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Abstract

Electroencephalography (EEG) signal modeling is important in understanding neural
activity and developing diagnostic tools. The problem of variability of electrode con-
tigurations across various EEG datasets, however, presents a significant challenge. The
variability of electrode configurations makes it hard to develop models that apply to any
setup. This thesis overcomes the challenge by proposing a new self-supervised learning
method for EEG signal modeling that efficiently achieves topology invariance in terms
of EEG electrodes. This thesis aims to develop an effective model that can handle EEG
data generated from varying electrode setups and easily conduct downstream tasks
such as seizure detection. The primary challenge is bridging the gaps between various
channel configurations and allowing models to learn essential representations regardless
of particular topological features. The proposed method utilizes learned queries and
cross-attention to project EEG signals from varying topologies onto a unified, fixed-size,
and topology-agnostic latent space. The following temporal attention in this latent space
is able to effectively capture temporal dynamics. This architecture provides a computa-
tional benefit by disentangling complexity from the number of channels. This approach
not only enhances model generalizability but also introduces a computationally efficient
method for learning from multi-channel EEG data, contributing to the advancement of
foundation models in EEG signal processing. The method is pre-trained and fine-tuned
on publicly available data and is shown to be able to perform better than or comparably
to the current state-of-the-art methods in 4 downstream tasks while needing significantly
lower memory and number of floating point operations.
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Chapter

Introduction

Electroencephalography (EEG) is an important measurement technique in the field of
neuroscience, offering vital information on brain activities and neurological diseases [1].
The growing availability and amount of EEG data have motivated the development of
automated analysis methods, especially relying on the capabilities of deep learning [2].
Deep learning methods have revolutionized biosignal processing by enabling the ability
to automatically learn complex patterns from raw data, extending beyond the limitations
of traditional feature engineering methods [3]. Among these deep learning models,
Transformers [4] have gained significant interest in modeling various data formats,
including text [4], image [5] and audio [6]. Recent work has also shown the capabilities
of transformers on multivariate time series data [7]. Their inherent ability to capture
long-range dependencies and intra-variate (temporal relation within a channel) as well
as inter-variate (inter-channel relations) correlations makes them highly suitable for
difficult multivariate time-series signals [8] including biosignals like EEG, which exhibit
both spatial and temporal structure.

However, one significant barrier still exists in EEG analysis: the inherent variability
between configurations in different datasets [9]. EEG signals are registered with various
electrode settings, differing in the number and position of electrodes on the scalp.
This topological heterogeneity poses a significant obstacle to developing stable and
clinically viable deep learning models. Topology-agnostic methods are crucial as they
enable training models on heterogeneous, publicly available EEG data, leading to more
generalizable and reliable models. Furthermore, some state-of-the-art approaches tend
to train independent models per individual electrode setup, preventing the efficient
utilization of heterogeneous datasets and the widespread use of developed models.
Therefore, creating models invariant to such differences by design, capable of learning
informative representations independent of the specific measurement setup, is necessary
to harness the potential of deep learning for EEG. In addition to this challenge, however,
the need for computational efficiency stands, especially in the clinical setup where real-
time EEG analysis and diagnosis are very important. Computationally efficient models
are not only necessary for real-time interventions but also to facilitate deployment on
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resource-limited edge devices.

This thesis presents a new transformer modeling methodology to model topology-
invariant EEG signals with a strong emphasis on computational efficiency. The pro-
posed approach utilizes learned queries with cross-attention mechanisms to project
EEG signals from varying electrode configurations onto a shared, topology-insensitive,
tixed-dimensional latent space. This query-based representation is then processed with
patch-wise attention to capture temporal dynamics, taking advantage of the strengths of
Transformer architectures for handling time series. A key advantage of this design is
that model bottleneck complexity grows with the number of patches and not with the
number of electrodes, making it highly appropriate for different electrode setups and
real-time use cases.

The effectiveness of the approach is assessed by self-supervised pre-training and fine-
tuning on public EEG datasets. The model, with good performance on downstream tasks,
e.g., seizure detection, shows the capacity to generalize across datasets with different
electrode configurations. This is an important contribution to the field because it offers a
topology-invariant and computationally efficient EEG modeling solution. This report
is structured to provide an in-depth analysis of the aspects of the method. Chapter 2,
Background, establishes the fundamental understanding of EEG signal characteristics, the
problem posed by topological variability, the significance of deep learning, and Trans-
formers in multivariate time series analysis. Chapter 3, Related Work, analyzes current
approaches in EEG analysis and identifies their shortcomings in effectively tackling
topology invariance and efficiency. Chapter 4, Methodology, explains the suggested ap-
proach, including the model architecture and the self-supervised pre-training technique.
Chapter 5, Results, outlines the empirical assessment and performance evaluation of the
model. Lastly, Chapter 6, Conclusion, investigates and concludes the findings.
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Background

2.1. Background

This chapter provides the important background knowledge necessary to understand
the concepts that will be discussed later in this thesis. It will cover three key areas: an
introduction to biosignals and EEG signals, their characteristics, and relevance to this
work; the transformer architecture, which focuses on the attention mechanism and its
components; Set Transformer methods; and the concept of learned queries.

2.1.1. Biosignals and EEG Signals

Biosignals are physiological signals that can be measured and monitored from living
organisms to provide information about their biological processes [10]. These signals
include a wide range of measurements, including electrical signals like EEG, electro-
cardiography (ECG), electromyography (EMG), or chemical signals like glucose levels.
Biosignal analysis plays an increasingly crucial role in many fields, including medical
diagnosis and patient monitoring [11].

Among these biosignals, EEG is a neurophysiological technique used to measure
and record the brain’s electrical activity [1]. It is a non-invasive method that involves
placing electrodes on top of the scalp to measure the voltage differentials resulting from
currents within the neurons of the brain. EEG is a valuable tool in clinical, research, and
commercial settings for studying brain function, diagnosing neurological disorders, and
developing brain-computer interfaces.

Recording EEG Signals

EEG signals are recorded using electrodes placed on the scalp according to standardized
systems like the 10-20 system or its extensions [12]. There are different types of electrodes
to measure brain activity, such as wet electrodes that require a conducting gel between
the skin and the electrode discs and dry electrodes that, instead, try to eliminate the
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Figure 2.1.: Electrode positions and labels in the 10-20 system placed on the scalp. Gray
circles indicate additional positions introduced in the 10-10 extension. [16]

need for this gel [13], each type offering some advantages and shortcomings [14]. A
montage specifies the arrangement and naming convention of these electrodes. Common
montages include bipolar and unipolar montages. In a referential or unipolar montage,
each electrode measures the potential difference between that electrode and a common
reference electrode. Meanwhile, in a bipolar montage, each channel records the potential
difference between two adjacent electrodes. Electrodes are connected in chains across
the scalp, and each channel represents the voltage difference between two neighboring
electrodes in the chain, forming the "double-banana" montage [15].

The electrodes measure the potential difference between different locations on the
scalp. These weak electrical signals are then amplified and digitized for recording
and analysis. Modern EEG systems often use a multi-channel setup, recording from
numerous electrodes simultaneously to capture the brain activity of different brain
regions. The output is a multivariate time series, where each channel represents the
electrical potential recorded at a specific electrode location over time.

Characteristics of EEG Signals

EEG signals are characterized by the following:

¢ Frequency Bands: EEG signals are typically decomposed into different frequency
bands, each associated with different types of brain activity and states of conscious-
ness [17]. The main frequency bands are:

— Delta (9): (0.5-4 Hz) - Slowest frequencies, dominant during deep sleep.

— Theta (0): (4-8 Hz) - Associated with light sleep, meditation, and memory
processing.
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Figure 2.2.: Original transformer architecture by [4].

— Alpha (x): (8-13 Hz) - Prominent when awake and relaxed with eyes closed
or when sleepy.

- Beta (B): (13-30 Hz) - Associated with active thinking, alertness, concentration,
and motor activity and usually observed in the frontal and central regions.

- Gamma (7): (30+ Hz) - Highest frequencies associated with higher cognitive
functions and sensory processing.

* Amplitude: The amplitude of EEG signals is typically very low, measured in
microvolts (V). The amplitude reflects the strength of the signal. Typically, EEG
signals contain a lot of artifacts that require careful processing [18].

* Multivariate Nature: EEG is multivariate, as it simultaneously records signals
from multiple electrodes. The spatial relationships between signals from different
electrodes are essential for understanding activity patterns.

2.1.2. Transformer Architecture and Attention Mechanisms

The Transformer architecture, introduced by [4], has changed the natural language
processing (NLP) field and has since been successfully applied to various other domains,
including computer vision [5], audio analysis [6] and biosignal analysis such as ECG [19],
EMG [20] and EEG [21].
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At its core, the architecture relies on the attention mechanism, which allows the model
to focus on the most relevant parts of the input sequence. This section will explain the
key components of the Transformer architecture, with a particular focus on the attention
mechanism.

Overall Transformer Architecture

The original Transformer architecture is primarily composed of an encoder and a de-
coder.

* Encoder: The encoder is responsible for processing the input and creating a latent
representation of it. It consists of multiple identical layers. Each layer is composed
of two main sub-layers:

1. Multi-Head Self-Attention: This layer allows the encoder to attend to differ-
ent positions in the input sequence and understand the relationships between
them. For example, in the time-series domain, this would allow the model to
understand the relationships between different timestamps in the input.

2. Feed-Forward Network: A position-wise feed-forward network is applied to
each position independently, refining the output of the attention layer.

Each of these sub-layers is followed by a residual connection and layer normaliza-
tion. Residual connections help in training deeper networks by enabling gradient
flow, and layer normalization stabilizes the learning process.

¢ Decoder: The decoder is used to generate an output sequence, typically condi-
tioned on the encoder’s output. Like the encoder, the decoder is a stack of identical
layers. Each decoder layer contains three sub-layers:

1. Multi-Head Self-Attention: This is similar to the encoder’s self-attention,
but usually with masking to prevent the decoder from attending to future
positions in the output sequence during training to ensure one directional
generation. In the bidirectional analysis, including this thesis, masking is not
applied.

2. Multi-Head Attention (Encoder-Decoder Attention): This layer allows the
decoder to attend to the encoder output, bridging the network’s encoder and
decoder parts. It takes the queries from the previous decoder layer and the
keys and values from the encoder output.

3. Feed-Forward Network: Identical to the encoder’s feed-forward network.

Again, each sub-layer is followed by residual connections and layer normalization.
Finally, different types of layers are used at the output of the decoder to produce
different task-specific outputs. For the classification task, linear layers and a
softmax layer are used to predict probabilities over the classes.
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The Attention Mechanism: Queries, Keys, and Values

The core of the Transformer is the scaled dot-product attention mechanism [4]. It relies
on the calculation of an attention score between each position in the input sequence and
all other positions, determining how much each position should be attended to when
representing a specific position.

Defined mathematically:

* Queries (Q): Represent the "search term" for each position. In self-attention, queries
are derived from the input sequence itself. In cross-attention, these queries come
from a different source than the input sequence, which can be another sequence or
the output of the encoders, etc.

¢ Keys (K): Represent the "memory term" for each position, also derived from the
input sequence in self-attention.

* Values (V): Represent the "information content" associated with each position,
again derived from the input sequence in self-attention.

For an input sequence represented as a matrix X € RT*E (where T is the sequence
length and E is the embedding dimension), we can obtain Query, Key, and Value matrices
through linear transformations:

Q=XWqy, K=XWg, V=XWy

where Wq, Wk, Wy € RRE*4 are learnable weight matrices, and dy is the dimension of
the keys (and queries). For simplicity, we often set the query, key, and value dimensions
to be the same, d; = d;, = d, = d.

The attention score between each query and all keys is then calculated using the dot
product:

Attention Scores = QKT

This results in a matrix of scores where each entry (i,j) represents the similarity
between the i-th query and the j-th key. To stabilize training and prevent scores from
becoming too large, the scores are scaled by the square root of the dimension of the keys,
dy, and softmax function is applied to convert them into probabilities, representing the
attention weights:

vy

These attention weights are then used to weigh the value vectors. The output of the
attention mechanism for each query is a weighted sum of the value vectors, where the
weights are the attention weights:

KT
Attention Weights = softmax <Q>
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KT
Attention Output = Attention Weights - V = softmax <Q> Vv

Vi
This output is a matrix of the same dimensions as Queries and Values, representing
the attention-weighted representation of the input sequence.

Multi-Head Attention

To further enhance the capabilities of the attention mechanism, Transformers employ
Multi-Head Attention. Instead of performing a single attention calculation, Multi-Head
Attention runs through several independent attention heads in parallel [4].

For Multi-Head Attention, we have h different attention "heads". For each head
i€{1,2,..,h}, welearn different sets of weight matrices W ;, Wk ;, Wy ;. We compute
attention as described above for each head independently:

(XWo,i) (XWg,)"
Vi

head; = Attention (XWp ;, XWg ;, XWy ;) = softmax ( ) (XWy ;)

where head; € RT*%_ After computing the outputs for all heads, we concatenate them
along the feature dimension and project them back to the original embedding dimension
using another weight matrix Wo € R(4)<E;

MultiHead (Q, K, V) = Concat(head;, heady, ..., head;, ) Wo

where Concat is the concatenation operation. Typically, the number of heads & and the
dimension of each head d, are chosen such that /i - d, = E, the embedding dimension.

Multi-head attention helps model different aspects of the relationships between posi-
tions in the input sequence. Some heads might focus on short-range dependencies or
different types of semantic or syntactic relationships.

2.1.3. Set Transformer Methods and Learned Queries

Traditional Transformer architecture is designed for sequential data, where the order of
elements is crucial. The order is represented by the positional encoding that can be a
mathematical function or a learned parameter based on the positional indices. However,
in some scenarios, inputs are instead sets of items where the order is irrelevant. This
makes Set Transformer [22] methods and the concept of learned queries become relevant.
These approaches aim to achieve permutation invariance, meaning the output of the
model should be the same regardless of the order of elements in the input set. These
methods are also robust in terms of the number of elements in the input set.
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Permutation Invariance and Sets

A set is an unordered collection of unique elements. In machine learning, models
have to be permutation invariant when dealing with set inputs. This means that if
we change the order of elements in the input set, the output of the model should not
change. Mathematically, for a function f operating on a set S = {x1,x,...,xx}, and any
permutation 7t of the indices {1,2,..., N}, we want:

f{x1, %208 }) = F{X ), Xr(2)r -+ X () )

This property is crucial when the input is inherently unordered, such as a collection of
objects, points in a point cloud, or, as in EEG input, potentially the set of EEG channels
in a topology-agnostic manner.

Learned Queries for Set Processing

Learned queries provide a mechanism to process sets in a permutation-invariant way
using attention mechanisms. Instead of attending between elements of the input set
directly in a self-attention manner, we introduce a set of learned query vectors. These
queries are not derived from the input set itself but are learnable parameters of the
model. They act as abstract "representatives” or "aggregators" of the set.

Let X = {x1,x2,...,xN} be the input set, where each x; € RE is an embedded repre-
sentation of an element in the set. Let Q = {41,42,...,qm } be a set of M learned query
vectors, where each g; € RE. These queries are initialized randomly and learned during
training.

To process the set X using learned queries Q, we can apply a cross-attention mecha-
nism. In this context, the learned queries Q act as the queries in the attention mechanism,
while the elements of the input set X act as both keys and values.

For each learned query g; € Q, we compute attention over all elements in the input
set X. Let’s denote the matrices formed by the queries and input set elements as
Quat € RMXE (rows are q;) and Xyt € RN*E (rows are x;). We can then perform cross-
attention as follows:

N
Output]. = Z;aﬁxi (2.1)
1=

where aj; is the attention weight between the j-th query g; and the i-th input element x;,
calculated using scaled dot-product attention:

_ exp(similarity(q;,x;))
L 211:’:1 exp(similarity(qj,xk))

and a common similarity function is the scaled dot product:

2.2)

‘JJ'TW/Q(xiWIQ)T
Vg

similarity(q;, x;) =
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with learnable weight matrices Wg, Wy € RE*4, For simplicity, we can directly use q;j as
query and x; as key/value and the similarity becomes:

9/ xi

Nz

The output for the j-th query, Output;, is a weighted sum of the input set ele-
ments, where the weights are determined by the attention mechanism with respect
to g;. Repeating this for all queries in Q gives us a set of output representations,
{Output,,Output,,...,Output,, }, each representing a different "view" or aggregation of
the input set, guided by the learned queries.

similarity(q;, x;) =

Permutation Invariance in Learned Query Approach

The permutation invariance arises because the attention mechanism aggregates informa-
tion from the entire input set for each query. Since the summation in equation (2.1) and
the softmax normalization in (2.2) are permutation invariant operations with respect
to the set X = {x1,x2,...,xx}, the order of elements in X does not affect the final output
set of query representations {Output,, Output,, ..., Output,,}. Regardless of the order in
which the elements of X are presented, each learned query will attend to the same set of
elements and produce a consistent output representation.

In the context of the EEG signals, using learned queries allows us to create a repre-
sentation of the EEG channels that is independent of their specific ordering or even the
number of channels. The learned queries act as a fixed set of basis vectors to summarize
the information in the input EEG electrodes, achieving topology invariance.

2.1.4. Self-Supervised Learning

Supervised learning has been widely used and a successful approach in various domains
of machine learning, but it heavily relies on large amounts of labeled data. Obtaining la-
beled data can be expensive, time-consuming, and sometimes even infeasible, especially
in domains like medical signal processing requiring expert annotations. Self-supervised
learning (SSL) offers a powerful alternative by enabling models to learn meaningful
representations from large amounts of unlabeled data. The core idea of SSL is to define
a pretext task that can be solved using the unlabeled data itself, and learning to solve
this pretext task forces the model to learn useful features that can then be transferred to
downstream tasks of interest.

Leveraging Unlabeled Data with Self-Supervision

Self-supervised learning exploits the inherent structure within the unlabeled data to
create its own supervisory signals. Instead of relying on external labels, SSL. methods
automatically generate labels from the data itself. By training a model to predict these
self-generated labels, the model learns to understand the underlying patterns in the
data. This pre-training phase allows the model to initialize its weights with meaningful

10
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representations, which can significantly improve performance and reduce the need for
labeled data when fine-tuning on downstream tasks.

Self-Supervised Learning in Time Series Domain

In the time-series domain, self-supervised learning has gained significant interest with
the use of data-hungry transformer models, offering solutions to the challenge of limited
labeled time-series data. Two main categories of self-supervision techniques for time
series are masked reconstruction and contrastive learning.

* Masked Reconstruction: Inspired by masked language modeling in NLP [23] and
masked image modeling [24] in computer vision, masked reconstruction in time
series involves masking or removing portions of the input time series and training
a model to reconstruct the missing parts. This pretext task forces the model to
learn temporal dependencies and understand the context within the time series
to accurately fill in the masked segments [25]. For example, in EEG signals, one
might mask out segments of the time series in some channels and train the model
to predict the original signal in the masked regions based on the context from
unmasked segments and other channels.

¢ Contrastive Learning: Contrastive learning methods aim to learn representations
by contrasting similar and dissimilar pairs of data samples. In the time series
domain, this can be achieved by defining "positive" pairs as different views or
augmentations of the same original time series segment and "negative" pairs as
views from different time series segments. The model is trained to bring the
representations of positive pairs closer together in the embedding space while
pushing the representations of negative pairs further apart [26].

Both masked reconstruction and contrastive learning have proven effective for pre-
training time series models, enabling them to learn useful representations from unlabeled
data that can be effectively transferred to various downstream time series tasks. Out of
these options, masked reconstruction is used in this work to pre-train models.

2.1.5. Datasets

A large EEG corpus was used to pre-train the model, and other datasets were used
to measure its performance on different downstream tasks to facilitate self-supervised
learning.

The primary dataset used in this project is the Temple University Hospital (TUH) EEG
Corpus (TUEG), which, as described by [27], is the largest publicly available corpus
of clinical EEG data. Continually collected since 2002, it comprises over 60,000 EEG
recordings, amounting to more than 30 years of recording data when aggregated across
all channels. This extensive corpus includes data from over 10,000 unique subjects,
with an approximately balanced gender distribution and a wide age range from 1 to 90
years old. Importantly, all recordings within the TUEG dataset follow the International

11
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10-20 system for electrode placement, ensuring a standardized channel montage. In the
context of this project, the TUEG dataset serves as the primary corpus for pre-training
the model, leveraging its vast amount of unlabeled EEG data.

Another dataset used for pre-training is the publicly available Siena Scalp Database
from PhysioNet [28] introduced by [29], collected at the University of Siena, Italy. The
primary objective of this database is to facilitate research on the description, detection,
and short-term prediction of epileptic seizures and wake-sleep transitions using non-
invasive EEG recordings [30]. The dataset comprises scalp EEG recordings from 14
epileptic patients (9 males, 5 females) with ages ranging from 20 to 71 years. EEG data
was acquired using a video scalp EEG system with a sampling rate of 512 Hz, and
electrodes were placed according to the international 10-20 system.

Beyond the comprehensive TUEG dataset, the corpus also provides labeled subsets
that are valuable for evaluating model performance on specific downstream tasks. These
key labeled subsets include:

¢ Temple University Hospital Abnormal EEG (TUAB) Corpus: TUAB is a subset
of TUEG specifically annotated for abnormality detection. It contains recordings
labeled as either 'normal’ or “abnormal’, making it a benchmark dataset for clinical
diagnostic tasks. TUAB comprises 2,329 subjects and features relatively balanced
classes, making it suitable for training and evaluating binary classification models
focused on identifying abnormal EEG patterns.

¢ Temple University Hospital Artifact EEG (TUAR) Corpus: TUAR is designed for
artifact detection research. It includes annotations for various types of artifacts
commonly found in EEG recordings, such as eye blinks and muscle artifacts. The
annotations are provided in both single-channel and multi-channel settings. The
TUAR dataset includes data from 213 subjects and is valuable for developing and
testing algorithms to identify and remove artifacts from EEG signals automatically.

¢ Temple University Hospital Slowing (TUSL) Corpus: TUSL focuses on detecting
and classifying EEG slowing events. It is a 4-class classification dataset, where
recordings are annotated into categories including ‘slowing events’, ‘seizures’,
‘complex background’, and ‘'normal EEG’. TUSL includes 38 subjects. TUSL is
helpful for tasks requiring the classification of different EEG patterns related to
slowing and other neurological events.

To evaluate the broader applicability of the method beyond seizure-related EEG
analysis and to assess its performance on datasets with different electrode topologies,
SEED-V [31] is also used from the SEED family of datasets. These datasets are widely
used benchmarks in the field of EEG-based emotion recognition research.

The SEED datasets are designed for emotion recognition from EEG signals in response
to movie clips. Dataset details are as follows:

¢ Participants are presented with carefully selected movie clips designed to evoke
specific emotions. These clips are typically categorized into discrete emotion labels.

12
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* EEG signals are recorded from participants while they watch these movie clips.
The electrode montage and number of channels vary slightly across the datasets,
but all are multi-channel EEG recordings.

¢ Each dataset provides emotion labels for each movie clip segment. The emotion
categories and the labeling methodology may differ slightly between versions
(described below).

The primary task associated with the SEED datasets is to classify a participant’s
emotional state based on their EEG signals recorded during movie clip viewing. This
is framed as a multi-class classification problem, where the classes correspond to the
different emotion categories associated with the movie clips. SEED family differs by
the number of emotions they categorize; the SEED dataset [32, 33], categorizes 3, the
SEED-IV [34] dataset categorizes 4, and the SEED-V [31] categorizes 5 emotions, with
increasing complexity and fine-grained classification. In this work, the SEED-V dataset
is used to compare with the previous work.

The following table summarizes the key characteristics of the datasets used. The total
number of samples is reported for the pre-training dataset, and the train/validation/test
split samples are reported for the downstream datasets.

Dataset | # Subjects # Samples Hours of Recordings # Channels

TUEG 14,987 15,686,874 21,787.32 20 or 22 in bipolar format
Siena 14 101,520 141.0 29

TUAB 2,329 591,357/154,938/74,010 1,139.31 22 in bipolar format
TUAR 213 49,241/5,870/5,179 83.74 22 in bipolar format
TUSL 38 16,088/1,203/2,540 27.54 22 in bipolar format
SEED-V 15 43,328/43,360/31,056 32.70 62

Table 2.1.: Summary of Datasets Used.
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Related Work

3.1. EEG Foundation Models

BENDR [35] is a self-supervised EEG foundation model inspired by wav2vec 2.0. BENDR
uses a deep convolutional encoder to downsample raw EEG waveforms into a sequence
of tokens (BENDR tokens). A Transformer encoder then processes these tokens. Po-
sitional information is added via grouped convolutions, making the model sequence
length independent. BENDR is pre-trained with a Masked Autoencoding (MAE) ob-
jective: randomly masking and reconstructing BENDR tokens using a contrastive loss.
BENDR is an an early promising EEG foundation model, achieving over 90% accuracy on
brain-computer interface focused datasets. However, it has limitations in explicitly mod-
eling spatial correlations between EEG channels, and the method lacks channel-specific
embeddings.

BrainBERT [36] introduces a self-supervised Transformer model for intracranial EEG
(iEEG), adapting techniques from speech processing. It processes iEEG signals by first
converting each electrode’s signal into spectrograms, which are then fed into a Trans-
former encoder after masked spectrogram reconstruction pre-training. This approach
achieves strong performance in decoding tasks and demonstrates generalization across
subjects and electrode locations on the dataset that the authors collected. BrainBERT
processes each channel’s signal independently to create spectrogram inputs, aiming for
electrode-agnostic representations but not explicitly addressing variable electrode topolo-
gies. In contrast to this channel-independent spectrogram processing, the proposed
model in this work directly tackles the challenge of varying EEG topologies.

Brant [37] proposes a large-scale foundation model for intracranial EEG pre-training,
aiming to capture both long-term temporal dependencies and spatial correlations. Brant
processes input by converting raw signals into patches and incorporating both time and
frequency domain information through a novel encoding. The architecture comprises
two Transformer encoders: a temporal encoder processing patches sequentially within
each channel and a spatial encoder that subsequently captures correlations across chan-
nels. Pre-training is performed via a masked autoencoding approach, reconstructing
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masked patches from the input. Evaluated on a diverse set of downstream tasks on the
privately collected dataset, Brant achieves state-of-the-art performance, such as a seizure
detection performance with over 0.63 Fl-score. While Brant effectively incorporates
spatial correlation, its architecture is inherently topology-dependent, designed for a
consistent number of input channels, differing from the topology-agnostic approach.

Another method, BIOT [38], introduces a cross-data learning framework for diverse
biosignals like EEG. BIOT introduces a tokenization module that processes each channel
independently, segmenting it into fixed-length tokens and flattening them into a unified
sequence to handle variable lengths and mismatched channels. This sequence of channel
tokens is combined with the channel and positional embeddings and is then processed
by a computationally efficient Linear Transformer encoder. BIOT is pre-trained using an
unsupervised masked autoencoding objective and demonstrates strong performance
across various tasks. The authors reported a maximum performance of 0.879 AUC-
PR and 0.881 AUROC score on the TUAB dataset. While BIOT effectively addresses
data heterogeneity and incorporates channel information via embeddings within its
tokenized sequence, it differs from the topology-agnostic approach as it does not unify
different topologies.

One of the recent foundation models, LaBraM [39], presents a large-scale foundation
model for EEG, pre-trained on an extensive dataset. LaBraM addresses EEG data het-
erogeneity by segmenting EEG signals into channel-specific patches. These patches are
then processed by a neural tokenizer trained with a vector-quantized codebook to gener-
ate compact neural codes. The core architecture is a Transformer network pre-trained
with a masked signal modeling objective, predicting masked neural codes. LaBraM is
designed to capture both long-term temporal dependencies and spatial correlations,
utilizing separate temporal and spatial encoders in its architecture. LaBraM is the cur-
rent state-of-the-art method for many datasets with high performances, such as 0.92
AUC-PR and 0.916 AUROC scores on TUAB and 0.41 accuracy on the SEED-V dataset.
While achieving state-of-the-art performance on some EEG tasks and demonstrating the
benefits of large-scale pre-training, LaBraM, unlike the topology-agnostic model, applies
attention across a long, combined sequence of patches from all channels. This approach,
although capturing spatial relationships, results in significant computational costs in
terms of time and memory, particularly on data with many channels.

EEGFormer [40], is an EEG foundation model pre-trained on the TUH Corpus, aiming
for transferable and interpretable EEG representations. The model employs a vector-
quantized neural spectrum prediction pre-training strategy like LaBraM. EEG signals
are segmented into channel patches, and a neural tokenizer is trained to encode these
patches into discrete neural codes by predicting their Fourier spectrum. A Transformer
encoder-decoder architecture is then pre-trained to reconstruct these neural codes from
masked EEG patches. EEGFormer emphasizes interpretability through its discrete
codebook and demonstrates strong performance across various downstream EEG tasks.
EEGFormer achieved high scores, such as 0.852 AUROC score on the TUAR dataset.
Similar to BrainBERT, EEGFormer works in a channel-independent way and does not
aim to unify different topologies.

A recent work, CBraMod [41], introduces a novel foundation model for EEG decoding,
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pre-trained on the TUH EEG Corpus. EEG signals are segmented into channel patches,
and the architecture employs a criss-cross transformer backbone. This transformer
features parallel spatial and temporal attention mechanisms to model capture spatial
correlations within time intervals and temporal dependencies within channels separately,
separating attention heads for both dimensions. CBraMod utilizes asymmetric condi-
tional positional encoding (ACPE) to incorporate positional information, dynamically
adapting to diverse EEG formats. Pre-training is achieved through patch-based masked
EEG reconstruction. A key novelty is the criss-cross attention mechanism designed
to capture EEG-specific spatial-temporal dynamics better. CBraMod, together with
LaBraM, has state-of-the-art results on many datasets, such as 0.55 accuracy on the
9-class FACED emotion detection dataset and 0.915 AUROC on the TUAB dataset. The
attention operation on the channel dimension might become a performance bottleneck
when working with datasets with a high number of channels.

MMM [42] is a framework designed for learning topology-agnostic EEG represen-
tations. MMM addresses heterogeneity by mapping diverse channel montages into a
unified scalp topology divided into predefined regions. The model utilizes region-wise
tokens, representing aggregated features from channels within each scalp region, and
employs a Transformer-based architecture with multi-dimensional position encoding to
incorporate geometric sensor information. Pre-training is achieved through a masked
autoencoding objective, reconstructing masked region-wise tokens. While MMM demon-
strates state-of-the-art results in emotion recognition tasks such as over 95% accuracy
on the SEED dataset and effectively achieves topology agnosticism through its unified
topology mapping, it relies on hand-engineered Differential Entropy (DE) features as
input rather than directly processing raw EEG signals and does not report the results
on using raw signals. This makes it not an end-to-end foundation model in the same
vein as models operating directly on waveforms or spectrograms. Furthermore, the
paper’s evaluation is primarily focused on emotion classification tasks. It also relies on
predefined brain regions to form the topology.

PopT (Population Transformer) [43] proposes a modular framework for learning
population-level EEG representations designed for variable electrode setups. It lever-
ages pre-trained channel-independent temporal embeddings, which are then aggregated
using a Transformer-based PopT module incorporating 3D electrode position informa-
tion for spatial information. Pre-trained with discriminative self-supervised objectives
(ensemble-wise and channel-wise tasks), PopT demonstrates improved decoding ac-
curacy and generalization. While innovative in handling channel ensembles within a
known topology, PopT’s reliance on pre-computed temporal features distinguishes it
from an end-to-end, topology-agnostic foundation model. Moreover, PopT achieves
lower scores than the end-to-end models, such as a 0.882 AUROC score on TUAB, which
shows the importance of end-to-end training.
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Figure 3.1.: Perceiver-1O architecture.

3.2. Set Transformer Models

Set Transformer [22], introduced in 2019, is a neural network architecture designed
for permutation-invariant processing of set-structured data, addressing limitations of
sequence-sensitive transformer models. The Set Transformer employs attention mecha-
nisms within both its encoder and decoder to model interactions between set elements.
They propose several blocks, which include the Set Attention Block (SAB), which ap-
plies self-attention within the set to capture pairwise and higher-order interactions, and
the Induced Set Attention Block (ISAB), which reduces the quadratic complexity of
self-attention to linear through the use of inducing points, enabling scalability. These
inducing points are essentially learned queries for attention. The standard self-attention
mechanism, as used in SAB, has a quadratic time complexity of O(n?), where 7 is the
number of elements in the input set. The Induced Set Attention Block (ISAB) addresses
this by introducing m inducing points, where m is a hyperparameter typically chosen
to be significantly smaller than n (m < n). This reduces the complexity to O(mn). The
Set Transformer is theoretically proven to be a universal approximator for permutation-
invariant functions and demonstrates empirically superior performance compared to
pooling-based architectures.

Another similar method is PerceiverlO [44], which was designed as a model to work
with variable-sized inputs and outputs and, thus, different modalities. The core idea lies
in the flexible querying mechanism that enables the decoding of arbitrarily sized and
structured outputs directly from a fixed-size latent space. Inputs of various modalities
and shapes, such as images, language, audio, and symbolic sets, are encoded into
this modality-agnostic latent space with cross-attention with learned queries. The
architecture then leverages task-specific output queries, incorporating positional or
modality embeddings, to similarly attend to this latent space. This approach decouples
the computational complexity from input/output size, achieving linear scaling and
enabling strong performance across a wide range of domains, including language,
vision, and multimodal tasks.
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Implementation

4.1. Model Architecture

The proposed model, named LUNA: Latent Unified Network Architecture, is an archi-
tecture consisting of an encoder and a flexible decoder, which can achieve topology-
invariant EEG signal modeling. The encoder processes the input EEG signal to generate
an intermediate representation, while the decoder is task-dependent and configured for
either reconstruction or classification.
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Figure 4.1.: LUNA: Latent Unified Network Architecture.
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4.1.1. Encoder Architecture

The encoder transforms the input EEG signal into a unified latent space. It consists
of three main stages: input patching and embedding, a cross-attention module with
learned queries, and a patch-wise attention encoder.

Input Patching and Embedding The input EEG signal with shape B x C x T is first
processed to be patched and :

1. Patching: The input time series x of shape B x C x T is patched along the time
dimension T into non-overlapping patches (default 40 timestamps). This operation
can be represented as:

Patching .
XGRBXCXT xpatchedE]RBX(C S)xP

where P is the patch size and S = T/ /P is the number of patches per channel.

2. Patch Embedding: The patches are passed through a 3-layer network with 1D
convolution layers over the patch dimension with group normalization [45] and
GELU [46] activation layers in between, similar to previous work such as [39]
and [41]. This module aims to map the input into a fixed embedding dimension
independent of the patch size and extract meaningful features from the raw EEG
signals, which are often noisy as discussed in background section Chapter 2. This
module results in the embedded patch features x,;;peq:

RBX(CS)XP PatChEmbeddmg RBX(CS)XE

Xpatched € Xembed €

3. Frequency Feature Embedding: In addition to the raw signals, frequency features
are also extracted for each patch. First, the real-valued Fourier Transform (FFT) is
applied along the patch dimension P for each channel and patch. The magnitude
and phase of the rFFT are concatenated to form frequency features. These features
are then projected to the embedding dimension (E) using a multi-layer perceptron
(MLP). The output of this module is the embedded patch representation:

(C-S)xP Frequency Embedding

Xpatched c RBX € 1RB><(C~S)><E

Xfreq
These features are added to the raw features:

Bx(C-S)xE
R x(C:5)x :xembed+xfreq

X features €

4. Masking: Only for the pre-training task, some patches are randomly masked,
which are then predicted by the decoder for the reconstruction task. Masking

is done by replacing the features of random patches with the mask embedding
Memp, Which is a learned parameter optimized during the training. This is done by
generating a binary mask M € {0,1}#*(C-5)x1_ The masking ratio is selected to be
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0.5, and the binary mask is generated using the uniform distribution. The masking
ratio was selected to follow the previous work LaBraM [39] and CBraMod [41],
which both showed that 0.5 gives a good balance between robustness and amount

of information.
Meomb it M, =0
Xmasked,,, =

X featuresy,, if Mb,n =1

5. Channel Positional Encoding: Learned channel position encodings are used to
guide the cross-attention mechanism and provide information about the individual
channels. Despite the potential variability in electrode topologies across datasets,
a fixed channel index for each channel is used, which acts as channel-specific
priors. The first C vectors in the learned embedding matrix P15 € RCmex<E gre
extracted for each input, which form the channel positional encoding for the input
batch: Pc € RE*E,

After these steps, the tokens for the transformer blocks are formed by adding these
features:
Xtoken € REX(CS5)xE — Xmasked + Pc

Channel-Unification Module with Learned Queries The tokens x;,., are then fed
into the cross-attention block to achieve topology invariance and map the channels to
the fixed latent space represented by the queries. This block utilizes learned queries
and a top-k cross-attention mechanism. The cross-attention is applied in the channel
dimension; therefore, the tokens are reshaped from B x (C-S) x Eto (B-S) x C x E. This
reshaping allows the cross-attention mechanism to work only on the channel dimension
and independent from the patch dimension. It also decreases the complexity of the
operation as the sequence length is reduced from the original C - S to C. This module
uses (Q) learnable query vectors, Q € R™>*Q*E which are orthogonally initialized and
act as channel aggregators. The cross-attention mechanism, detailed in the algorithm
below, computes affinity scores between the learned queries and the channel features.
The module uses a top-k sparse attention approach, where each channel attends to its
most similar query. The queries are then updated by aggregating information from the
attended channels.
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Algorithm 1: Cross-Attention with Top-k Sparse Attention.

Input : Queries Q € R(BS)XQXE // |earnable Queries
1 Keys K € R(BS)XCxE // EEG Channel Features (Keys)

2 Values V € R(BS)XC*E // EEG Channel Features (Values)
3 Temperature T € R // Temperature Parameter

Output: Updated Queries Q' € R(BS)XQXE s/ ypdated Queries
4 Attention Weights A € R(B9)xQxC // attention Weights

5 S=Q- KT // Compute affinity scores
6 Itopk:topKIndices(S,kzl,dimzl) // Determine top-k query indices
7 Mask:generateBinaryMask(Itopk) // Create attention mask
8 S’ =S5 Mask // Apply mask to the affinity scores
9 Ay = Softmax(S;./T,dim= —1) // Compute attention weights
10 Q=Q+A-V // Aggregate values with attention weights

11 return QA

The top-k selection mechanism encourages each query to specialize in attending to
and extracting features from the most relevant channels based on affinity scores. This
results in a more interpretable latent space and learning more diverse features for each
query. The experiments show that it is crucial for the queries to learn orthogonal patterns
over the channels to reconstruct the channels successfully.

After the queries are updated through the cross-attention, they are further refined
using the query attention module. This module consists of two transformer encoder
layers, applying self-attention among the queries. This step allows the learned queries
to interact with each other, which helps the model capture higher-order relationships
within the set of query representations. By attending to each other, the queries can
collectively refine their representations and create a more informative latent space over
the channels.

Patch-wise Attention Encoder After the cross-attention module, the tensor is reshaped
and processed by a series of transformer blocks.

* Reshaping for Patch-wise Attention: The output of the cross-attention module,
with shape (B-S) x Q x E, is reshaped to B x S x (Q - E) to prepare for patch-wise
temporal attention.

(B-S) x Qx E P B o 5% (Q-E)

¢ Transformer Blocks: The reshaped tensor is passed through depth (L) layers of
transformer encoder blocks. These blocks apply self-attention over the patch (S)
dimension, which helps the model to learn temporal dynamics across patches
within the latent space represented by the learned queries. Rotary positional
embeddings [47] are utilized within these blocks to encode positional information
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along the patch dimension. This approach uses rotation matrices to rotate queries
and keys for each item in the sequence to identify individual positions. Rotary
positional embeddings are a good fit for patch-wise attention as they can generalize
well to longer sequences than the pre-training samples and encode both absolute
and relative positions for each token. Each encoder block consists of a layer
normalization layer [48] at the beginning (similar to the Pre-LN approach described
by [49]), an attention block, and a feed-forward network.

¢ Layer Normalization: A layer normalization layer is applied to the output of the
final Transformer Block to stabilize the representations.

4.1.2. Decoder Architecture

The decoder architecture is designed to be flexible, which can be used to map the encoder
output to different shapes through the use of learned queries. The decoder is kept
small in size compared to the encoder to guide the encoder to learn more informative
representations of the input, which can be adapted easily to different tasks or datasets
by fine-tuning.

Flexible Decoder Design The decoder leverages learned queries to map the encoder’s
latent representation to task-specific outputs. Two decoder variants are implemented:

* Reconstruction Head: Used for the self-supervised masked signal reconstruction
pre-training task.

— Learned Decoder Queries: Learned queries Qg .. € RC¢*E are used in the
decoder, with the number of queries matching the number of input channels
(C) for detailed reconstruction. This recovers the original channel space
from the latent space learned by the channel-unification module. The cross-
attention is applied between the reshaped encoder output E,;;,. € R(E-5)*QxE
and the decoder queries Q.. € RE*E to produce Eg4,. € R(BS)XCXE T earned
decoder queries are specific to each electrode to be reconstructed, i.e., there
are as many queries as distinct electrodes in the pre-training data.

— Transformer Decoder: A transformer decoder layer is used to perform cross-
attention between the learned decoder queries and the encoder output.

— Linear Projection: A final linear layer projects the decoder output back to the
original patch size (P) for signal reconstruction.

¢ Classification Head: Used for downstream classification tasks.

- Single Learned Aggregation Query: A single learned query Quq, € R1*9E is
used to aggregate information from all patches for classification. This results
in a better aggregation than the mean aggregation over the patch dimension.
The cross-attention is applied between the encoder output E,;,; € RB*5x(QE)
and the decoder query Q.. € R"*(QE) to produce Eg,. € REX1X(QE),
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— Attention and MLP: A multi-head attention layer performs attention between
the single learned query and the encoder output. An MLP then processes the
aggregated query representation to output classification logits.

4.1.3. Complexity Analysis of Attention Mechanisms

The proposed latent space approach brings some benefits to computational efficiency in
addition to unifying the different topologies. In this section, the complexity of its key
attention modules is analyzed and compared against the alternative approaches.

Complexity Analysis of Model Stages

Table 4.1 provides a breakdown of the computational complexity for each stage within
the encoder architecture.

Stage Input Shape Complexity
Channel-Unification Module | (B-S)xCXxE | O(B-S-Q-C-E)
Query Self-Attention (B-S)xQxE|O(B-S-Q*> E)
Patch-wise Attention Encoder | Bx S x (Q-E) | O(B-S*>-Q-E)

Table 4.1.: Complexity Breakdown of Model Stages

The number of learned queries Q is designed to be significantly smaller than the
number of input channels C (Q < C), which ensures that the query self-attention stage
while having a quadratic complexity in the number of queries (Q?), does not become the
computational bottleneck. Instead, the Patch-wise Attention Encoder, with complexity
scaling quadratically with the number of patches S?, is the primary factor when the
number of patches grows large, for example, when processing long EEG recordings. In
scenarios with extremely high channel counts, the Channel-Unification Module can have
a higher complexity than the Patch-wise Attention stage. However, even in such cases,
the Channel-Unification Module maintains a linear complexity scaling with respect to
the number of channels, which is a significant improvement over architectures with
quadratic channel complexity.

Complexity Comparison of Different Approaches

Table 4.2 compares the overall computational complexity of the proposed architecture
with other alternatives used in the literature. The method is compared with the full
attention and the alternating attention, which represent:

¢ Full Attention: Single self-attention mechanism over the entire flattened sequence
of channel and time patches, i.e. inputs with shape B x (S - C) x E. This approach
was used by LaBraM [39].

¢ Alternating Attention: Decouple spatial and temporal attention by applying self-
attention either patch-wise across all channels or channel-wise across all patches,
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i.e. inputs with shape either (B-C) x S x Eor (B-S) x C x E. This approach was
used by [41] and [50].

Method Complexity
Latent Space Attention O(B-S*-Q-E)
Full-Attention (Channel & Patch) O(B-S*-C?-E)
Alternating Attention (over Patches) | O(B-S?-C-E)
Alternating Attention (over Channels) | O(B-S-C?-E)

Table 4.2.: Attention Complexity Comparison

Full attention, while directly modeling all pairwise relationships, has a high computa-
tional cost with a significant bottleneck complexity, scaling quadratically with both the
number of patches (S) and channels (C). Alternating attention, while aiming to reduce
the quadratic complexity of full attention, still has a quadratic scaling factor with either
patches or channels, remaining computationally demanding, compared to the latent
space attention, which achieves a lower bottleneck complexity by using learned queries
to reduce the channel dimension before applying patch-wise attention.

4.2. Training Setup

4.2.1. Self-Supervised pre-training Task

This section outlines the details of the self-supervised pre-training task, including the
definition of the task and the loss functions used.

Masked Patch Reconstruction

The self-supervised pre-training task is designed as a masked patch reconstruction
task. The model is trained to reconstruct randomly masked patches of the input EEG
signal, which helps the model to learn meaningful representations by using the context
provided by the unmasked patches of the signal. This task enables the encoder to capture
the temporal and spatial aspects of the EEG data without relying on label supervision.
This pre-training task has been shown to be effective by many previous methods such as
BrainBERT [36], LaBraM [39], and CBraMod [41].

Reconstruction Loss Function

The self-supervised pre-training objective is to minimize a reconstruction loss that
measures the difference between the original EEG signal patches and the reconstructed
patches. The loss function is a Smooth L1 Loss, computed both for masked and non-
masked (visible) patches and then combined.

The total reconstruction loss (£,..) is formulated as:

24



4. Implementation

Ereconstruction = ﬁmasked +a- ‘Cvisible

where:
L inasked is the Smooth L1 Loss computed over the masked patches:

1

Z LsmoothL1 (xoriginal,v/ xreconstructed,v)

Linasked =
Ninasked ieM

Lisipte is the Smooth L1 Loss computed over the non-masked (visible) patches:

Evisible = I\]vztlble Z/:\/l LSmoothLl (xoriginali/ J,‘?reconst‘rucfedi)
1€
where M is the set of masked patches, and N5k, is the total number of masked patches,
and Ny;sipre is the total number of visible patches in the batch. The weighting factor «
weighs the contribution of the visible patch loss to the masked loss. Including the visible
patch loss with a small weight can help stabilize training. « = 0.05 was used during the
experiments.
Smooth L1 Loss Lgmeotnr1 (¥, %) is defined as:

0.5(x — £)? if |x — 2| < B

L x,X) =
SmoothLl( ) {ﬁ\x . )?’ . 0_5[-;2 otherwise

where B is a hyperparameter set to 1.

Query Load Balancing Loss

In addition to the reconstruction loss, an auxiliary loss function is used to balance the
utilization of the queries. Some experiments showed that the model was not utilizing the
queries equally and that some queries were rarely used, which leads to redundancy and
the reduced representation capacity by the queries. This is a common problem observed
in the mixture-of-experts (MoE) literature as well, which is often fixed by adding an
auxiliary loss function to balance the expert utilization [51]. Influenced by this loss
function in the MoE domain, a load balancing loss is applied over the queries.
The 1088 (Load_palancing) is mathematically formulated as:

Q
/jload_balammg =ua-Q- Z (channels,per,query,7 . query,prob,per,channelq)
q=1

where channels_per_que ry, is the fraction of channels handled by query g,

1
channels_per_query, = c Y 1{argmax A(x) = q} (4.1)
xeBB
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and query_prob_per_channel, is the average affinity score between the query g and all
channels,

query_prob_per_channel, = Z A(x 4.2)
xeB
« is a hyperparameter controlling the strength of the auxiliary loss, which is kept at
a = 0.2 during the experiments. The coefficient was selected to be lower than the
reconstruction loss to keep the reconstruction loss as the primary guiding factor. This
loss term is also minimized during pre-training, encouraging the model to distribute
attention to all the queries.

4.2.2. Classification Tasks

The pre-trained encoder is adapted for downstream classification tasks in the supervised
fine-tuning stage. This involves attaching a task-specific classification head to the
encoder and fine-tuning the model on labeled EEG datasets.

Downstream Tasks

The downstream performance is evaluated on several classification tasks, such as ab-
normal EEG detection and emotion classification. The output layer of the decoder is
adapted to the number of classes in each dataset. The model is fine-tuned on the labeled
dataset, and its performance is evaluated using classification metrics.

Classification Loss Function

For supervised fine-tuning on classification tasks, the cross-entropy loss is used as
the loss function to train the model to predict class labels. Given the predicted logits
Ypreds_logits and the ground truth labels y, the cross-entropy loss (L) is calculated as:

1 B Niasses

Lop=—= Z Y ypclog(softmax(Yiagits) )b,
=1 c=1

Evaluation Metrics for Classification

Performance on downstream classification tasks is evaluated using the following metrics:

* Accuracy: Calculated as the percentage of correctly classified samples. Macro-
averaged accuracy is used for multi-class tasks.

¢ Recall: Measures correctly identifying positive instances for each class. Macro-
averaged recall is used for multi-class tasks.

* Precision: Measures the fraction of correctly predicted positive instances out of all
instances predicted as positive for each class. Macro-averaged precision is used
for multi-class tasks.
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F1-Score: The harmonic mean of precision and recall. Macro-averaged F1-score is
used for multi-class tasks.

Cohen’s Kappa: Measures the agreement between predicted and actual labels.

AUC-ROC: For binary classification tasks, AUC-ROC measures the model’s ability
to identify positive and negative classes across various threshold settings. Macro-
averaged AUC-ROC is used for multi-class tasks.

Average Precision (AUC-PR): For binary classification tasks, AUC-PR measures
the weighted average of precision at each threshold, which explains the precision-
recall curve. Macro-averaged AUC-PR is used for multi-class tasks.

Dataset Preprocessing and Organization

The raw EEG signals are preprocessed through some steps to ensure high data quality
and prepare the data for the training.

4.3.1. Data Preprocessing

The datasets are preprocessed as follows:

1.

EEG measurements from different sessions are loaded, and the subjects that are
also present in the downstream datasets (TUAB, TUAR, TUSL) are excluded from
the pre-training dataset to prevent data leakage.

Irrelevant channels, such as ECG leads, are dropped from the raw data, and the
remaining channels are reordered to follow a consistent and standard order.

A bandpass filter is applied to the raw EEG data, filtering the signal within the
0.1Hz to 75.0Hz band. This helps the data to focus only on the relevant frequency
range for EEG analysis.

A notch filter at 50Hz or 60Hz is applied to remove power line interference, based
on where the dataset was collected.

The signal is resampled to 256Hz to ensure consistency across datasets. The data is
resampled to 256Hz as the majority of the data is measured at this frequency.

Optionally, data is mapped to bipolar montage format instead of a unipolar refer-
ential approach. This is done on the TUEG dataset as well as the TUAB, TUAR,
and TUSL datasets but not on Siena or SEED.

The preprocessed EEG data is sliced into non-overlapping segments of 5 seconds
to create individual EEG samples for training. This is done to separate the very
long sessions into manageable chunks, as done by previous methods such as
LaBraM [39]. This is different for the SEED datasets, which have either 1-second
or 4-second samples by default.
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8. The preprocessed data is saved into a file. Samples with different numbers of
channels are saved to different files, and the pre-training dataset is saved into 37
smaller files (4 with 20 channels, 32 with 22 channels, and 1 file with 29 channels).
Reading from smaller subsets is faster than reading from a single large file.

4.3.2. Data Module for Varying Shapes

A custom data loader is designed to handle EEG datasets with varying channel con-
figurations and optimize data loading, which is especially important for pre-training.
The data module processes dataset files sequentially, preventing the problem of trying
to form batches of samples with different sizes, as the individual dataset files have the
same number of channels. However, the data loader also concatenates the EEG samples
from different files but with the same number of channels to potentially form batches
with samples coming from different files. This allows the different data loader workers
to read from different files while forming batches, which makes data loading much faster
than concurrent reads from the same dataset file.
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Chapter

Results

In this section, the proposed method is compared against the alternatives in the literature
in terms of both the downstream dataset performance and the speed and memory usage.
Furthermore, the proposed method is analyzed based on the latent space represented by
the queries, how the model handles different topologies, how the model performs on the
reconstruction task, and the representations learned by the model. This work presents
three models with different sizes (base-large-huge) and compares them to state-of-the-art
methods.

5.1. Training Curves

The training curves for the small model can be seen in 5.1. The figures show the
reconstruction loss and the query load balancing loss over the epochs. The reconstruction
loss curve shows a significant drop in the loss early in the training, which is probably due
to the model learning the easy patterns in the data, such as the signal range. Afterwards,
the model continues to improve slowly for many epochs; however, the loss shows little
to no improvement after 100 epochs. Query load balancing loss shows a similar pattern
of a sharp decrease in the beginning, followed by minor improvements. The entropy loss
shows some spikes during training but stabilizes quickly after 50 epochs to its minimum
value of 0.2 (the coefficient for the load balancing loss is 0.2, and the minimum loss value
is 1, thus resulting in a minimum overall value of 0.2).
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Query Load Balancing Loss

5. Results
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Figure 5.1.: Loss curves during pre-training.
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5.2. Reconstruction Results

The reconstructions of the masked patches for samples with different topologies can be
seen in Figure 5.2, Figure 5.3, and Figure 5.4. The masked regions are indicated with a
gray background. As can be seen from the figures, the model can reconstruct the signals
from different datasets, 20 and 22 channels data coming from the TUEG dataset and the
29 channels data coming from the Siena dataset. This confirms that the model can unify
different topologies during training. Furthermore, the reconstructions of the model are
much smoother than the original EEG signals, which have high noise-to-signal ratios.
This shows that the model can learn representations using the underlying trend of the
raw signals, not focusing on the noises.

Reconstruction for random batch with 20 channels
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Figure 5.2.: Reconstructions on input with 20 channels.
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Reconstruction for random batch with 22 channels
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Figure 5.3.: Reconstructions on input with 22 channels.

Reconstruction for random batch with 29 channels
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Figure 5.4.: Reconstructions on input with 29 channels.
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5.3. Representation Analysis

This section analyzes the representations learned by the model on the downstream tasks.
This analysis can be conducted by encoding samples from downstream datasets into the
latent representation using only the encoder part of the network. These embeddings can
be visualized in 2D space using dimensionality reduction and with the corresponding
class labels. This shows the strength of the features learned by the model even without
fine-tuning them for the downstream tasks. Figure 5.5 shows the 2D visualization of the
TUAB dataset using the small model, which somewhat separates normal and abnormal
signals. Figure 5.6 shows the visualization using the TUAR dataset, which shows some
artifacts that affect the EEG signal. It is clear from the plot that the model can separate the
electrode artifacts from the other labels. The samples with no artifacts are also somewhat
clustered together. The model can be fine-tuned to refine these representations and fully
adapt to different downstream datasets.

Visualization of Embeddings on TUAB Dataset
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Figure 5.5.: Embeddings on the TUAB dataset.
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Visualization of Embeddings on TUAR Dataset
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Figure 5.6.: Embeddings on the TUAR dataset.

5.4. Latent Space Analysis

Visualization of the learned queries, as depicted in Figure 5.7, reveals how the channel-
unification module constructs a topology-agnostic latent space representation of the
input EEG channels. Each topographic map corresponding to a specific query visualizes
the average attention scores of that query across all input channels, which are averaged
over some samples. The distinct patterns shown by different queries indicate that
they learn to specialize in attending to and aggregating information from different but
potentially overlapping subsets of EEG channels. Some queries, such as Query 3 and
Query 7, show more localized attention patterns, focusing on specific brain regions like
the right temporal/occipital and right frontal areas, respectively. This suggests that these
queries are learning to capture localized spatial features associated with particular brain
regions. Other queries, like Query 1 and Query 4, exhibit more distributed attention
patterns, indicating that they may be learning to represent more global EEG features that
are not confined to specific brain regions. Since there is no constraint on how queries
can attend to channels in different regions, the model can learn to represent them using
the same query, showing flexibility over regional aggregation approaches.
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Figure 5.7.: Latent space learned by the queries.
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5.5. Brain Connectivity Analysis

Visualization of the learned connectivity scores, presented in Figure 5.9, indicates pat-
terns of inter-channel relationships learned by the model when trained on EEG data
with different electrode topologies. The connectome plots present the cosine similarity
of query representations, averaged over all queries, for each pair of EEG channels, where
color intensity indicates the strength of connectivity. Only the strongest lines are shown
in the plot.

The Siena dataset connectivity plot, recorded with a unipolar montage, shows inter-
channel connectivity within each region, indicated by the local connections. There
are also strong connections between the parietal area electrodes (CP5, CP1) and the
electrodes in other regions, suggesting that the model also captures longer-distance
connectivity patterns in the unipolar montage data. Similarly, the TUEG dataset’s
connectivity plot, which was recorded with a bipolar montage, shows both local and
global connections. It also shows connections between channels that share a reference
electrode, such as F8-T4 with C4-T4, which might be due to some correlations between
these channels due to the shared electrode.

Connectivity Analysis on Siena Dataset
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Figure 5.8.: Connectivity analysis on Siena dataset topology.
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Connectivity Analysis on TUEG Dataset
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Figure 5.9.: Connectivity analysis on TUEG dataset topology.

5.6. Comparison to related work

The proposed model is compared to the state-of-the-art methods on the TUAB, TUAR,
TUSL, and SEED-V datasets in Table 5.1, Table 5.2 and Table 5.3. The model shows
comparable performance to the state-of-the-art methods on the TUAB dataset. The base
model performs especially well compared to the models with similar sizes except for the
base LaBraM model. Another interesting observation is that the model’s performance
does not scale with the model size, which is contradictory to the previous results, which
show improvements with the bigger model sizes. This might show a problem with the
pre-training setup of the large and huge models or might indicate the need for different
hyperparameters for these models.
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Table 5.1.: Performance Comparison on TUAB

Model Model Size Bal. Acc. (%) AUPR AUROC
Supervised Models

SPaRCNet [52] 0.8M 7896 £0.18 0.8414 £+ 0.0018 0.8676 % 0.0012
ContraWR [53] 1.eM 7746 £0.41 0.8421 +£0.0140 0.8456 + 0.0074
CNN-Transformer [54] 3.2M 77.77 £022 0.8433 £+ 0.0039 0.8461 £ 0.0013
FFCL [55] 2.4M 78.48 £0.38 0.8448 £+ 0.0065 0.8569 £ 0.0051
ST-Transformer [56] 32M 79.66 £0.23 0.8521 £+ 0.0026 0.8707 £ 0.0019
Self-supervised Models

BENDR [35] 0.39M 76.96 + 3.98 - 0.8397 £ 0.0344
BrainBERT [36] 43.2M - 0.8460 £ 0.0030  0.8530 =+ 0.0020
EEGFormer-Small [40] 1.9M - 0.8620 £ 0.0050 0.8620 + 0.0070
EEGFormer-Base [40] 2.3M - 0.8670 £ 0.0020 0.8670 =+ 0.0030
EEGFormer-Large [40] 3.2M - 0.8720 £ 0.0010  0.8760 =+ 0.0030
BIOT [38] 3.2M 79.59 £0.57 0.8692 £+ 0.0023 0.8815 £ 0.0043
EEG2Rep [57] - 80.52 +2.22 - 0.8843 + 0.0309
FEMBA-Base [58] 47.7M 81.05+0.14 0.8894 +0.0050 0.8829 + 0.0021
FEMBA-Large [58] 77.8M 81.47 £0.11 0.8992 £+ 0.0007 0.8856 + 0.0004
FEMBA-Huge [58] 386M 81.82 £ 0.16 0.9005 £ 0.0017 0.8921 £ 0.0042
CEReBrO [50] 3.58M 79.404+0.19  0.8763 £ 0.0031 0.8749 + 0.0033
CEReBrO [50] 39.95M 81.29 £0.15 0.8994 £+ 0.0002 0.8867 % 0.0006
CEReBrO [50] 85.15M 81.67 £0.23 0.9049 £+ 0.0026 0.8916 % 0.0038
LaBraM-Base [39] 5.8M 81.40 £0.19 0.8965 £ 0.0016 0.9022 + 0.0009
LaBraM-Large [39] 46M 8226 £0.15 0.9130 £ 0.0005 0.9127 £ 0.0005
LaBraM-Huge [39] 369M 82.58 £0.11 0.9204 +£0.0011 0.9162 £ 0.0016
CBraMod [41] 68.4M 82.49 +0.25 0.9221 + 0.0015 0.9156 £ 0.0017
LUNA-Base ™ 81.19 £ 0.41 0.8992 £+ 0.0011 0.8906 + 0.0002
LUNA-Large 43M 80.21 £0.52 0.8896 + 0.0044 0.8823 + 0.0043
LUNA-Huge 311.4M 8091 £0.33 0.8978 £ 0.0016 0.8895 % 0.0015

The proposed models are compared against other methods on TUAR and TUSL
datasets in Table 5.2 below. All three different-sized models perform comparably, if not
better, than the previous methods on these datasets. The base model performs better
than all the previous methods on the TUAR dataset on the AUROC score. Compared to
the observation in the TUAB dataset, the huge model shows improvements over the base
model on these two datasets. For example, the huge model is the state-of-the-art model
for the TUAR dataset on both AUROC and AUPR metrics, as well as on the AUROC

metric on the TUSL dataset.
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Table 5.2.: Performance Comparison across TUAR, TUSL

Model Method Size TUAR TUSL

AUROC AUPR AUROC AUPR
EEGNet [59] - 0.752 & 0.006 0.433 £ 0.025 0.635 = 0.015 0.351 = 0.006
TCN [60] - 0.687 + 0.011 0.408 + 0.009 0.545 + 0.009 0.344 + 0.001
EEG-GNN [61] - 0.837 £ 0.022 0.488 £ 0.015 0.721 = 0.009 0.381 = 0.004
GraphS4mer [62] - 0.833 £ 0.006 0.461 + 0.024 0.632 + 0.017 0.359 + 0.001
BrainBERT [36] 43.2M 0.753 £ 0.012 0.350 = 0.014 0.588 == 0.013 0.352 == 0.003

EEGFormer-Small [40] 1.9M 0.847 + 0.013 0.488 + 0.012 0.683 £ 0.018 0.397 £ 0.011
EEGFormer-Base [40] 2.3M 0.847 = 0.014 0.483 £ 0.026 0.713 £ 0.010 0.393 £ 0.003
EEGFormer-Large [40] 3.2M 0.852 + 0.004 0.483 +£ 0.014 0.679 £ 0.013 0.389 £ 0.003

FEMBA-Tiny [58] 7.8M 0.918 = 0.003 0.518 £ 0.002 0.708 £ 0.005 0.277 £ 0.007
FEMBA-Base [58] 47.7M 0.900 £ 0.010 0.559 +£ 0.002 0.731 £ 0.012 0.289 £ 0.009
FEMBA-Large [58] 77.8M 0.915 £ 0.003 0.521 £ 0.001 0.714 £ 0.007 0.282 £ 0.010
LUNA-Base ™ 0.923 £ 0.009 0.550 £ 0.032 0.683 £ 0.079 0.279 £ 0.011
LUNA-Large 43M 0.916 + 0.011 0.532 + 0.042 0.733 £ 0.052 0.274 £ 0.007
LUNA-Huge 311.4M  0.924 £ 0.011 0.568 £ 0.042 0.748 £ 0.001 0.283 £ 0.009

Finally, the models are compared against the state-of-the-art models on the raw
features of the SEED-V dataset in Table 5.3. This dataset represents a significant challenge
for the model as it has an entirely different electrode topology with 62 channels than the
pre-training dataset consisting of Siena and TUEG. These results show the capability of
the model to generalize into new topologies with only fine-tuning. As can be seen from
the table, the model has significantly lower results on this dataset. The accuracy values
are at least 4% lower, and the weighted F1 and Cohen’s Kappa metrics are around 8
absolute points lower than the state-of-the-art models. This shows a current limitation
of the model. The method is not able to generalize well into unseen topologies and
requires future work to generalize beyond the pre-training data. One possible direction
would be to improve the channel positional encoding approach, which is currently a
learned embedding for each channel index. The set of positional encodings for the
unseen channels is not trained during pre-training as the model never uses them. A
good approach would be to dynamically form these channel positional encodings and
not rely on the fixed set of embeddings. The comparison of the base, large and the huge
models compared to the previous methods with similar sizes can also be seen in Figure
5.10, Figure 5.11 and Figure 5.12.
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Table 5.3.: The results of different methods on emotion recognition (SEED-V, 5-classes).

Methods Model Size Balanced Accuracy Cohen’s Kappa  Weighted F1

SPaRCNet [52] 0.79M 0.2949 £ 0.0078 0.1121 £ 0.0139  0.2979 + 0.0083
ContraWR [53] 1.eM 0.3546 4= 0.0105 0.1905 £ 0.0188  0.3544 + 0.0121
CNN-Transformer [54] 3.2M 0.3678 £ 0.0078 0.2072 £ 0.0183  0.3642 + 0.0088
FFCL [55] 2.4M 0.3641 £ 0.0092 0.2078 = 0.0201  0.3645 + 0.0132
ST-Transformer [56] 3.5M 0.3052 £ 0.0072 0.1083 £ 0.0121  0.2833 £ 0.0105
BIOT [38] 3.2M 0.3837 £ 0.0187 0.2261 £0.0262  0.3856 £ 0.0203
LaBraM-Base [39] 5.8M 0.3976 4= 0.0138 0.2386 = 0.0209  0.3974 + 0.0111
CBraMod [41] 7.3M 0.4091 £ 0.0097 0.2569 £ 0.0151  0.4101 £ 0.0108
LUNA-Base M 0.3552 +0.0114 0.1594 £ 0.0169  0.3139 +£ 0.0180
LUNA-Large 43M 0.3363 £ 0.0113 0.1380 £ 0.0153  0.2955 £ 0.0127
LUNA-Huge 311.4M 0.3589 £ 0.0072 0.1616 £ 0.0085  0.3220 + 0.0083
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Figure 5.10.: Comparison of the base model with previous work with less than 10M
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Figure 5.11.: Comparison of the large model with previous work with less than 70M
parameters.
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Figure 5.12.: Comparison of the huge model with previous work with more than 70M
parameters.
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5.7. Resource Requirement Analysis

As a final analysis, the complexity of the approach based on the number of floating
operations and the memory usage is compared against the best previous methods in the
literature: LaBraM [39] and CBraMod [41]. As discussed in the Chapter 4 section, the
LaBraM method uses a full attention approach that applies attention to the flattened
sequence of channels and patches, resulting in quadratic complexity on both the number
of patches and the number of channels. CBraMod instead applies parallel attention to
the patch and channel dimensions while merging the other dimension with the batch
dimension. This method scales quadratically with the maximum of the number of
channels or patches in the input. Compared to these methods, LUNA scales linearly
with the channels and scales quadratically with the number of channels but has a lower
overall complexity due to the smaller latent space size. Moreover, LUNA is trained with
16-bit precision, which further decreases its resource usage.

In Figure 5.13, the scaling of the methods is compared based on the number of patches
while keeping the number of channels fixed at a realistic value of 22. The plot confirms
the complexity analysis and shows a lower number of FLOPS and memory usage for
the latent space approach compared to the full attention approach. The full attention
approach uses all the available memory after only 300 patches, while LUNA can extend
beyond 8000 patches. Furthermore, LUNA shows a lower scaling bound compared
to CBraMod, confirming the lower theoretical bound O(B - S? - Q - E) compared to
CBraMod’s O(B - S? - C - E). Even though both approaches scale quadratically with the
number of patches, the smaller latent size decreases the complexity of LUNA.

Scaling with number of patches
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Scaling with number of channels
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Figure 5.14.: Scaling of the number of FLOPS and the memory usage with the number
of channels.

In Figure 5.14, the models are instead analyzed with the increasing number of channels
while keeping the number of patches at 20. LaBraM approach performs similarly and
shows a quadratic pattern. The CBraMod approach also shows a quadratic pattern after
the number of channels becomes the complexity bottleneck instead of the number of
patches. In contrast, LUNA shows a constant complexity represented by the fixed latent
size for the number of channels ranging between 1 and 200. The cross-attention between
the channels and the queries becomes the bottleneck only after this point, and the model
shows increasing complexity. However, even after this point, the scaling is linear with
the number of channels and much lower than other methods.

Both analyses show that the model is much more efficient than the state-of-the-art
methods, showing a lower bound than the previous methods even with the huge model
with a large number of patches or channels. These results show a promising direction
for LUNA on very high-density scalp measurements with large amounts of channels or
on very long sequences with a large number of patches.
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5.8. Experiment Setup

The following tables show the hyperparameter setup for the pre-training and the down-

stream fine-tuning for LUNA.

Table 5.4.: Hyperparameters for EEG pre-training.

Hyperparameters LUNA-Base LUNA-Large LUNA-Huge
Input channels {1,8,8) {1,16,16} {1,32,32}
Output channels {16,16,16} 24,2424} {32,32,32}
Temporal Encoder Kernel size {20,3,3}
Stride {10,1,1}
Padding {9,1,1}
Patch size 40
Transformer encoder layers 8 10 24
Number of queries 4 6 8
Query size 64 96 128
Hidden size 256 576 1024
MLP size 1024 2304 4096
Attention head number 8 12 16
Batch size per GPU 2040 2040 720
Total batch size 8160 8160 11520
Peak learning rate 1.25e-4
Minimal learning rate 2.5e-7
Learning rate scheduler Cosine
Optimizer AdamW
Adam (0.9,0.98)
Weight decay 0.05
Total epochs 100
Warmup epochs 10
Loss type Smooth-L1
Non-masked region loss coefficient 0.05
Query load balancing loss coefficient 0.2
Gradient clipping 1
Mask ratio 0.5
Precision bf16-mixed
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Table 5.5.: Hyperparameters for downstream fine-tuning.

Hyperparameters Values
Batch size per GPU 512
Peak learning rate le-4
Minimal learning rate 5e-6
Learning rate scheduler Cosine
Optimizer AdamW
Adam B (0.9,0.999)
Weight decay 0.05
Total epochs 50
Early stopping patience 10
Warmup epochs 5
Drop path 0.1 (B/L)0.3 (H)

Layer-wise learning rate decay
Label smoothing (multi-class classification)

0.5 (B) 0.8 (L/H)
0.1 (B) 0 (L/H)
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Chapter

Conclusion and Future Work

This thesis presented a novel EEG signal analysis method that uses a self-supervised
learning approach to train topology invariant foundation models. The results and
the analyses, detailed in the Results section, demonstrate the efficacy of the proposed
method. Experiments on a variety of downstream tasks, including seizure detection and
emotion recognition, validate that the model is comparable to or better than previous
state-of-the-art solutions, even at greatly reduced memory and computational budgets.
Therefore, empirical evidence supports that the query-based learned architecture effec-
tively builds a topology-invariant representation and is able to overcome the issue of
electrode configuration variability in EEG datasets successfully.

There are; however, also certain limitations of the approach, revealed through the
results on the SEED-V dataset and the comparison between the models with different
sizes. Specifically, while the model demonstrates strong generalization on the topolo-
gies observed during pre-training, its performance on the SEED-V emotion recognition
dataset is not as good as on other tasks. The model exhibits lower performance compared
to state-of-the-art methods on SEED-V, suggesting potential limitations in generalizing
into unseen topologies. Moreover, the experiments with three different model sizes
revealed that increasing the model size does not consistently yield significant perfor-
mance improvements compared to the observations in the previous work, suggesting
that the current architecture or pre-training strategy might have a problem or these
models might require significantly different training setups than the smaller model.

Despite these limitations, this work presents a significant step towards robust and
generalizable EEG analysis. Future work should focus on addressing the identified
limitations and exploring the generalization to unseen topologies through changing the
channel positional encoding and investigating scaling strategies to successfully train
larger topology-invariant EEG models.
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Electroencephalography (EEG) is a non-invasive method used to record electrical activ-
ity in the brain, playing a critical role in both neurological research and clinical diagnos-
tics [1]. By offering a window into the brain’s activity, EEG helps diagnose and treat
various neurological disorders. However, the analysis of EEG signals presents substan-
tial challenges due to the complexity of these signals and the fine distinctions required
between normal and abnormal brain activity [2].

In recent years, Al and deep learning have opened up new possibilities for analyzing EEG
data. Foundation models—Ilarge, pre-trained neural networks that can be fine-tuned for
specific tasks—have reshaped fields such as natural language processing and computer
vision [3]. Their potential to improve EEG analysis is promising but still in its early
stages.

Progress has been made in this area with models such as LaBraM, which segments EEG
signals into channel patches to enable cross-dataset learning and fine-tuning [4]. Addi-
tionally, Brant-X offers a unified physiological signal alignment framework by leveraging
EEG alongside other physiological signals, improving performance in EEG classification
tasks like sleep stage and emotion recognition [5]. Another model, EEGFormer, takes
a self-supervised learning approach with vector quantization to pre-train on large-scale
EEG datasets, producing state-of-the-art results in tasks like seizure detection [6].

Despite these advancements, one major challenge in EEG analysis remains: handling
EEG signals with varying numbers of channels. Tokenizing each EEG channel as an
independent entity increases both computational complexity and memory demands, while
ignoring important interactions between the channels [5, 6]. This project seeks to address
these issues by proposing a method that uses cross-attention between learnable queries
and the EEG signal’s key/value pairs, unifying EEG signals across different datasets.

1 Project Description

The project aims to develop a generalized EEG foundation model that unifies EEG signals
with varying channel counts. By applying cross-attention mechanisms, this approach will
enable EEG signals to be transformed into a consistent format, preserving spatial rela-
tionships between channels while reducing computational complexity. This methodology
makes it possible to efficiently tokenize EEG signals across all channels, addressing the
drawbacks of previous approaches that treated each channel as an independent token.

The primary tasks for this project are as follows:

e Task I: Literature ReviewReview the latest advances in EEG foundation mod-
els, cross-attention mechanisms, and their applications in handling varying numbers
of EEG channels. Study existing models like LaBraM, Brant-X, and EEGFormer
to understand their methodologies and limitations.



e Task II: Dataset Exploration and Preprocessing
Gather and preprocess publicly available EEG datasets, ensuring a variety of chan-
nel configurations. This task includes cleaning the data, dealing with noise and
artifacts, and segmenting the signals in preparation for model training. The goal
is to create a diverse, representative dataset that can be used for both pre-training
and fine-tuning.

e Task III: Cross-Attention Mechanism Development
Develop and implement a cross-attention mechanism between learnable queries and
EEG signals. This approach will unify EEG signals from datasets with different
channel configurations into a standardized format while preserving spatial depen-
dencies between channels. Ensure the model’s efficiency and scalability by reducing
the tokenization complexity.

e Task IV: Pre-training the Foundational Model
Investigate different pre-training techniques for EEG models, such as self-supervised
learning and masked signal reconstruction. Implement the pre-training phase on
large, unlabelled EEG datasets to learn universal representations of EEG signals.
Key exploration areas include vector quantization, contrastive learning, and other
representation learning strategies that can improve generalization across down-
stream tasks.

e Task V: Fine-Tuning on Specific Tasks
Fine-tune the pre-trained foundational model on labeled EEG datasets for specific
downstream tasks such as seizure detection, emotion recognition, and sleep stage
classification. This task involves adjusting the pre-trained model to adapt to task-
specific objectives, evaluating performance, and suggesting improvements.

e Task VI: Evaluation
Conduct a comprehensive evaluation of the model’s performance on various EEG
datasets. Metrics such as accuracy, computational efficiency, and scalability will
be assessed.

e Task VII: Report and Presentation work Work on the final report and final
presentation for the group

2 Project Realization

2.1 Meetings

Weekly meetings and reports must be held. The exact time and location of these meetings
will be determined within the first week of the project in order to fit the student’s and
the assistant’s schedule. These meetings will be used to evaluate the status and progress
of the project. Besides these regular meetings, additional meetings can be organized to
address urgent issues as well.



2.2 Report

Documentation is an important and often overlooked aspect of engineering. One final
report has to be completed within this project. The common language of engineering
is de facto English. Therefore, the final report of the work is preferred to be written
in English. Any form of word processing software is allowed for writing the reports,
nevertheless, the use of ITREX with Tgif' or any other vector drawing software (for block
diagrams) is strongly encouraged by the IIS staff.

Final Report The final report has to be presented at the end of the project and a digital
copy need to be handed in. Note that this task description is part of your report and
has to be attached to your final report.

2.3 Presentation

There will be a presentation (15 min for the semester thesis, and 20 min for the MS thesis
presentation followed by 5 min Q&A) at the end of this project in order to present your
results to a wider audience. The exact date will be determined towards the end of the
work.
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