplet precision levels and how well
they generalize over unseen product types. Here, we use the models trained with the
best-performing recipes from the previous experiments.

6.3.1. Overall Performance

Table [3] shows the overall performance of the model with different training methods.
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Methods . . . .
m Zero-shot  Self-supervised (Gain) Supervised (Gain)

PrecisionAt5 0.7292 0.7835 (7.45%) 0.7900 (8.34%)
PrecisionAt10 0.5882 0.6372 (8.33%) 0.6389 (8.63%)
APAt5 0.8648 0.9152 (5.83%) 0.9078 (4.97%)
APAt10 0.8222 0.8675 (5.51%) 0.8690 (5.69%)

(a) label-level

Methods . . . ‘
m Zero-shot  Self-supervised (Gain) Supervised (Gain)

SimilarityPrecision  0.6837 0.7575 (10.78%) 0.7571 (10.73%)
ScoreAtTop5 112124  15.7050 (40.07%)  15.6637 (39.72%)
ScoreAtTop10 12.3333  17.7847 (44.17%)  17.5723 (42.52%)

(b) triplet-level

Table 3: Effects of different training methods (with performance gain). The bold numbers
indicate the best performance in each metric.

In conclusion, both self-supervised and supervised learning methods consistently outper-
form zero-shot across all metrics, achieving an approximately 8% performance gain in
precision@k and a an approximately 5% performance gain in AP@k. At the triplet level,
both methods achieve an approximately 10% performance gain in similarity precision and
an approximately 40% performance gain in Score-at-top-K, showing the effectiveness of
training. Moreover, the performance of the self-supervised learning method is compa-
rable to that of the supervised learning method. This observation suggests that the
self-supervision signal effectively achieves good performance in similarity search tasks,
even without the explicit supervision signal, which indicates the potential of scaling up
the training to larger datasets.

More specifically, supervised learning performs slightly better at the label level than self-
supervised learning. In contrast, self-supervised learning performs slightly better at the
triplet level than supervised learning. The performance gains are more significant at
the triplet level than the label level, suggesting that the self-supervised signal is more
effective in learning the fine-grained similarity between the samples than the supervised
signal.

6.3.2. Performance on Hard and Non-hard Defects

Figure [12| shows the performance of the model on hard and non-hard defects defined in
Section both at both label and triplet levels.
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Effects of Different Training Methods, Label-Level
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(b) triplet-level

Figure 12: Effects of different training methods on hard and non-hard defects. The ver-
tical dashed lines with percentages indicate the performance gain between the

two adjacent experiments.
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The results show that the supervised signal performs better for label-wise metrics, specif-
ically for hard defects, while the self-supervised signal performs better for triplet-wise
metrics. This observation suggests that the label information can help the model better
distinguish the hard defects from the non-hard ones at the defect level. However, the
self-supervision signal can help the model better learn the fine-grained similarity between
the samples to achieve better performance for the hard defects. Also, the performance
gain over the zero-shot performance is more significant for hard defects than non-hard
defects at the label level. In contrast, the performance gain is more significant for non-
hard defects than hard ones at the triplet level. This observation further suggests that
the supervision signals are more beneficial for the hard defects at the defect level. In
contrast, the self-supervision signals are more beneficial at the triplet level.

6.3.3. Generalizability of the Training Methods

Figure[I3|shows the performance of the model on the train and non-train products defined
in Section [3.4.2] both at label and triplet levels.

45



Effects of Different Training Methods, Label-Level
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Figure 13: Effects of different training methods on train and non-train products. The
vertical dashed lines with percentages indicate the performance gain between
the two adjacent experiments.
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At the label level, only self-supervision signals show significant generalizability to non-
trained products; supervision signals have little performance gain. Also, the performance
gain over the zero-shot performance is more significant for trained products than for
non-trained products, which suggests that both signals have the potential to overfit the
training products. For trained products, the supervision signal performs better than
self-supervision signals, suggesting that while performing better for trained products,
the supervised signal may result in more severe overfitting to the training data.

At the triplet level, both supervised and self-supervised signals show generalizability to
non-train products. Again, similar to the label level, the performance gain over the zero-
shot performance is more significant for trained products than non-trained products,
indicating overfitting potential for both signals. Additionally, the self-supervision signal
performs slightly better for trained products. In contrast, the supervision signal performs
slightly better for non-trained products, suggesting that the self-supervision signal has
more potential to overfit the training data in the triplet-level task.

In conclusion, the self-supervision signal shows better generalizability to non-trained
products at both levels than the supervision signal. However, both signals have the
potential to overfit the training data. The supervision signal may result in more severe
overfitting at the label-level task, and the self-supervision signal may result in more severe
overfitting at the triplet level.

6.3.4. Examples of Positively and Negatively Affected Defects

Figure [[4] and [T5] are the two typical examples of most positively affected defects using
different training methods, each from trained and non-trained products. The figures
visualize the search results and relative ranks returned by models trained with different
methods using a defect cropping from the evaluation subset as the query. The ground
truths are attached to the respective returned defect cropping as well. Note that at the
label level, the ground truth is the defect label, while at the triplet level, the ground truth
is the relative rank of the defect cropping reconstructed from the annnotation triplets.
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'scratch'), Label-Level

Effects of Different Training Methods on (‘mvtec_ad', 'capsule’,

- - -
-

Evaluation Image Rank #1 Rank #2 Rank #5

(scratch) (GT: poke) (GT: poke) Rank #3 Rank #4 (GT: scratch)
(GT: faulty_imprint) (GT: faulty_imprint)

Self-Supervised
Rank #2 Rank #3

Rank #1 (GT: scratch) (GT: poke) Rank #4 Rank #5
(GT: scratch) (GT: scratch) (GT: faulty_imprint)
Supervised
Rank #1 Rank #3 Rank #4
(GT: scratch) Rank #2 (GT: squeeze) (GT: poke) Rank #5

(GT: scratch) (GT: squeeze)

(a) label-level

Effects of Different Training Methods on (‘mvtec_ad', 'capsule’, 'scratch’), Triplet-Level

Zero - -

Evaluation Image Rank #1 Rank #3
(scratch) (GT: 8) Rank #2 (GT: 7) Rank #4 Rank #5
(GT: 2) (GT: 3) (GT: 9)
Self-Supervised _
Rank #4
Rank #2 (GT: 4) Rank #5
Rank #1 (GT: 1) Rank #3 (GT: 8)
(GT: 2)
R -
Rank #2 Rank #4
Rank #1 (GT: 1) Rank #3 (GT: 7) Rank #5
(GT: 2) (GT: 3) (GT: 9)

(b) triplet-level

Figure 14: An example of positively affected defects included in training (mvtec_ad,
capsule, scratch)
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Effects of Different Training Methods on (‘mvtec_ad’, 'tile', 'rough’), Label-Level

- .

Evaluation Image Rank #1 Rank #2 Rank #3 Rank #4
(rough) (GT: rough) (GT: gray_stroke) (GT: gray_stroke) (GT: gray_stroke)
Self-Supervised .
Rank #?2
Rank #4
Rank #1 (GT: rough) Rank #3 (GT: rough)

(GT: rough) (GT: gray_stroke)

Supervised

Rank #1 Rank #3 .

(GT: rough) Rank #2 (GT: rough) Rank #4
(GT: rough) (GT: gray_stroke)

(a) label-level

Effects of Different Training Methods on (‘mvtec_ad', 'tile', 'rough'), Triplet-Level

- . ‘
Rank #?2

Evaluation Image Rank #1 (GT: 4) Rank #3
(rough) (GT: 1) (GT: 5)
Self-Supervised . *
Rank #2 ‘ :
Rank #3
Rank #1 (GT: 2) (GT: 4) Rank #4

(GT: 1) (GT: 3)

Supervised

Rank #3 ¥
s Rank #2 (GT: 2) Rank #4
(GT: 1) (GT: 5)

(b) triplet-level

Rank #5
(GT: rough)

Rank #5
(GT: gray_stroke)

Rank #5
(GT: rough)

Rank #5
(GT: 6)

Rank #5
(GT: 6)

Figure 15: An example of positively affected defects not included in training (mvtec_ad,

tile, rough)
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From Figure [[4) and [I5] we can see that training improves the performance on the defect
search task, both at the label and triplet levels. For (mvtec_ad, capsule, scratch),
the model trained by supervised learning is consistently better than that trained by self-
supervised learning. In contrast, for (mvtec_ad, tile, rough), the model trained by
self-supervised learning is consistently better than that trained by supervised learning at
the triplet level.

Similarly, Figure [I6] and [I7] are the two typical examples of the most negatively affected
defects using different training methods, each from trained and non-trained products.
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Effects of Different Training Methods on (‘mvtec_ad', ‘zipper', 'fabric_interior'), Label-Level

Zero - . . .

Evaluation Image Rank #1

nk #
fabric interi Rank #3 Rank #4 Rank #5
(fabric_interior) (GT:fobric_interior) (GT:Eroken feeth) (GT: rough) ~ (GT: broken_teeth)  (GT: rough)
Self- Supervnsed . . . .
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. g ; R
(GT: fabric_interior) (GT: broken_teeth) (GT: broken teeth) (GT: br?)ken teeth) (GT: squeezed_teeth)

Superwsed . - .

Rank #3 Rank #4
Rank Rank #2 Rank #5
(GT: fabrlc_lnterlor) (GT: broken_teeth) (GT: fabric_interior) (GT: broken_teeth) (GT: broken_teeth)

(a) label-level

Effects of Different Training Methods on ('mvtec_ad', 'zipper', 'fabric_interior'), Triplet-Level

- I . .
Evaluation Image Rank #1 Rank #2 Rank #3 Rank #4 Rank #5
(fabric_interior) (GT: 1) (GT: 7) (GT: 4) (GT: 3) (GT: 8)
o . I .
Rank #1 Rank #2 Rank #3 Rank #4 Rank #5
(GT: 1) (GT: 7) (GT: 8) (GT: 5) (GT: 6)
o : . I .
Rank #1 Rank #2 Rank #3 Rank #4 Rank #5
(GT: 7) (GT: 1) (GT: 8) (GT: 5) (GT: 6)

(b) triplet-level

Figure 16: An example of negatively affected defects included in training (mvtec_ad,
zipper, fabric_interior)
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Effects of Different Training Methods on ('vision', 'pcb_2', 'defectl’), Label-Level

Zero-shot \
T Q Q
Evaluation Image Rank #1 Rank #2 Rank #3 Rank #4 Rank #5
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(a) label-level

Effects of Different Training Methods on ('vision', 'pcb_2', 'defectl'), Triplet-Level

Evaluation Ima;_:je
(defectl)

Self-Supervised !

Supervised

. Rank #2
(GT: 1)

(b) triplet-level

Figure 17: An example of negatively affected defects not included in training (vision,
pcb_2, defectl)
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From Figure [I6] and [I7} we can see that the models may result in worse performance
on the defect search task, both at the label and triplet levels. For (mvtec_ad, zipper,
fabric_interior), there are almost no improvements in the performance of the model
trained by supervised learning, and the model trained by self-supervised learning is con-
sistently worse than that zero-shot performance. It may partially be because the defect
is very hard to distinguish from the other defects, and the gradient signal generated
by the training dataset is not strong enough to improve the performance of this specific
defect. For (vision, pcb_2, defectl), there is a slight degradation in the model’s per-
formance trained by supervised learning at the label level. At the triplet level, the model
trained by supervised learning is consistently worse than that trained by self-supervised
learning. However, at the triplet level, the cropping ranked at three is apparently more
similar to the query cropping than the cropping ranked at 2, which suggests that there
can be faults or inconsistencies within the human annotations.

6.4. Conclusions

In this section, we have outlined a series of experiments to evaluate and compare the per-
formance of different training methods. We have proved the effectiveness of the training
in improving the model’s performance for fine-grained similarity search tasks, achiev-
ing a 5-8% performance gain in label-level precision and a > 10% performance gain in
triplet-level precision that aligns with human perception. More specifically, we have
found the optimal loss temperature to be contingent upon the training paradigm and the
level of precision, aligning with the theoretical analysis of the contrastive loss function.
We have also observed that affine and Gaussian noise augmentation strategies create the
invariances that most defects agree upon, and the combination of different augmentation
methods results in a synergistic improvement.

Furthermore, our research has unveiled the remarkable potential of self-supervised learn-
ing, which has shown more scalability in fine-grained similarity search than supervised
learning, reducing the need for supervision signals during training. Notably, the self-
supervision signal has proven more effective in learning the fine-grained similarity be-
tween the samples than the supervised signal. These findings reassure us about the
self-supervision signal’s effectiveness and display its exciting potential for larger-scale
and unlabeled domain datasets.

Finally, we have demonstrated the generalizability of the training methods, with ap-
proximately 5-7% performance gain over unseen products and defect types in training.
Additionally, the self-supervision signal showed better generalizability to non-trained
products at both levels than the supervision signal, albeit both tend to overfit. This
observation further indicates the potential of using the self-supervised learning paradigm
of fine-grained similarity search tasks.
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7. Prototype

This section describes a prototypical search application that implements the basic func-
tionalities of the one used in an actual industrial setting, with a defect database and the
embedding models we trained with the methods described in Section [4

7.1. Functionalities

As mentioned in Section [d] to perform searches within the defect database, we need to

e build an embedding-based search index with the model on the defect database,
e encode every input sample with the model into an embedding and

e search for the most similar samples in the defect database with the embedding

Also, as briefly discussed in Section [3.3] only the defect areas are interesting for the
search application. Therefore, the search application should at least have the following
functionalities:

e first, the user can upload an image and crop out any interested regions via the Ul,

e then, the cropped region is sent to an embedding model specified by the user to
generate region embedding

e the embeddings will be used to query the database with the distance measures
specified when building the search index, and finally,

e the entries with the most similar region embeddings will be retrieved.

It is important to note that, as a prerequisite, we must prepare the defect database and
build a compound search index to map a defect image with all the defect croppings from
it. For simplicity, in the prototype, we will directly search for the defect croppings in the
database subset of FGDS we constructed in Section and build the index upon this
subset.

7.2. Implementation

Since the database subset of FGDS is managed by FiftyOne [18], we leverage its app and
plugin system to build the prototypical search application. FiftyOne App is a web-based
application that provides a visual interface for exploring datasets and models. At the
same time, the FiftyOne Plugin system, which lives in the app, allows users to extend
the functionality of the app with custom components. The plugins can be built with
Python, Javascript/Typescript, and various external packages and frameworks in these
languages.
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FiftyOne allows for the storage of embeddings and the building of search indices with
various vector database backends. It can store the embeddings and indices in the dataset
and provides convenient APIs that allow the user to perform similarity-based searches
with such info. Our prototype uses Milvus [26] as the vector database backend.

On the other hand, we get the inspiration for the plugin from the reverse-image-search
plugin [28] by FiftyOne’s official team member. The plugin provides a simple interface
for uploading an image and searching for similar images in the dataset. For the image
cropping functionality, we use the react-easy-crop package [29], which provides a simple
and easy-to-use image cropping component.

7.3. User Interface

Figure and [21] show the user interface of the prototype and how users would
interact with it.

LF FiftyOne defect cropping-database ~ +add stage X @  HaveaTeam?

# Samples  + ® Visual Similarity Image Search X +

< @ L J i Q 1021samples |

® Unsaved view v

LR Visual Similarity Image Search
TAGS

Select and Crop Image
[ sample tags

[ 1abel t; Choose File NCRIFEEN
label tags

METADATA

transistor
[J metadatasize_bytes bent_lead X X
Search Configuration

[J metadatamime_type transistor bent_lead ' mvtec_ad mvtec_ad

[J metadatawidth Product Type (Source Dataset)
[ metadataheight
[J metadatanum_channels
LABELS
product_type
defect_category transistor bent_lead

. mvtec_ad transistor bent_lead | mvtec_ad
segmentation

Figure 18: The initial interface

Figure[18|shows the initial interface of the prototypical search application. The panel has
two main sections: the Select and Crop Image section and the Search Configuration
section. The Select and Crop Image section allows users to upload an image and crop
out the defect areas; the Search Configuration section allows users to adjust the set-
tings for the search operation.

To perform the search operation, the users can start uploading the product image by
clicking the Choose File button in the Select and Crop Image section. Then, the
cropping section will be shown as displayed in Figure
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Select and Crop Image

(a) Before cropping (b) After cropping

Figure 19: The cropping section

The cropping section is initialized with a default cropping area, as shown in Figure
Then, the users can adjust it using either the mouse/touchpad scroll or the slide bar
named Z0OM IMAGE (OR USING MOUSE SCROLL) below the cropping area to zoom the
image. The other slide bar named CHANGE ASPECT RATIO can be used to adjust the
aspect ratio. Once the users are satisfied with the cropping area, they can click the CROP
IMAGE button to create the defect cropping from the image, and a thumbnail will be
displayed right below the button, as shown in Figure Throughout the process, the
users can always discard the existing image and start over with another one by clicking
the CLEAR button anytime.

After successfully obtaining the defect cropping, the user can adjust the configurations
in the Search Configuration section as shown in Figure

Search Configuration

(a) Basic config (b) Advanced config

Figure 20: The search config section

The basic configuration shown in Figure allows the user to specify the search scope,
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including the product type and the defect category, over the database. The default is
set to search the whole product range and all defect categories. Users can narrow the
search scope by selecting a product or defect category. Here, we use the same product
and defect names as the ground truth for these two options.

Moreover, the advanced configuration is folded within the accordion region More Options
and can be expanded by clicking the accordion header. As shown in Figure the ad-
vanced configuration allows the user to specify the model for the embeddings. More
specifically, it allows the user to choose the model names that specify its essential train-
ing config, the training methods (i.e., Supervised or Self-Supervised), and the distance
metrics for the search index that can uniquely identify an embedding model. The user
can also adjust the number of results shown in the search result. These configurations
are offered with default values, and the user can adjust them as needed. Here, we leave
them as default.

Finally, after clicking the SEARCH MOST SIMILAR IMAGES button, the search result will
be displayed in the Samples panel as shown in Figure [21]

i# Samples P

® ® i : 10 samples

|
1pcb_2 defectlz pcb_2 defect2+ pcb_2 defectz}' 1 . pcb_2 defectz*‘
| - - -. .l ;—.— o

vision vision pcb2 defect2 \vision vision

" | K, F o | < = s
pcb2 defect2 pcb—2 defect2 pcb—2 defect2
. [} -

o
pcb_2 | defect2 kvision pcb2 defect2 \vision

Figure 21: the search result
Here, the prototype returns the top 10 most similar defect croppings from the database

subset. The users can also always click the CLEAR button in[I9D] to clear the search result
and start over with another search operation.
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8. Conclusion

In conclusion, this thesis has presented an effective solution for distinguishing fine-grained
visual similarity among extensive industrial defect images through several critical achieve-
ments and methodologies. First, we curated the Fine-Grained Defect Similarity (FGDS)
dataset, which includes defect images from open-source domain datasets and is anno-
tated with human preference data using triplets, serving as a training resource for our
embedding model and for evaluating fine-grained similarity performance. Then, we fine-
tuned a ViT embedding model using a SimCLR-based contrastive learning framework
in both supervised and self-supervised modes on the FGDS training subset. The em-
bedding model was then used to generate search indices for similarity-based retrieval.
Furthermore, we established a comprehensive evaluation protocol with detailed metrics
to assess similarity-based retrieval performance at both defect category and fine-grained
levels using triplet-based evaluation metrics to leverage human-annotated triplet data.

The experimental results demonstrate significant performance gains from zero-shot learn-
ing using the annotated data, demonstrating the proposed training methods’ effectiveness
in aligning model performance with human perception. These gains, contingent on the
optimal loss temperature, validate the theoretical analysis of the contrastive loss func-
tion. The results further demonstrate the critical role of augmentation methods in creat-
ing robust invariances, which suggests that combining different augmentation strategies
can lead to synergistic performance enhancement. Most notably, these findings empha-
size the remarkable potential of self-supervised learning, which reduces the dependency
on supervision signals and outperforms supervised learning in terms of capturing fine-
grained similarities. These implications advocate preferring self-supervised paradigms in
fine-grained similarity search, which fits into the context of the manufacturing quality
control domain where labeled data are scarce and expensive to obtain.

Overall, these contributions pave the way for future research and development, offering a
solid foundation for developing advanced image search applications for the manufactur-
ing quality control industry. This research not only provides a solution for distinguishing
fine-grained visual similarity among industrial defect images but also opens up new pos-
sibilities for the industry, promising more efficient and accurate quality control processes
in the future.
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9. Future Work

In the future, we have the potential to enhance the current search application in several
ways:

Firstly, we can enhance the pre-training process by extracting defect croppings from a
broader range of open-source domain datasets beyond MVTec AD and VISION. Pre-
training on a more diverse dataset can result in a more robust embedding backbone,
providing a superior starting point for fine-tuning the model on industry-specific datasets
from customers.

Another area for potential enhancement is the introduction of different region contexts.
Currently, we only use the tightest bounding box around the defect to create the crop-
pings. However, some defects require more contexts to be easily identified. Conversely,
some non-defect regions could be misleading, so the industry professional may want to
remove them. Therefore, experimenting with different region contexts and even intro-
ducing a segmenter like a Segment Anything Module (SAM) could significantly improve
the application’s adaptability and its potential to identify defects.

Moreover, the current training configuration is limited by the available computing re-
sources. For future experiments, we could use more computing to try larger batch sizes
and backbone models to see if they can further improve the retrieval performance. It
also gives room to refine the fine-tuning schedule. For example, we could try different
learning rate schedules for different attention layers or even use a learning rate finder to
find the optimal learning rate for the fine-tuning process. Alternatively, we could use
a different contrastive learning framework instead of the SimCLR [5] one to see which
works better for our task.

Furthermore, to evaluate the retrieval performance comprehensively, we could consider in-
troducing user-centric metrics, such as nDCG (normalized Discounted Cumulative Gain),
in addition to precision-based metrics. This approach would provide a more holistic view
of the retrieval performance in an interactive setting, emphasizing its usability and its
ability to meet industry needs.

Lastly, as explained in Section [7.1] in the actual search application, we need to design the
database containing the actual product images multi-indexed with all of the associated
defect croppings, along with a user interface that could adequately display the cropping-
based search results on top of the product image.
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A. Hard Defects and Non-train Products

A.1. Hard Defects

Source Dataset Product Type Defect Category

mvtec ad cable bent wire
mvtec ad cable cut_outer insulation
mvtec ad cable poke insulation
mvtec ad capsule crack
mvtec ad capsule poke
mvtec ad grid metal contamination
mvtec ad grid thread
mvtec ad pill faulty imprint
mvtec ad screw thread side
mvtec ad wood color
mvtec ad zipper broken teeth
vision console dirty
vision hemisphere defect _a
vision hemisphere defect ¢
vision lens flash _particle
vision lens hole
vision lens surface__damage
vision lens tear
vision pcb 1 short
vision pcb 1 spur

A.2. Non-train Products

Table 4: Hard Defects
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Source Dataset Product Type

mvtec_ad carpet
mvtec_ad leather
mvtec ad tile
mvtec ad transistor
vision cable
vision casting
vision pcb 2
vision ring
vision wood

Table 5: Non-train Products

B. Annotation Instructions

B.1. Short Instructions

Based on pure visual appearance, tell us which of the two images at the
bottom is more similar to the image at the top.

Note that we’re considering the visual factor only, so choose the first
thing that comes into your mind the moment you see these images. This

process shouldn’t take you more than a couple of seconds.

Two possible examples are:

Reference Image

Reference Image

A B
E A

In the first case, image A is more similar to the reference image than B.
In the second case, image B is more similar to the reference image than A.
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B.2.

Full Instructions

The images presented to you are some manufacturing defect samples. We’re
interested in how visually similar they are to humans comparing to
one another.

As we’re considering the visual appearances only, your choices are
supposed to be subjective, so you don’t have to go through a deliberate

thought process or seek objective verifications for your choices.

C. Data Augmentation Configuration

The data augmentation parameters used in the training are as follows. Note that the
parameters that are not listed are set to default values in the library.

D.

Flip: We use horizontal and vertical flips, each with a probability of 0.5.

PixelDropout: We use random pixel dropout with a probability of 0.2, along with
10% of the pixels dropped and filled with 0.

OpticalDistortion: We use optical distortion with a probability of 0.5, a distor-
tion and shift limit range of (-0.1, 0.1), and a constant border value of 0.

Affine: We use affine transformations with a probability of 0.5, along with trans-
lation fraction, rotation angle, and scaling factor limits of (-0.1, 0.1), (-15, 15), and
(0.8, 1.2), respectively.

GaussNoise: We use Gaussian noise with a probability of 0.5 and variation range
of (10, 50).

Evaluation Database Schema

This section describes the table schemas to store evaluation results.

D.1.

Results

ExperimentRunName (Primary Key): The name of the MLflow experiment and
run.

EvalFilePath (Primary Key): The path to the evaluation file of the sample.
ProductType: The product type of the sample.

SourceDataset: The source dataset of the sample.
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D.2.

D.3.

DefectCategory: The defect category of the sample.

PrecisionAt5: The precision@5 of searching for samples with the same defect
category in the database subset with this sample.

PrecisionAt10: The precision@10 of searching for samples with the same defect
category in the database subset with this sample.

APAt5: The AP@5 of searching for samples with the same defect category in the
database subset with this sample.

APAt10: The AP@10 of searching for samples with the same defect category in the
database subset with this sample.

SimilarityPrecision: The similarity precision of ranking samples within the same
defect category in the database subset with this sample as the anchor of the triplet.

ScoreAtTop5: The score-at-top-5 of ranking samples within the same defect cate-
gory in the database subset with this sample as the anchor of the triplet.

ScoreAtTop10: The score-at-top-10 of ranking samples within the same defect
category in the database subset with this sample as the anchor of the triplet.

RankListLabel

ExperimentRunName (Primary Key): The name of the MLflow experiment and
run.

EvalFilePath (Primary Key): The path to the evaluation file of the sample.
Rank (Primary Key): The rank of the database sample in the search results.
DatabaseFilePath: The path to the database sample file.

DefectCategory: The defect category of the database sample.

RankListTriplet

ExperimentRunName (Primary Key): The name of the MLflow experiment and
run.

EvalFilePath (Primary Key): The path to the evaluation file of the sample.
Rank (Primary Key): The rank of the database sample in the search results.
DatabaseFilePath: The path to the database sample file.

RankGT: The ground truth rank of the database sample, if available.
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D.4. ER Diagram

Figure 23] shows the ER diagram for the database to store evaluation results.

RankListLabel Results RankListTriplet

PK,FK | EvalFilePath pt H PK | EvalFilePath H 1§ PK,FK | EvalFilePath

PK,FK | ExperimentRunName PK | ExperimentRunName PK,FK | ExperimentRunName

PK | Rank ProductType PK | Rank

DatabaseFilePath DefectCategory DatabaseFilePath

DefectCategory SourceDataset RankGT

PrecisionAt5
PrecisionAt10
APAt5

APAt10
SimilarityPrecision
ScoreAtTop5

ScoreAtTop10

Figure 23: the ER diagram for the database to store evaluation results
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