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Abstract

Medical Ultrasound (US) imaging is a vital diagnostic tool with a wide range of appli-
cations. The raw data from ultrasound imaging, known as Radio Frequency (RF) data,
contains richer information than processed US images, enabling numerous valuable use
cases. However, while extensive datasets of processed US images are readily available,
raw RF data remains scarce.

This thesis builds upon an existing system designed to predict raw RF data from US
images, focusing on enhancing its Deep Learning (DL) component through Denoising
Diffusion DL models. The original pipeline employs a data-driven, physically-informed
approach that integrates DL techniques with numerical simulations of ultrasound wave
propagation. This hybrid, physically-informed, approach was retained, as End-to-End
DL models have shown inferior performance in comparison.

In this work, various Denoising Diffusion DL Models and architectures are implemented,
seamlessly integrated into the existing pipeline, and rigorously evaluated against the
previously utilized Transformer-based DL model. All these models aim to predict key
acoustic properties of tissue, such as density phantoms, based on input US images.

Additionally, the training process is enhanced by leveraging large-scale synthetic datasets
generated from Computed Tomography (CT) scans. The impact of these larger datasets
on model performance is systematically compared to that of smaller, existing datasets,
providing valuable insights into the influence of dataset scale and quality on the overall
pipeline’s effectiveness.
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Chapter 1
Introduction

1.1. Motivation

Medical US imaging [4] has been an essential tool in diagnostic medicine for decades due
to its non-invasive nature, cost-effectiveness, and safety. Unlike imaging methods such as
CT [5] and Magnetic resonance imaging (MRI) [6], ultrasound does not expose patients
to ionizing radiation, making it safer for repeated use. Its portability further increases
its utility, enabling its application in point-of-care scenarios, emergency settings, and
resource-limited environments.

US-imaging works by capturing raw RF signals during the acquisition process and con-
verting them into human-readable images. However, this transformation involves non-
linear operations, such as envelope detection and log-compression, which discard essential
details present in the RF data. RF data is inherently richer in information, as it retains
the high-resolution signal characteristics necessary for advanced analysis. Applications
relying on RF data include tissue characterization, muscle activity monitoring, and spa-
tial alignment, demonstrating its significant value in medical imaging.

Despite its potential, RF data remains largely inaccessible. Proprietary US acquisition
systems often restrict access to raw RF signals, and publicly available datasets predomi-
nantly contain only processed US images. In contrast, large-scale datasets of US images
are widely available. To address this limitation, the predecessor project of this thesis in-
troduced a physically-informed data-driven pipeline capable of predicting RF data
from existing US images. This approach demonstrated the utility of combining DL with
numerical simulations for realistic RF reconstruction.

Building on this foundation, this thesis investigates the use of Denoising Diffusion
Models[7] to enhance the DL component of the existing pipeline. Diffusion models have
recently emerged as the state-of-the-art in generative computer vision tasks due to their

1



1. Introduction

ability to iteratively refine outputs, surpassing traditional approaches like Generative
Adversarial Networks (GAN)[8] and VAE[9]. Their promising capabilities motivate their
exploration in the Image-to-Phantom translation task, where intermediate representa-
tions, consisting of key acoustic properties of tissue and from now on also referred to as
phantom maps, are predicted from US input images.

1.2. Objective

The primary objective of this thesis is to investigate the performance of Denoising Dif-
fusion Models in the previously described physically-informed pipeline, also referred to
as the USDatarecycler Pipeline to predict raw RF data from US images by leveraging
. Specifically, the goals of the thesis were as follows:

1. Adapting Diffusion Models: Implement and adapt diffusion models for predict-
ing phantom maps from ultrasound images.

2. Training and Evaluation: Train the models on a large synthetic dataset and
evaluate their performance.

3. Integrating Diffusion Models into the existing Pipeline: Integrate the
adapted diffusion models into the USDatarecycler Pipeline, ensuring compatibility
with the numerical simulation component that reconstructs RF data.

4. Testing on real-world data Evaluate the models on external in vivo datasets,
to assess their real-world generalization capabilities.

By addressing these objectives, this thesis explores the potential of diffusion models to
improve the reconstruction accuracy and generalizability of RF data prediction.

1.3. Contributions

The contributions of this thesis, arising from its goals stated in the previous chapter were
as follows:

• Adaptation of Denoising Diffusion Models: Implemented and adapted new
diffusion model architectures building on the Fast-DDPM[10] and Marigold[11]
models, to predict phantom maps, enabling realistic RF data reconstruction.

• Integration into USDatarecycler Pipeline: Integrated the best adapted mod-
els into the existing pipeline, maintaining compatibility with the physics-based
numerical simulation component.

2



1. Introduction

• Improved Performance of Adapted Marigold Model Introduced a fine-
tuning strategy for the VAE component of the adapted Marigold model and opti-
mized the original Marigold training for ultrasound data by changing to a two-step
method.

• Training and Evaluation on Synthetic and External Datasets: Trained
the newly implemented models on a newly produced, large scale, synthetic CT-
Phantom 500k dataset and evaluated them against the baseline TransUNet[12]
model. Tested the models on external datasets to demonstrate their generalizabil-
ity.

• Efficient Dataset Handling: Developed a parallelized, optimized chunk-loading
functionality to manage large-scale datasets efficiently on the Euler Cluster, ad-
dressing its specific hardware constraints.

1.4. Thesis Structure

The remainder of this thesis is organized as follows:

• Chapter 2: Preliminaries / Background Provides an overview of the US-
Datarecycler pipeline, Denoising Diffusion Models, Ultrasound Imaging Modes, and
Virtual Phantom Models. This chapter sets the foundation for understanding the
used and adapted pipeline and the theoretical aspects relevant to this thesis.

• Chapter 3: Related Work Reviews relevant literature and existing models, fo-
cusing on Diffusion Models, I2I-translation, and general Semantic Segmentation
in medical imaging. It includes detailed discussions on the class of Latent Dif-
fusion Models[1], approaches to reduce sampling time, and key models such as
Fast-DDPM[10], MedSegDiff-V2[13], Stable Diffusion[1], and Marigold[11].

• Chapter 4: Implementation Explains all implementations and architectures
that were designed or adapted during the project.

• Chapter 5: Experiments Explains all experiments done in the following results
section and the evaluation datasets and metrics that were used for the evaluation.

• Chapter 6: Results Presents the evaluation results of all models within the
USDatarecycler pipeline. Also presents the results of the original TransUnet archi-
tecture trained on different datasets.

• Chapter 7: Conclusion and Future Work Summarizes the main contributions
and findings of this thesis. It discusses the implications of using Denoising Diffusion
Models for RF data prediction and outlines potential directions for further research.

3



Chapter 2
Preliminaries

To provide a clear understanding of the scope and context of this thesis, this chapter
begins with a brief overview of the foundational work on which this research is built. It
then introduces the principles of Denoising Diffusion Models, the architectural framework
explored in this thesis in relation to the USDatarecycler pipeline. Finally, the chapter
concludes with a concise description of Ultrasound Imaging Models and Virtual Phantom
Models, offering additional context for the application of these concepts in this thesis.
For more information on these topics one can also take a look at [3].

2.1. Original USDatarecycler Pipeline

The USDatarecycler Pipeline, shown in Figure 2.1, was developed as part of [3], aim-
ing to reconstruct raw RF signals from US images. This process addresses a significant
challenge: During US image creation, non-linear transformations such as envelope detec-
tion and log-compression result in the loss of critical information. The pipeline offers a
combined physics-driven and data-driven approach to predict RF signals while ensuring
alignment with fundamental acoustic principles.

2.1.1. Components

The USDatarecycler Pipeline consists of two main components:

1. Deep Learning Model:
This component employs a deep learning framework to predict maps of acoustic
properties, referred to as phantom maps, directly from US images. These phantom
maps provide the necessary inputs for the numerical simulation, enabling RF signal
reconstruction.

4



2. Preliminaries

Figure 2.1.: Overview of the Pipeline introduced in USDatareyclerV1

2. Physics-Informed Simulation (Simulator):
The second component uses the k-Wave toolbox [14] to numerically simulate ultra-
sound acquisition for a predicted imaging medium. By leveraging a physics-based
simulation, it produces RF data that faithfully represents the physical properties
of the medium. This simulation component ensures that the generated RF signals
remain realistic and physically accurate, overcoming limitations inherent in purely
data-driven models.

2.1.2. Model Training and Evaluation

The pipeline explored two different deep learning architectures, UNet[15] and TransUNet[12],
to predict phantom maps from ultrasound images. The models’ performance was evalu-
ated by comparing predicted RF data with real RF signals using custom-designed met-
rics.

To further assess the effectiveness of the pipeline, its performance was compared with
a baseline end-to-end model that directly predicted RF signals from US images. The
inferior results of this end-to-end approach demonstrated the advantages of combining a
numerical simulation with a deep learning model.

5



2. Preliminaries

Figure 2.2.: Part of the USDatarecylcer Architecture that was changed in this work

2.2. Scope of this Thesis in the USDatarecycler Pipeline

This thesis focuses on advancing the first component of the USDatarecycler Pipeline,
the Deep Learning model, as is shown in Figure 2.2. Specifically, the work involves the
research, adaptation, and evaluation of state-of-the-art Denoising Diffusion models for
predicting acoustic property maps, from now on also referred to as density phantoms or
phantom maps, from US images.

Diffusion models have emerged as powerful generative modeling techniques, and their ap-
plication in this domain presents an innovative approach to overcome the limitations of
conventional deep learning architectures. Two adapted diffusion models, Fast-DDPM
and Marigold, were explored in this thesis. Both models were tailored to the require-
ments of the USDatarecycler pipeline to improve the accuracy and fidelity of the predicted
phantom maps. The best model was then integrated into the existing pipeline as shown
in Figure 2.3.

By concentrating on the Deep Learning model within the pipeline, this work aimed to
research if cutting-edge Diffusion models can enhance the reconstruction of RF signals
and if they can improve performance on both synthetic and real-world datasets.

6



2. Preliminaries

Figure 2.3.: USDatareyclerV1 vs USDatarecyclerV2

2.3. Denoising Diffusion Models

Denoising Diffusion Models [7] have emerged as the state-of-the-art in generative com-
puter vision tasks, surpassing previous approaches such as GANs [8], VAEs [16], and other
contenders. Their potential for high-quality image generation makes them particularly
promising for the objectives of this thesis. This section provides an quick exploration of
the core concepts, challenges, and model architectures related to diffusion models.

2.3.1. General Diffusion Approach

Denoising Diffusion Probabilistic Model (DDPM) operate by introducing noise to input
data through a series of incremental steps, a process known as the forward diffusion
process. At the final step, the data is transformed into pure noise. Conversely, the
reverse diffusion process trains a neural network to iteratively denoise the input, step
by step, until the original image is reconstructed. This reverse process is the cornerstone
of generative capabilities, enabling the creation of high-fidelity images from pure noise,
which is pivotal for various image generation tasks.

The forward diffusion process can be mathematically expressed as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI),
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where xt represents the noisy image at time step t, βt is the noise variance at step t,
and N denotes a Gaussian distribution. The parameter βt is determined by the noise
scheduler.

In the reverse diffusion process, the denoising network predicts the added noise ϵθ(xt, t)
at each step t, and the process is modeled as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(t)),

where µθ(xt, t) is the predicted mean, and Σθ(t) is the predicted variance.

The primary training objective minimizes the difference between the actual noise ϵ and
the predicted noise ϵθ, expressed as:

Lsimple = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
.

This loss ensures the model learns to effectively de-noise inputs at every denoising time
step.

2.3.2. Key Components of Diffusion Models

Two critical components define the performance of a diffusion model:

1. The Deep Learning Backbone: Most implementations employ variations of
the U-Net architecture [15] for its ability to capture both local and global image
features. However, recent advancements are moving towards transformer-based
models, such as the Vision Transformer (ViT) [17], which excel in handling long-
range dependencies and global context.

2. The Noise Scheduler: The noise scheduler determines the variance βt added
at each step of the forward process. A commonly used scheduler is the linear βt
schedule with 1000 steps. Alternatives, including cosine and exponential schedules,
offer different trade-offs between model performance and convergence speed.

2.3.3. Computational Challenges

Despite their effectiveness, diffusion models face significant computational challenges:

• High Training Costs: Diffusion models require processing high-dimensional im-
age data across numerous steps, leading to extended training times.

• Slow Inference: Generating an image from pure noise involves iterative denoising
over hundreds or thousands of steps, which can be computationally prohibitive.
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To address these issues, two key advancements have been explored:

• Latent Diffusion Model (LDM): These reduce training complexity by oper-
ating in a compressed latent space rather than pixel space, significantly lowering
computational costs [1].

• Accelerated Inference Techniques: Methods to reduce the number of reverse
steps while maintaining quality are discussed in the following subsections.

2.3.4. Latent Diffusion Models

LDMs are an extension of Denoising Diffusion Models that operate within a latent space
rather than the original high-dimensional pixel space. This latent space is derived using
a powerful encoder, typically based on pretrained computer vision backbones [18]. By
mapping images to a compact latent representation, the computational burden of training
and inference is significantly reduced.

The encoder compresses the input data into a lower-dimensional latent space, while a
decoder reconstructs the final image after the denoising process. This approach allows the
diffusion process to focus on essential features rather than redundant pixel-level details.
Stable Diffusion [1, 19], one of the most prominent LDMs, exemplifies this strategy,
achieving remarkable efficiency and quality in image synthesis tasks.

The architecture of the first rendition of Stable Diffusion [1] is depicted in Figure 2.4.

Figure 2.4.: Architecture of Stable Diffusion [1].
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2.3.5. Approaches to Reduce Sampling Time in Diffusion Models

One of the primary limitations of diffusion models is the high computational cost asso-
ciated with inference. Generating an image requires a large number of reverse diffusion
steps, often taking several minutes per sample. This challenge is further compounded
when multiple samples are generated for tasks like implicit ensembling, leveraging the
probabilistic nature of diffusion models. Consequently, reducing the number of sampling
steps has been a focal point of recent research, with two main approaches emerging:

Training-Free Approaches

Training-free methods aim to accelerate inference without retraining or modifying the
original diffusion model. These approaches primarily focus on developing efficient solvers
for the reverse diffusion process, often framed as solving Stochastic Differential Equation
(SDE) or their deterministic counterparts, Ordinary Differential Equation (ODE).

Some of the most popular approaches are:

• DDIM (Denoising Diffusion Implicit Models) [20], which reformulates the
reverse process to allow for fewer steps without significantly compromising image
quality.

• DPM-Solver [21], a high-order ODE solver optimized for diffusion models.

• Efficient Reverse Process Algorithms [22], which explore conversion tech-
niques to streamline the reverse diffusion process.

• Reusing Attention Maps [23], which leverages cached intermediate computa-
tions to enhance efficiency.

These approaches are model-agnostic, making them versatile solutions for reducing in-
ference time.

Training-Based Approaches

Training-based methods address the inference time bottleneck by training a specialized
model or distilling knowledge from the original diffusion model. Knowledge distillation
involves using the original model as a teacher to guide the training of a student model ca-
pable of performing inference with significantly fewer steps while maintaining comparable
performance.

Prominent works in this area include:

• EM Diffusion [24], which uses Expectation-Maximization to iteratively refine the
student model.
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• Improved Distillation Techniques [25], introducing strategies to better align
the student’s outputs with the teacher model.

• Pagoda [26], a framework for progressive distillation to reduce sampling steps
incrementally.

• SFDDM (Score Function Distillation for Diffusion Models) [27], which
directly distills score functions for accelerated sampling.

• Score Compression Methods [28], focusing on compact representations for
faster diffusion processes.

While training-based approaches require additional computational effort upfront, they of-
fer substantial long-term benefits in reducing inference time for practical deployments.

2.4. Ultrasound Imaging Modes

Figure 2.5.: Visualization of different Ultrasound Imaging Modes [2]

Ultrasound imaging encompasses several different modes, each suited to specific applica-
tions. Those modes are showcased in Figure 2.5.
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The simplest mode is A-mode (Amplitude mode), where a single focused ultrasound
beam is transmitted, and echoes are received on a single channel. The resulting plot
represents the amplitudes of the reflected signals as a function of depth, making it a
one-dimensional imaging technique.

The most commonly used mode, also the exclusively used mode in this thesis, is B-
mode (Brightness mode). In B-mode imaging, raw ultrasound data is collected across
multiple channels and processed to form a two-dimensional gray-scale image, where pixel
brightness corresponds to the amplitude of the reflected signal. This mode is widely
used in medical imaging due to its ability to provide detailed cross-sectional views of
anatomical structures.

Another mode is M-mode (Motion mode), where a stationary transducer emits a se-
quence of ultrasonic pulses to capture either A-mode or B-mode images over time. This
mode is particularly useful for visualizing and measuring motion, such as the movement
of organs or blood flow.

Traditional B-mode imaging typically forms the ultrasound image line by line using
focused ultrasound beams, optimizing lateral resolution. However, ultra-fast ultrasound
imaging introduces an alternative approach by transmitting a single unfocused plane
wave across the entire field of view at once. This method achieves significantly higher
frame rates but at the cost of reduced lateral resolution.

2.5. Virtual Phantom Model

The virtual phantom model used in this work defines the relevant acoustic properties
of the ultrasound imaging medium. It is represented as a two-dimensional grid G with
height Nz and width Nx:

G = {(i, j) | 1 ≤ i ≤ Nz, 1 ≤ j ≤ Nx}

Here, the lateral direction is denoted as the x-axis and the axial direction as the z-axis.
The grid discretizes the physical propagation medium with a uniform spacing ∆xz in both
directions. The transducer is placed at the top of the grid along the x-axis, transmitting
pulses along the z-axis.

Each grid point (i, j) is assigned four acoustic properties that define the virtual phan-
tom:

• Density ρ(i, j) [kg/m3]

• Speed of Sound (SOS) c(i, j) [m/s]

• Attenuation Coefficient α(i, j) [dB/(MHz · cm)]

• Scattering Parameter s(i, j) (unitless)
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These properties are represented as four matrices of size Nz ×Nx, forming a 4×Nz ×Nx

tensor referred to as the virtual phantom P . The four matrices are also referred to as
the Phantom Channels throughout this work.

2.5.1. Scattering Model

The scattering parameter s(i, j) introduces variability to the density map ρ(i, j) to sim-
ulate diffusive scattering caused by sub-wavelength structures (scatterers). The density
map influenced by scattering is denoted as ρs(i, j), defined by:

ρs(i, j) = s∗(i, j) · ρ(i, j)

where s∗(i, j) is a scattering factor derived from a probabilistic model.

Scatterers are identified using a Bernoulli distribution with a probability υs, which spec-
ifies the density of scatterers in a given area. If a grid point is classified as a scatterer,
its density value is sampled from a Gaussian distribution:

υs(i, j) =

{
N (µs(i, j), σs(i, j)

2) if scatterer exists
ρ(i, j) otherwise

Here, µs(i, j) = ρ(i, j), and the scattering variance σs(i, j)
2 is proportional to both s(i, j)

and ρ(i, j)2.

Experimentally, s(i, j) is limited to the range [0, 0.015625], ensuring that scattering does
not introduce artifacts or distort the target’s appearance.

2.5.2. Simplifications and Assumptions

To simplify the model and ensure computational efficiency:

• The attenuation power exponent and non-linearity parameter B/A are not modeled.

• Scattering effects are applied only to density, as changes in the speed of sound
introduce computational overhead.

• Ultrasound acquisitions are modeled linearly, disregarding non-linear effects.

This approach balances realism and efficiency, enabling the generation of realistic virtual
phantoms for the simulation of ultrasound acquisitions.
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Chapter 3
Related Work

This thesis focuses on utilizing Denoising Diffusion Models[7] for translating medical
US images to ultrasound density phantoms. Consequently, this chapter explores related
models in the domains of I2I-Translation and Semantic Segmentation, as they closely
align with the task at hand.

3.1. Diffusion Models for Medical Imaging

A comprehensive survey on Diffusion Models in medical imaging is presented in [29],
summarizing the most prominent models up to the end of 2022. While diffusion models
are predominantly applied for synthetic image generation, their utility extends to I2I
translation and semantic segmentation tasks, which are of particular relevance to this
thesis.

3.1.1. I2I Translation

Several models utilize conditional diffusion approaches for medical I2I translation [30,
31, 22]. These models integrate information from conditional input images to guide the
generation of corresponding outputs. Additionally, non-medical I2I translation models,
such as PITI [32], Palette [33], and DiffI2I [34], provide valuable insights applicable to
this work.

Two models particularly relevant to this thesis are explored in detail:
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BBDM: Image-to-Image Translation with Brownian Bridge Diffusion
Models

BBDM [35] innovates by performing domain-to-domain translation without relying on
standard conditional generation approaches. Operating in the latent space of a pretrained
VQ-GAN [36], BBDM simplifies the generation process by targeting the conditional image
during the forward diffusion process, effectively transforming the target image into the
condition image. This streamlined approach enhances computational efficiency.

The loss function in BBDM is a simplified version of the Evidence Lower Bound (ELBO),
enabling efficient training. Sampling is accelerated using DDIM [20], requiring only
200 steps. Notably, BBDM’s training on a single NVIDIA 3090 GPU highlights its
accessibility, leveraging the reduced complexity of latent space operations.

BBDM demonstrates superior performance compared to the standard Latent Diffusion
Model in I2I translation tasks, emphasizing its effectiveness in latent space processing.
Its latent-space-focused architecture aligns with the goals of this thesis, as the interme-
diate phantom maps predicted in the USDatarecycler Pipeline are analogous to domain
translations in BBDM’s framework.

Fast-DDPM: Fast Denoising Diffusion Probabilistic Models for Medical
Image-to-Image Generation

Fast-DDPM [10] builds upon DDIM [20] to enhance both resource and time efficiency,
achieving training and sampling with only 10 diffusion steps. This reduces training time
by a factor of 5 and sampling time by a factor of 100 compared to conventional DDPM
[37] models. This efficiency stems from task-specific noise schedulers, manually designed
to optimize performance for specific tasks. During inference, the DDIM sampler operates
only over these 10 steps, further accelerating the process.

Fast-DDPM’s experiments on medical imaging datasets demonstrate its superiority over
traditional DDPM models and GAN-based methods, with significantly reduced train-
ing and inference times. The insights provided by Fast-DDPM’s noise scheduling and
step reduction align with this thesis’ focus on optimizing diffusion models for computa-
tional efficiency, particularly when adapting them for the US to phantom map translation
task.

3.1.2. Semantic Segmentation

Semantic segmentation represents another Computer Vision (CV) task closely related to
this thesis. Among the most promising models for medical imaging are the MedSegDiff
series [38, 13], which utilize diffusion processes for segmentation tasks. MedSegDiff-V2,
the latest iteration, is particularly noteworthy.
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MedSegDiff-V2: Diffusion-Based Medical Image Segmentation with
Transformers

MedSegDiff-V2 [13] extends the capabilities of MedSegDiff by incorporating a TransUNet
[12] architecture instead of a standard U-Net [15]. Initial results with the TransUNet
revealed suboptimal performance, prompting refinements in the conditioning mechanisms
and architecture.

MedSegDiff-V2 employs two U-Nets: one for the diffusion model and another for encod-
ing input images into conditioning representations. Conditioning mechanisms include an
anchor conditioning at the start of the reverse diffusion process and a semantic condi-
tioning during the bottleneck phase. The latter utilizes a Spectral-Space Transformer
(SS-Former) with a Neural Band Pass Filter to fuse diffusion and condition embeddings
in Fourier space. This innovative conditioning approach improves segmentation perfor-
mance significantly.

The loss function combines the standard diffusion noise loss with Dice and Cross-Entropy
(CE) losses applied at specific time steps, balancing segmentation accuracy and the
diffusion process. MedSegDiff-V2’s superior results across datasets like BraTS [39, 40, 41]
and ISIC [42, 43] underscore its effectiveness.

The novel conditioning and architectural advancements of MedSegDiff-V2 offer valuable
insights for adapting DL models in this thesis, particularly in integrating complex input-
output mappings for accurate phantom map prediction.

3.2. Diffusion Models for Other Purposes

Diffusion models’ versatility extends beyond I2I translation and segmentation. Two no-
table examples, Stable Diffusion [1] and Marigold [11], highlight their adaptability for
diverse applications relevant to this thesis.

3.2.1. Stable Diffusion

Stable Diffusion [1] represents a groundbreaking text-to-image generative model, devel-
oped by Stability AI. It operates in a latent space, utilizing an auto-encoding varia-
tional framework to guide image generation from text prompts. A U-Net architecture
with cross-attention mechanisms facilitates effective integration of textual and visual
features.

The model’s versatility extends to domain adaptation and inverse problem-solving tasks,
offering insights into latent space optimization. Stable Diffusion’s framework directly in-
forms this thesis by demonstrating the potential of latent diffusion methods for generative
and predictive tasks, such as translating US images into phantom maps.
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3.2.2. Marigold: Repurposing Diffusion-Based Image Generators for
Monocular Depth Estimation

The Marigold [11] model adapts Stable Diffusion’s framework for monocular depth esti-
mation. By fine-tuning the pretrained U-Net component while keeping the Autoencoder
frozen, Marigold excels at extracting depth-specific features. Its success underscores the
adaptability of diffusion models for I2I-generation tasks in general.

For this thesis, Marigold’s approach highlights the benefits of leveraging pretrained mod-
els and latent space representations for specialized tasks. The principles underlying
Marigold’s fine-tuning strategy align with the adaptation of diffusion models for accu-
rate phantom map prediction, therefore it was chosen as one of the main models to adapt
and specialize for the task of this thesis.
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Chapter 4
Implementation

This chapter provides a detailed description of the implementations carried out during
this thesis and explains the architectural decisions behind them.

For the Image-to-Phantom Translation task, two diffusion models were selected. The
first model is an adaptation of Fast-DDPM [10], serving as a simpler baseline for non-
pretrained diffusion models. It was chosen because, despite its straightforward design,
it has demonstrated strong performance on related medical I2I tasks. Additionally, its
inference speed-up approach offered potential for efficiently generating large amounts of
synthetic RF data.

The second, more complex model is a variation of the Marigold model [11], evaluated
in multiple configurations. The Marigold model was selected as a platform for further
development because it delivered state-of-the-art results in its domain of monocular depth
estimation, which shares similarities with I2I translation. Furthermore, it utilizes a
robust pretrained backbone in the Stable Diffusion model, which was expected to provide
significant advantages.

4.1. Adapted Fast-DDPM

The original Fast-DDPM model [10] is a denoising diffusion model designed with the
principle that the number of denoising steps during training should match those used
during inference. While this approach ensures fast performance, it also results in a
relatively simple diffusion model. Fast-DDPM was chosen as a baseline to assess the
potential of a less complex diffusion model for this task.
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4.1.1. Architecture of the Adapted Fast-DDPM Model

The adaptations to the Fast-DDPM model were kept minimal, focusing only on modifying
its input and output structures to accommodate the 4-channel phantom input instead of
the original single-channel configuration. Two distinct architectures were implemented:
the Multi-Channel and Single-Channel approaches, detailed below.

Multi-Channel Input and Output

In the Multi-Channel configuration, the model was adapted to accept 5 input channels—4
channels for the phantom and 1 for the ultrasound image—and to produce 4 output
channels corresponding to the phantom predictions. This architecture is illustrated in
Figure 4.1.

This approach was not included in the final evaluation, as early experiments showed
significantly poorer performance compared to the Single-Channel configuration, described
next.

Figure 4.1.: Fast-DDPM Multi-Channel Training Process

Single-Channel Input and Output

Given the lackluster results of the Multi-Channel configuration, a Single-Channel variant
was implemented. In this architecture, the original input structure of 2 input channels
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and 1 output channel was retained. The strategy involved training four separate Fast-
DDPM models, each responsible for predicting a single phantom channel, with the results
combined to produce the complete phantom. This setup is illustrated in Figure 4.2.

Figure 4.2.: Fast-DDPM Single-Channel Training Process

4.1.2. Training of the Adapted Model

Prototype versions of the adapted Fast-DDPM model were trained for both the Multi-
Channel and Single-Channel configurations. These prototypes were run for 14 days on
four NVIDIA RTX 4090 Graphics Processing Unit (GPU)s each.

By the time these experiments were underway, the Adapted Marigold model, discussed
later in this chapter, had also reached the prototype phase. The results from the Adapted
Marigold model were significantly more promising, leading to a decision to discontinue
further investigation of the Fast-DDPM architecture. Consequently, no results from the
adapted Fast-DDPM were included in the final evaluation.

4.2. Adapted Marigold

The Marigold model [11] was selected as the secondary diffusion model base for adap-
tation in this project due to its outstanding performance in the domain of monocular
depth estimation. This task, which fundamentally involves I2I translation, closely aligns
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Figure 4.3.: Original Marigold Model Inference Architecture

with the Image-to-Phantom translation task addressed in this thesis. Marigold’s demon-
strated capabilities in handling such translation tasks made it a compelling candidate for
exploring a more robust and complex approach.

The architecture of the original Marigold model for monocular depth estimation is shown
in Figures 4.3 and 4.4. During training, the model uses a 3-channel RGB input image
paired with a single-channel depth map. To ensure compatibility with the pretrained
Stable Diffusion Autoencoder, the single-channel depth map is repeated across three
channels to create a pseudo-RGB depth image. This step is essential, as the Autoencoder
expects a standard 3-channel input format.

Both the 3-channel RGB input and the repeated 3-channel depth map are independently
encoded into the latent space by the Autoencoder, resulting in two latent representations
of size (4, 64, 64). These representations are concatenated along the channel dimension
to form a combined latent input of size (8, 64, 64). This concatenated latent space serves
as the input to the U-Net, where the diffusion process occurs. The U-Net processes this
input and produces an output in the latent space with the original 4-channel structure.
Finally, the Autoencoder decodes this 4-channel latent output back into a single-channel
depth map, completing the translation from RGB input to depth output.

Notably, during this process, the Stable Diffusion Autoencoder remains frozen, meaning
its weights are not updated. Instead, only the weights of the U-Net are trained, ensuring
the pretrained encoding and decoding processes remain stable and unchanged.
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Figure 4.4.: Original Marigold Model Training Architecture

4.2.1. Architecture of the Adapted Marigold Model

Figure 4.5 illustrates the final adapted Marigold inference architecture. The chosen design
employs a Single-Channel input variant, leveraging a two-step fine-tuning routine. The
different architectural choices and corresponding ablations are detailed in the following
sections.

Multi-Channel Input and Output

Initially, Marigold was adapted to handle the 4-channel nature of the Phantom ground
truth images by modifying its input-output structures as shown in Figures 4.7 and 4.6. In
this approach, the 4-channel Phantom image was split into four individual single-channel
images. Each single-channel image was repeated across three channels to match the 3-
channel input requirement of the Autoencoder. These repeated 3-channel images were
independently encoded into the latent space by the Autoencoder.

The encoded latent representations were concatenated along the channel dimension to
form a combined latent input of size (20, 64, 64). This expanded latent input was
processed by the U-Net during the diffusion process, producing a latent representation of
size (16, 64, 64). The 16-channel output was then split into four separate 4-channel latent
spaces, each decoded independently into single-channel images. These single-channel
outputs were concatenated to reconstruct the 4-channel Phantom image.

While this method allowed Marigold to handle the multi-channel phantom data at once,
the increased complexity of the U-Net input-output structure posed challenges. The
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Figure 4.5.: Adapted Marigold Model Main Inference Architecture

larger latent space potentially diluted the U-Net’s ability to focus on individual channel-
specific details. These limitations prompted the exploration of an alternative, simpler,
and ultimately more effective approach.

Single-Channel Input and Output

The final and more effective approach to managing the input-output structures closely
adhered to the original Marigold architecture [11]. Instead of modifying the U-Net’s
input-output structure to accommodate multi-channel data, the Phantom Ground Truth
was split into four separate single-channel images at the outset. Each channel was then
assigned its own dedicated U-Net, which was trained independently while preserving the
original input and output dimensions of the Marigold U-Net. This approach is illustrated
in Figures 4.8 and 4.9.

This method offered several significant advantages. By maintaining the original input-
output dimensions, the architectural complexity of the model was reduced, streamlining
implementation and ensuring compatibility with the pretrained Stable Diffusion Autoen-
coder. Furthermore, training separate U-Nets for each channel allowed for a specialized
focus on the unique characteristics of each channel. This channel-specific training en-
sured that each U-Net was better optimized for its respective channel, leading to improved
performance in the Image-to-Phantom translation task.
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Figure 4.6.: Adapted Marigold Model Inference with Multi-Channel Input

After the individual U-Nets processed their respective single-channel inputs, the outputs
were recombined to reconstruct the 4-channel Phantom image. This modular and fo-
cused approach effectively leveraged the strengths of the original Marigold framework
while addressing the unique challenges of multi-channel data in a structured and efficient
manner. Consequently, this approach was adopted as the final solution for the task.

4.2.2. Additional VAE Fine-Tuning

In the original Marigold architecture, the Stable Diffusion VAE remains frozen through-
out the training process. However, as Stable Diffusion was primarily trained on natural
images [44], which differ significantly from Phantom and Ultrasound data, this posed
a limitation for our specific task. To address this, a two-step training routine was in-
troduced as an iterative improvement to the architecture. This routine fine-tunes the
VAE to better encode and decode data from our dataset, ensuring it is more effectively
adapted for the Image-to-Phantom translation task.

The VAE fine-tuning was implemented in three distinct manners. The first approach
involved fine-tuning the entire VAE, while the second approach focused on fine-tuning
only the decoder. In the third approach, only the last layer of the decoder was fine-
tuned. These methods are illustrated in Figures 4.10, 4.11, and 4.12. Their performance
is compared in the results section.
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Figure 4.7.: Adapted Marigold Model Training with Multi-Channel Input

Following the fine-tuning process, the VAE is frozen again, and the standard training
procedure for the U-Net and diffusion process is resumed. This two-step routine enables
the model to retain the strengths of the original Stable Diffusion VAE while adapting to
the specific characteristics of our dataset.

The reconstruction loss function used for fine-tuning the VAE is shown in Figure 4.13. To
prevent catastrophic forgetting, the learning rate during fine-tuning was set significantly
lower compared to the original training learning rate of the VAE.

Multi-VAE

Building on the success of the VAE fine-tuning, an extension was implemented to train
separate VAEs for each Phantom channel, leading to the Multi-VAE approach. In the
standard VAE fine-tuning, a single VAE is trained using data from all Phantom channels.
While effective, this approach may limit the ability to specialize for the unique features
of individual channels.

In the Multi-VAE approach, four distinct VAEs are fine-tuned, each trained exclusively
on data from a specific Phantom channel. This specialization allows each VAE to adapt to
the unique characteristics and features of its respective channel, theoretically enhancing
the reconstruction quality for each channel.

The architecture implementing the Multi-VAE approach is shown in Figures 4.14 and 4.15.
By enabling channel-specific fine-tuning at the VAE level, this strategy ensures a more
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Figure 4.8.: Adapted Marigold Model Training with Single-Channel Input

precise encoding and decoding process, tailored to the distinct attributes of each Phan-
tom channel. This design further improves the model’s capacity to generate high-quality
4-channel outputs in the Image-to-Phantom translation task.

4.3. TransUNet

The original TransUNet architecture from [3] was utilized without any modifications.
This ensured consistency with its established design, functionality, and performance char-
acteristics. The original architecture is depicted in Figure 4.16.

In this project, the TransUNet model was retrained using the newly curated datasets.
The results obtained from these retraining efforts served as a baseline for comparison
with all other experiments conducted in this thesis. By establishing a consistent and
reliable reference point, the retrained TransUNet enabled a comprehensive evaluation of
the improvements introduced by the adapted Marigold architecture and other proposed
methodologies.

4.4. Synthetic Datasets

In this thesis, multiple datasets were utilized to train and evaluate the models. The two
primary datasets, the CT-Phantom 500k and CT-Phantom 50k datasets, were created by
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Figure 4.9.: Adapted Marigold Model Inference with Single-Channel Input

processing existing CT data. These datasets were generated by creating virtual phantoms
based on CT scans and simulating corresponding beamformed US images using the k-
Wave simulator [14] and the beamforming capabilities of dasIT [45]. Additionally, a
small set of real-world US-RRF data pairings was included as external test sets, used
exclusively for evaluation purposes.

The TransUNet model was trained on all available training datasets, whereas the Diffu-
sion Models were exclusively trained on the primary CT-Phantom 500k dataset.

4.4.1. CT-Phantom Datasets

The CT-Phantom datasets, referred to as Phantom datasets for brevity, formed the
backbone of training and evaluation for all models in this thesis. Each dataset sample,
as illustrated in Figure 4.17, consists of a single-channel gray-scale US image paired
with a corresponding 4-channel phantom image. The phantom images are suitable for
simulation purposes and can be integrated into a physically informed model framework.
Detailed descriptions of the phantom generation process and its underlying principles
can be found in [3].

An overview of the dataset characteristics and structure is presented in Figure 4.18,
while the generation process of a dataset sample is shown in Figure 4.19. This process
is detailed in [3].
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Figure 4.10.: Adapted Marigold Model VAE Full Fine-Tuning

Old 50k CT-Phantom Dataset

The Old 50k CT-Phantom Dataset was utilized in the first rendition of the USDatare-
cycler pipeline [3]. This dataset consists of 50,000 samples and was generated using the
functionality of the USDatarecyclerV1 pipeline. However, during the dataset generation,
a bug in the US beamforming process resulted in the corruption of a small percentage of
US images.

50k CT-Phantom Dataset

The 50k CT-Phantom Dataset is a smaller subset of the 500k dataset, containing 50,000
samples. Unlike the Old 50k CT-Phantom Dataset, this dataset was generated after
fixing the US beamforming bug, ensuring no corruption of US images. It was created
as a random selection of samples from the 500k dataset and stored as a single chunk to
facilitate ease of use in training and testing workflows. Its smaller size was chosen to
evaluate the necessity of training on the larger 500k dataset.

500k CT-Phantom Dataset

The 500k CT-Phantom Dataset is the primary dataset used for training and evaluating
models in this thesis. It comprises 500,000 samples, divided into training, validation,
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Figure 4.11.: Adapted Marigold Model VAE Decoder Fine-Tuning

and testing subsets. Due to its large size, the dataset was partitioned into 50 individual
chunks, each containing 10,000 samples, to enable efficient data handling and storage.
This chunk-based structure was instrumental in managing the dataset effectively within
the constraints of computational resources.

4.5. Parallelized SLURM Chunk-Loader

The use of the Euler Cluster [46], which operates with SLURM [47] and enforces a disk
space allocation cap per job, necessitated chunking the dataset and loading it dynam-
ically. Since no existing solution adequately addressed these requirements, a custom
chunk-loading functionality was implemented, as illustrated in Figure 4.20.

This implementation consists of a Chunkloader script that runs concurrently with stan-
dard model training or any process requiring data, using a PyTorch [48] Dataset object.
Communication between the dataset class and the Chunkloader script occurs through a
text file. Commands are written to this file by the dataset class and are subsequently
queued and processed in a first-in-first-out (FIFO) manner by the Chunkloader script.
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Figure 4.12.: Adapted Marigold Model VAE Decoder Last Layer Fine-Tuning

4.5.1. Storage Handling

The Chunkloading mechanism addresses the limited disk storage space available on com-
pute nodes. To manage this, only a specific number of chunks is transferred from the
dataset’s main server location to the compute node storage. These chunks, stored as
tar.gz archives, are extracted on the compute node and made ready for use. This storage
workflow is depicted in Figure 4.21.

4.5.2. Functionality

The core functionality of the Chunkloader is built around a few essential commands,
detailed below:

Initialization:

The initialization process, shown in Figure 4.22, begins with the Chunkloader loading a
predefined number of initial chunks and creating the Command Handler text file. Once
this file is established, the dataset class can operate seamlessly, and the chunked dataset
is initialized and ready for use.
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Figure 4.13.: Adapted Marigold Model VAE Loss Function for Fine-Tuning

Remove Command:

The remove command, illustrated in Figure 4.23, is central to the Chunk-loader’s op-
eration. This command removes specific chunks that are no longer required, freeing
up memory and ensuring efficient use of available storage. After removing unnecessary
chunks, new chunks are automatically loaded until a predefined number of chunks is
available, maintaining the system’s readiness for data processing.

Reset Command:

The reset command, shown in Figure 4.24, enables the clearing of all currently loaded
chunks and re-initializes the Chunkloader. This functionality is particularly useful for
restarting workflows or transitioning to a new dataset. By ensuring that the Chunkloader
begins in a clean state, the reset command minimizes the risk of residual data interfering
with subsequent operations.
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Figure 4.14.: Adapted Marigold Model Inference Architecture with Multi-VAE

Figure 4.15.: Adapted Marigold Model Training Architecture with Multi-VAE
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4. Implementation

Figure 4.16.: TransUNet Model Architecture [3]

Figure 4.17.: Single Example Sample from a CT-Phantom Dataset
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Figure 4.18.: Overview of the CT-Phantom Datasets

Figure 4.19.: Generation of a CT-Phantom Dataset Sample [3]
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Figure 4.20.: Overview of Chunkloader Functionality

Figure 4.21.: Overview of Chunkloader Storage Usage
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Figure 4.22.: Initialization of Chunkloader

Figure 4.23.: Remove Command Chunkloader
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Figure 4.24.: Reset Command Chunkloader
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Chapter 5
Experiments

This chapter presents a comprehensive overview of the experimental setups, evaluation
datasets, metrics, and configurations employed in this thesis. Additionally, it details the
experiments that were conducted.

5.1. Evaluation Datasets

The evaluation process involved using a combination of a primary synthetic test set
and several real-world external evaluation datasets. While the external datasets were
employed exclusively to assess the top-performing models within each group, ablation
studies were conducted solely on the synthetic test set.

5.1.1. Synthetic Evaluation Dataset

The synthetic test set used for evaluation was the test split of the 50k CT-Phantom
Dataset. This subset of the larger 500k CT-Phantom Dataset was selected for its smaller
size, which simplified the evaluation process by eliminating the need for chunk-loading.
Notably, the test split of the 50k dataset was derived after the train-test split of the 500k
dataset, ensuring there was no overlap between the training data and the evaluation test
set.

Due to time constraints, the evaluation was limited to the first 100 samples from this
test set.
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5.1.2. External Evaluation Datasets

In addition to the synthetic dataset, real-world US-RF data pairings were used for ex-
ternal evaluation. These datasets, described in more detail in [3], were excluded from
training to assess the models’ generalization capabilities on diverse real-world data, par-
ticularly in vivo tissue samples.

The datasets included data from virtual phantoms generated by different simulation
methods, real physical phantoms, and in vivo tissue samples. This comprehensive eval-
uation ensured robust benchmarking of the models’ performance in clinically relevant
scenarios.

Overview of External Datasets

Verasonics System Recordings This dataset was acquired using the Verasonics Van-
tage 256 system equipped with a GE 9L-D transducer. It comprises recordings from two
distinct sources: (1) the CIRS GP Phantom Model, which includes data from a physical
phantom designed to replicate general ultrasound imaging conditions, and (2) In Vivo
MG Muscle Tissue, which involves recordings of muscle tissue from the lower leg.

Plane-Wave Imaging Challenge in Medical Ultrasound (PICMUS) 2016 This
dataset was specifically designed to evaluate beamforming strategies using plane-wave RF
data. It includes three types of data: (1) Physical Phantoms, which provide real-world
phantom recordings, (2) Virtual Phantoms, which simulate ultrasound imaging using the
Field II simulator, and (3) In Vivo Carotid Tissue, capturing acquisitions of the carotid
artery in vivo.

Challenge on Ultrasound Beamforming with Deep Learning (CUBDL) 2020
This dataset focuses on RF data from both phantom and in vivo acquisitions. It fea-
tures 500 single plane-wave recordings of brachioradialis muscle tissue, collected from
six distinct samples to ensure variability. These recordings were also acquired using the
Verasonics Vantage 256 system, this time with the L10-5 transducer.

Evaluation Strategy

For consistency, only single plane-wave acquisitions with a zero-degree incident angle
were used. A single beamforming method ensured compatibility between the original and
predicted images, avoiding artifacts caused by variations in beamforming techniques.
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Categorization of External Test Sets for Experiments

The external datasets were categorized as follows in the results section:

• CUBDL In Vivo: Brachioradialis muscle data from the CUBDL challenge.

• PICMUS In Vivo: In vivo carotid artery data.

• PICMUS Phantom: Physical and virtual phantom data from the PICMUS chal-
lenge.

• Verasonics CIRS: Data from the CIRS GP phantom model.

• Verasonics Tissue: In vivo muscle tissue data (MG muscle).

Generalization Considerations

Datasets such as PICMUS and CUBDL employed transducer and acquisition settings
different from those used for training. Results on these datasets illustrate the models’
ability to generalize across diverse imaging conditions. Simulation grids and parameters
were heuristically defined to align with dataset specifications.

This external evaluation provided critical insights into the models’ robustness and real-
world applicability.

5.2. Evaluation Metrics

The evaluation metrics were mostly adopted from [3]. They are tailored to assess RF data
predictions, reconstructed US images, and virtual phantom maps where applicable.

5.2.1. RF Metrics

RF data predictions were evaluated using normalized, Time Gain Compensation (TGC)-
compensated signals. The normalized signal R̄ is computed as:

R̄[t,m] =
R[t,m]− µ

σ

where:

• R[t,m]: The raw RF signal at time step t and channel m.

• µ: The mean of R[t,m] across all t and m.

• σ: The standard deviation of R[t,m] across all t and m.
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The following metrics were used:

• Time Signal Root Mean Square Error (RMSE):

Time Signal RMSE(R, R̂) =

√√√√ 1

MT

M∑
m=1

T∑
t=1

(
R[t,m]− R̂[t,m]

)2

where:

– R̂[t,m]: The predicted RF signal at time t and channel m.

– T : The total number of time steps.

– M : The total number of channels.

• Time Signal Mean Absolute Error (MAE):

Time Signal MAE(R, R̂) =
1

MT

M∑
m=1

T∑
t=1

|R[t,m]− R̂[t,m]|

• Envelope RMSE:

Envelope RMSE(R, R̂) =

√√√√ 1

MT

M∑
m=1

T∑
t=1

(
E[t,m]− Ê[t,m]

)2
, E[t,m] = |H(R)[t,m]|

where:

– E[t,m]: The envelope of the signal R[t,m], derived using the Hilbert transform
H.

– Ê[t,m]: The predicted envelope of the signal.

• Signal-to-Noise Ratio (SNR) Predicted Average:

SNRPredicted Avg =
1

M

M∑
m=1

µm

σm
, µm = mean(R[m]), σm = std(R[m])

where:

– µm: The mean of the signal for channel m.

– σm: The standard deviation of the signal for channel m.
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5.2.2. Image Metrics

Reconstructed US images were evaluated using the following metrics:

• Image RMSE:

RMSE =

√√√√ 1

N

N∑
j=1

(sj − ŝj)
2

where:

– sj : The true pixel intensity at position j.

– ŝj : The predicted pixel intensity at position j.

– N : The total number of pixels in the image.

• Structural Similarity Index Measure (SSIM):

SSIM(x, y) = l(x, y)α · c(x, y)β · s(x, y)γ

where:

– l(x, y): Luminance similarity between images x and y.

– c(x, y): Contrast similarity between images x and y.

– s(x, y): Structural similarity between images x and y.

– α, β, γ: Weighting parameters for the components.

• Mean Intensity Difference (∆I):

∆I =
|It − Ip|

It
, I =

1

N

N∑
j=1

sj

where:

– It: The mean intensity of the true image.

– Ip: The mean intensity of the predicted image.

• Perceptual Loss:

Perceptual Loss =
1

K

K∑
k=1

∥ϕk(s)− ϕk(ŝ)∥2

where:

– ϕk(s): Feature maps extracted from layer k of a pre-trained Neural Network
(NN) for the true image.
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– ϕk(ŝ): Feature maps extracted from layer k of a pre-trained NN for the pre-
dicted image.

– K: The total number of layers in the NN.

5.2.3. Patchwise Image Statistics

Patchwise statistics were used for external evaluation sets to provide more granular in-
sights into performance. These include:

• Average KL Divergence:

Kullback–Leibler (KL)(hp||ht) =
D∑
l=1

hp[l] log

(
hp[l]

ht[l]

)
where:

– hp: Predicted intensity histogram.

– ht: True intensity histogram.

– D: The total number of histogram bins.

• Average Median Difference:

Average Median Diff =
1

P

P∑
p=1

|Medianp(s)− Medianp(ŝ)|

where:

– P : The total number of patches.

– Medianp(s): Median intensity within patch p for the true image.

– Medianp(ŝ): Median intensity within patch p for the predicted image.

• Average Standard Deviation Absolute Difference:

Average Std Dev Abs Diff =
1

P

P∑
p=1

|σp(s)− σp(ŝ)|

where:

– σp(s): Standard deviation within patch p for the true image.

– σp(ŝ): Standard deviation within patch p for the predicted image.
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5.2.4. Phantom Metrics

For synthetic datasets with ground truth phantoms, pixel-wise RMSE was calculated
for each acoustic property map to assess the models’ performance on individual tissue
properties. The evaluation was conducted for four key metrics:

• Density RMSE (RMSEDensity):

RMSEDensity =

√√√√ 1

N

N∑
i=1

(
DensityTrue,i − DensityPred,i

)2
• Speed of Sound RMSE (RMSESoS):

RMSESoS =

√√√√ 1

N

N∑
i=1

(SoSTrue,i − SoSPred,i)
2

• Attenuation RMSE (RMSEAttenuation):

RMSEAttenuation =

√√√√ 1

N

N∑
i=1

(AttenuationTrue,i − AttenuationPred,i)
2

• Scatter Variance RMSE (RMSEScatterVar):

RMSEScatterVar =

√√√√ 1

N

N∑
i=1

(ScatterVarTrue,i − ScatterVarPred,i)
2

Where:

• N is the total number of pixels in the phantom map.

• True and Pred represent the ground truth and predicted values, respectively, for
each metric.

These metrics provide a comprehensive understanding of model performance across dif-
ferent tissue properties.
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5.3. Adapted Marigold Experiments

The Adapted Marigold models were trained on the 500k CT-Phantom dataset for a full
training run. Each full training run required 14 days on a single NVIDIA RTX 4090 GPU,
with models trained for approximately 178,000 steps using a batch size of 32 (achieved
through gradient accumulation), corresponding to over 11 epochs. The trained models
were then integrated into the complete USDatarecycler pipeline for evaluation.

5.3.1. Comparison of VAE Pre-training Architectures

Three VAE pre-training configurations were evaluated:

• Full VAE fine-tuning: All Autoencoder components were unfrozen.

• Decoder-only fine-tuning: Only the decoder was unfrozen.

• Last-layer decoder fine-tuning: Only the last decoder layer was unfrozen.

These configurations were compared against a baseline with no fine-tuning. Standard
Diffusion U-Net training followed each VAE pre-training approach.

5.3.2. Impact of Multi-VAE Architecture

In the Multi-VAE setup, each phantom channel was assigned a dedicated U-Net and VAE.
This setup was compared against a configuration employing a standard VAE fine-tuning
using a single VAE to en- and decode all Phantom channels.

5.3.3. Impact of Learning Rate Schedule Lengths

The learning rate in the original Marigold model training follows an exponential decay
schedule, starting with a brief warm-up phase. The schedule’s primary impact is defined
by the duration of the decay from the maximum to the minimum value. Since the
minimum value is typically very small, minimal further learning occurs after reaching
it. In this work, the duration of the decay, also referred to as the learning rate schedule
length, was varied to assess its effect on the training process.

Three learning rate schedule lengths were tested:

• 25,000 steps: Original Marigold schedule.

• 50,000 steps: Intermediate decay length.

• 100,000 steps: Longest, main decay length.
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5.3.4. Impact of Input Augmentation

Adapted Marigold models using the input augmentation techniques from [3] were com-
pared against models trained without augmentation.

5.4. TransUNet Experiments

All experiments with TransUNet employed the architecture and hyperparameters defined
in [3]. Training was conducted on two NVIDIA RTX 4090 GPUs over 14 days. Models
trained on the 50k datasets were run for 95 epochs, while those trained on the 500k
dataset required 19 epochs.

5.4.1. Comparison Between Models Trained on the Old and New 50k
Phantom Dataset

A TransUNet trained on the old 50k CT-Phantom dataset (produced with a beamforming
bug) was compared to a model trained on the corrected 50k CT-Phantom dataset.

5.4.2. Comparison Between Models Trained on the 50k and 500k
Phantom Dataset

A TransUNet trained on the 50k CT-Phantom dataset was compared to one trained on
the 500k CT-Phantom dataset.

5.4.3. Overview of TransUNet Model Performances

This section summarizes and compares the performance of all trained TransUNet models
across the aforementioned experiments.
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Chapter 6
Results

This chapter presents the results from the experiments described in the previous chapter.
It begins with the outcomes of the Adapted Marigold models and their ablations, includ-
ing experiments with different VAE pretraining structures, a Multi-VAE setup, different
learning rate schedule lengths, and the impact of using input image augmentation. The
chapter is ended by the results of the existing TransUNet models trained on various
training datasets.

6.1. Adapted Marigold Results

This section covers the experiments and ablations performed on the Adapted Marigold
models, showcasing results for different VAE pretraining setups, the Multi-VAE approach,
variations in learning rate schedules, and input augmentation.

6.1.1. Comparison of VAE Pre-training Architectures

This subsection compares the results of Adapted Marigold models trained with differ-
ent VAE pre-training setups, excluding the Multi-VAE architecture, which is covered
separately.

As shown in Table 6.1, fine-tuning the VAE generally improves performance. The full
VAE fine-tuning and decoder-only fine-tuning yield the best results overall. Specifically,
the decoder-only fine-tuning achieves superior performance in the phantom metrics, while
the full VAE fine-tuning excels in both RF and image metrics. Therefore VAE-finetuning
was employed in the main Adapted Marigold model.
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Table 6.1.: Marigold Results for Different VAE Pretraining Setups
Metric No VAE Full VAE Dec. Only Last Layer of Dec.
RF Metrics
Time Signal RMSE ↓ 1.403 1.416 1.414 1.402
Time Signal MAE ↓ 0.535 0.519 0.524 0.531
Envelope RMSE ↓ 1.062 1.035 1.045 1.062
SNR Predicted Avg ↑ 24.664 26.687 26.722 24.846
Image Metrics
Image RMSE ↓ 44.894 44.754 44.289 45.392
SSIM ↑ 0.133 0.135 0.134 0.137
Mean Intensity Difference ↓ 44.894 44.754 44.289 45.392
Perceptual Loss ↓ 0.076 0.074 0.074 0.077
Phantom Metrics
Density RMSE ↓ 119.234 120.334 119.671 120.499
SOS RMSE ↓ 911.219 895.548 892.341 913.419
Attenuation RMSE ↓ 0.625 0.617 0.602 0.658
Scatter Var RMSE ↓ 615.63 553.693 524.454 635.588

6.1.2. Impact of Multi-VAE Architecture

This subsection examines the results of the Multi-VAE architecture compared to the
baseline model.

As shown in Table 6.2, the Multi-VAE approach improves performance in the RF metrics
but exhibits a trade-off with reduced performance in the Image and Phantom metrics.
Given the relatively small performance differences and the significantly slower inference
time of the Multi-VAE approach, it was not adopted for the main Marigold model.

6.1.3. Impact of Learning Rate Schedule Lengths

This subsection evaluates Adapted Marigold models trained with different learning rate
schedule lengths.

As shown in Table 6.3, the 100k step learning rate schedule generally performs best,
particularly in phantom metrics. The longer schedule allows the model to focus on
learning coarser patterns, which seems beneficial for phantom tissue property predictions.
However, for Ultrasound image reconstruction, the 50k schedule achieves the best results,
as a solid middle ground. For the main Adapted Marigold model, the 100k schedule was
ultimately chosen in order to predict phantoms as well as possible.

6.1.4. Impact of Input Augmentation

This subsection explores the effect of input augmentation on model performance.
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Table 6.2.: Marigold Results with and without Multi-VAE
Metric With Multi-VAE Without Multi-VAE
RF Metrics
Time Signal RMSE ↓ 1.414 1.402
Time Signal MAE ↓ 0.522 0.531
Envelope RMSE ↓ 1.057 1.062
SNR Predicted Avg ↑ 26.469 24.846
Image Metrics
Image RMSE ↓ 44.743 38.475
SSIM ↑ 0.135 0.137
Mean Intensity Difference ↓ 0.149 0.137
Perceptual Loss ↓ 0.075 0.071
Phantom Metrics
Density RMSE ↓ 120.499 119.234
SOS RMSE ↓ 119.671 100.638
Attenuation RMSE ↓ 0.611 0.625
Scatter Var RMSE ↓ 73.543 68.477

As seen in Table 6.4, input augmentation consistently improves performance across nearly
all metrics. This is not surprising, as input augmentation is a standard practice in modern
DL models. Therefore it was also applied to the main Adapted Marigold model.

6.1.5. Summary

In summary, the Adapted Marigold models demonstrate robust performance across var-
ious setups. Fine-tuning the VAE and incorporating input augmentation consistently
enhance results. Using a Multi-VAE-approach improves performance on RF-prediction
but as a trade-off worsens US-Image and Phantom predictions. Learning rate schedule
lengths influence results differently for Ultrasound image reconstruction and phantom
property prediction, with longer schedules generally yielding the best overall perfor-
mance. Overall all the main adaptations to the original Marigold model training yield
some benefits for the US to RF task.

6.2. TransUNet Results

This section presents the results for the TransUNet model across multiple training datasets.
Comparisons are made between models trained on different versions of the Phantom
Dataset, with an overview provided at the end.
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Table 6.3.: Marigold Results for Different Learning Rate Schedule Lengths
Metric 25k LR Sched 50k LR Sched 100k LR Sched
RF Metrics
Time Signal RMSE ↓ 1.403 1.406 1.402
Time Signal MAE ↓ 0.536 0.533 0.531
Envelope RMSE ↓ 1.064 1.060 1.062
SNR Predicted Avg ↑ 25.812 25.490 24.846
Image Metrics
Image RMSE ↓ 46.706 45.141 45.392
SSIM ↑ 0.148 0.135 0.137
Mean Intensity Difference ↓ 46.706 45.141 45.392
Perceptual Loss ↓ 0.004 0.004 0.004
Phantom Metrics
Density RMSE ↓ 122.626 121.146 120.499
SOS RMSE ↓ 903.034 915.401 913.419
Attenuation RMSE ↓ 0.647 0.633 0.625
Scatter Var RMSE ↓ 44.341 44.458 45.444

6.2.1. Comparison Between Models Trained on the Old 50k and New
50k Phantom Dataset

This experiment compares the performance of the TransUNet model trained on the Old
50k Phantom Dataset and the (New) 50k Phantom Dataset. Both models were trained
under identical conditions, with the primary difference being the corrected beamforming
process and updated sample collection in the newer dataset.

The results of this comparison, shown in Table 6.5, show that the (New) 50k Phantom
Dataset provides clear improvements in most areas. While RF metrics remain largely
consistent between the two datasets, notable gains are observed in image quality and
phantom property predictions. Structural similarity, intensity differences, and other
image-related metrics demonstrate better performance, reflecting the removal of cor-
rupted samples in the newer dataset. Similarly, the model trained on the 50k dataset
achieves more accurate predictions for tissue properties such as density, speed of sound,
and attenuation. These improvements highlight the impact of correcting errors in virtual
datasets, as their incorrectness can lead to model performance degradations as shown.

6.2.2. Comparison Between Models Trained on the 50k and 500k
Phantom Dataset

This experiment examines the effects of dataset scale by comparing the performance of
models trained on the 50k Phantom Dataset and the 500k Phantom Dataset. The 500k
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Table 6.4.: Marigold Results with and without Input Augmentation
Metric With Augmentation Without Augmentation
RF Metrics
Time Signal RMSE ↓ 1.406 1.402
Time Signal MAE ↓ 0.530 0.531
Envelope RMSE ↓ 1.063 1.062
SNR Predicted Avg ↑ 25.652 24.846
Image Metrics
Image RMSE ↓ 38.778 38.475
SSIM ↑ 0.134 0.137
Mean Intensity Difference ↓ 0.099 0.104
Perceptual Loss ↓ 0.076 0.077
Phantom Metrics
Density RMSE ↓ 117.017 120.499
SOS RMSE ↓ 39.022 45.444
Attenuation RMSE ↓ 0.625 0.627
Scatter Var RMSE ↓ 71.219 73.543

dataset includes additional samples that provide greater diversity and coverage. Table 6.6
provides a summary of the results.

The results demonstrate consistent improvements across all metrics when the model is
trained on the larger dataset. RF metrics show better accuracy and higher signal-to-
noise ratios, indicating improved generalization to unseen RF data. Similarly, image-
related metrics such as structural similarity and intensity differences benefit from the
increased diversity in the training data. The most significant gains are observed in
phantom property predictions, with the larger dataset enabling more accurate estimations
of density, speed of sound, attenuation and scattering. These improvements emphasize
the value of a larger and more diverse dataset for training.

6.2.3. Overview of TransUNet Model Performances

This subsection provides an overview of the TransUNet model’s performance across all
datasets: the Old 50k Phantom Dataset, the 50k Phantom Dataset, and the 500k Phan-
tom Dataset. The datasets differ in quality and size, with the Old 50k containing cor-
rupted samples, the 50k correcting these issues, and the 500k significantly increasing the
sample set.

The progression from the Old 50k dataset to the 50k dataset shows marked improvements
in image and phantom metrics, highlighting the benefits of correcting beamforming errors
and using higher-quality samples. The transition to the 500k dataset demonstrates the
importance of dataset size, with substantial gains observed across all metrics. These
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Table 6.5.: Comparison of metrics between the Old 50k CT-Phantom Dataset and the
50k Phantom Dataset.

Metric Old 50k Phantom Dataset 50k Phantom Dataset
RF Metrics
Time Signal RMSE ↓ 1.404 1.411
Time Signal MAE ↓ 0.510 0.517
Envelope RMSE ↓ 1.033 1.035
SNR Predicted Avg ↑ 26.377 25.285
Image Metrics
Image RMSE ↓ 41.683 41.383
SSIM ↑ 0.135 0.136
Mean Intensity Difference ↓ 0.102 0.093
Perceptual Loss ↓ 0.079 0.079
Phantom Metrics
Density RMSE ↓ 104.550 97.344
SOS RMSE ↓ 189.723 178.828
Attenuation RMSE ↓ 0.538 0.517
Scatter Var RMSE ↓ 60.784 60.049

results emphasize the critical role of both dataset quality and scale in achieving optimal
model performance.

Table 6.7 shows the exact result metrics of all TransUNet models again in an overview.

6.3. Comparison between Adapted Marigold and
TransUNet

This section presents a comparison between the best-performing TransUNet model, trained
on the 500k dataset, and the Adapted Marigold model. The evaluation is conducted on
two fronts: the standard synthetic test set and a range of external test sets. Additionally,
visual comparisons are provided to complement the quantitative analysis.

6.3.1. Standard Synthetic Test Set Results

The results, summarized in Table 6.8, reveal that the TransUNet model achieves better
performance on the majority of metrics for the synthetic test set. However, visual in-
spections, shown for example in Figure 6.1 and Figure 6.2, indicate notable differences.
While TransUNet captures certain phantom structures effectively, its predictions exhibit
over-smoothing, leading to a lack of detail compared to the Adapted Marigold model.
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Table 6.6.: Comparison of metrics between the 50k Phantom Dataset and the 500k Phan-
tom Dataset.

Metric 50k Phantom Dataset 500k Phantom Dataset
RF Metrics
Time Signal RMSE ↓ 1.411 1.386
Time Signal MAE ↓ 0.517 0.497
Envelope RMSE ↓ 1.035 0.997
SNR Predicted Avg ↑ 25.285 26.696
Image Metrics
Image RMSE ↓ 41.383 41.103
SSIM ↑ 0.136 0.136
Mean Intensity Difference ↓ 0.093 0.085
Perceptual Loss ↓ 0.079 0.080
Phantom Metrics
Density RMSE ↓ 97.344 91.713
SOS RMSE ↓ 178.828 169.111
Attenuation RMSE ↓ 0.517 0.516
Scatter Var RMSE ↓ 60.049 52.238

For instance, Figure 6.3 provides a comprehensive view of the reconstructed phantoms
and RF data predictions. The metrics-driven advantage of the TransUNet does not
always translate into superior visual quality, as the Adapted Marigold model often retains
more structural fidelity.

6.3.2. External Test Set Results

To evaluate generalization capabilities, the models were tested on a variety of external
datasets, including recordings from the Verasonics system, data from the PICMUS and
CUBDL challenges, and in vivo samples. These datasets were specifically chosen for their
diversity and alignment with real-world imaging scenarios.

CUBDL In Vivo

As shown in Table 6.9, the Adapted Marigold model outperforms the TransUNet in
nearly all metrics on the CUBDL dataset. This superiority is further evident in the
visual results, as can be seen in Figure 6.4, where the Marigold predictions exhibit
significantly more structural detail, whereas the TransUNet outputs are often noisier
and less defined.
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Table 6.7.: Overview of TransUNet model performance across all datasets.
Metric Old 50k Dataset 50k Dataset 500k Dataset
RF Metrics
Time Signal RMSE ↓ 1.404 1.411 1.386
Time Signal MAE ↓ 0.510 0.517 0.497
Envelope RMSE ↓ 1.033 1.035 0.997
SNR Predicted Avg ↑ 26.378 25.285 26.696
Image Metrics
Image RMSE ↓ 41.683 41.383 41.103
SSIM ↑ 0.135 0.136 0.136
Mean Intensity Difference ↓ 0.102 0.093 0.085
Perceptual Loss ↓ 0.079 0.079 0.080
Phantom Metrics
Density RMSE ↓ 104.550 97.344 91.713
SOS RMSE ↓ 189.723 178.828 169.111
Attenuation RMSE ↓ 0.538 0.518 0.516
Scatter Var RMSE ↓ 60.784 60.049 52.238

PICMUS In Vivo

For the PICMUS In Vivo dataset, the metrics present a mixed outcome, with no model
emerging as a clear winner (Table 6.10). However, visual comparisons (Figure 6.5) in-
dicate that the Adapted Marigold model more accurately reproduces underlying tissue
structures compared to the overly smoothed predictions of TransUNet.

PICMUS Phantom

The results on the PICMUS Phantom dataset, summarized in Table 6.11, clearly favor
the Adapted Marigold model across most metrics. Figure 6.6 further supports this find-
ing, with Marigold’s predictions closely resembling the ground truth in both ultrasound
images and RF data.

Verasonics CIRS

The Verasonics CIRS dataset highlights the Adapted Marigold model’s superiority in
most metrics, as shown in Table 6.12. The visual results in Figure 6.7 further demon-
strate the reduced randomness and enhanced structural accuracy of Marigold’s predic-
tions compared to TransUNet.
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6. Results

Table 6.8.: Comparison of metrics between Marigold Main and TransUNet 500k on Stan-
dard Synthetic Test Set

Metric Marigold TransUNet
RF Metrics
Time Signal RMSE ↓ 1.402 1.386
Time Signal MAE ↓ 0.531 0.497
Envelope RMSE ↓ 1.062 0.997
SNR Predicted Avg ↑ 24.846 26.696
Image Metrics
Image RMSE ↓ 38.475 41.103
SSIM ↑ 0.137 0.136
Mean Intensity Difference ↓ 0.104 0.081
Perceptual Loss ↓ 0.077 0.08
Phantom Metrics
Density RMSE ↓ 120.499 91.713
SOS RMSE ↓ 913.419 855.668
Attenuation RMSE ↓ 0.625 0.516
Scatter Var RMSE ↓ 73.543 52.238

Verasonics Tissue

The Verasonics Tissue dataset results, shown in Table 6.13, heavily favor the Adapted
Marigold model. This advantage is further supported by the visual results in Figure 6.8,
where the Marigold predictions provide more accurate structural representations than
TransUNet.

6.3.3. Discussion

The comparison between the TransUNet and Adapted Marigold models reveals comple-
mentary strengths. While TransUNet exhibits strong performance on synthetic datasets,
its tendency to over-smooth predictions impacts visual quality. In contrast, the Adapted
Marigold model excels in generalizing to external datasets, consistently producing vi-
sually superior results and demonstrating robustness across diverse imaging conditions.
These findings underscore the importance of balancing metrics-driven optimization with
visual inspection. An overview over the results of the Datasets visualized on two key
metrics, the /glsus-Image RMSE and the RF Envelope RMSE can be seen in Figure 6.9.
From this the, on average, better performance of the Adapted Marigold Model can be
seen quite clearly.
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6. Results

Figure 6.1.: Example Visual Phantom Prediction Results Comparison on Synthetic Test
Set

Figure 6.2.: Secondary Example Phantom Prediction Results Comparison on Synthetic
Test Set

56



6. Results

Figure 6.3.: Full Example Visual Results Comparison on Synthetic Test Set

Table 6.9.: Comparison of metrics between Marigold Main and TransUNet 500k on the
CUBDL In Vivo External Dataset

Metric Marigold TransUNet
RF Metrics
Time Signal RMSE ↓ 1.415 1.414
Time Signal MAE ↓ 0.811 0.883
Envelope RMSE ↓ 1.341 1.439
SNR Predicted Avg ↑ 9.443 7.457
Image Metrics
Image RMSE ↓ 60.156 79.852
SSIM ↑ 0.141 0.125
Mean Intensity Difference ↓ 0.579 0.915
Perceptual Loss ↓ 0.214 0.189
Patchwise Image Statistics
Average KL Divergence ↓ 1.237 2.229
Average Median Diff ↓ 14.692 21.142
Average Std Dev Abs Diff ↓ 9.850 13.413
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6. Results

Figure 6.4.: Example US Image Reconstruction Results Comparison on CUBDL In Vivo
Test Set

Table 6.10.: Comparison of metrics between Marigold Main and TransUNet 500k on the
PICMUS in vivo External Dataset

Metric Marigold TransUNet
RF Metrics
Time Signal RMSE ↓ 1.414 1.417
Time Signal MAE ↓ 0.778 0.721
Envelope RMSE ↓ 1.627 1.715
SNR Predicted Avg ↑ 32.894 33.784
Image Metrics
Image RMSE ↓ 65.939 64.656
SSIM ↑ 0.424 0.281
Mean Intensity Difference ↓ 0.492 0.282
Perceptual Loss ↓ 0.187 0.214
Patchwise Image Statistics
Average KL Divergence ↓ 2.439 4.377
Average Median Diff ↓ 25.143 34.687
Average Standard Deviation Abs Diff ↓ 9.164 9.088
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6. Results

Figure 6.5.: Example US Image Reconstruction Results Comparison on PICMUS In Vivo
Test Set

Table 6.11.: Comparison of metrics between Marigold Main and TransUNet 500k on the
PICMUS Phantom External Dataset

Metric Marigold TransUNet
RF Metrics
Time Signal RMSE ↓ 1.416 1.412
Time Signal MAE ↓ 0.810 0.910
Envelope RMSE ↓ 1.377 1.378
Image Metrics
Image RMSE ↓ 54.500 67.116
SSIM ↑ 0.386 0.580
Mean Intensity Difference ↓ 0.566 0.744
Perceptual Loss ↓ 0.218 0.213
Patchwise Image Statistics
Average KL Divergence ↓ 2.145 3.697
Average Median Difference ↓ 16.318 26.317
Average Standard Deviation Abs Diff ↓ 9.109 9.749
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6. Results

Figure 6.6.: Example US Image Reconstruction Results Comparison on PICMUS Phan-
tom Test Set

Table 6.12.: Comparison of metrics between Marigold Main and TransUNet 500k on the
Verasonics CIRS External Dataset

Metric Marigold TransUNet
RF Metrics
Time Signal RMSE ↓ 1.415 1.417
Time Signal MAE ↓ 0.971 0.989
Envelope RMSE ↓ 1.041 1.067
SNR Predicted Avg ↑ 6.707 7.023
Image Metrics
Image RMSE ↓ 71.553 73.275
SSIM ↑ 0.168 0.148
Mean Intensity Difference ↓ 0.69 0.683
Perceptual Loss ↓ 0.113 0.107
Patchwise Image Statistics
Average KL Divergence ↓ 0.394 0.964
Average Median Difference ↓ 8.183 12.183
Average Standard Deviation Abs Diff ↓ 8.172 8.009
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6. Results

Figure 6.7.: Example US Image Reconstruction Results Comparison on Verasonics CIRS
Test Set

Table 6.13.: Comparison of metrics between Marigold Main and TransUNet 500k on the
Verasonics Tissue External Dataset

Metric Marigold TransUNet
RF Metrics
Time Signal RMSE ↓ 1.413 1.414
Time Signal MAE ↓ 0.862 0.941
Envelope RMSE ↓ 1.32 1.369
SNR Predicted Avg ↑ 13.78 13.78
Image Metrics
Image RMSE ↓ 44.311 56.017
SSIM ↑ 0.142 0.135
Mean Intensity Difference ↓ 0.109 0.277
Perceptual Loss ↓ 0.100 0.078
Patchwise Image Statistics
Average KL Divergence ↓ 0.125 0.105
Average Median Difference ↓ 1.436 1.548
Average Standard Deviation Abs Diff ↓ 5.063 8.090
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6. Results

Figure 6.8.: Example US Image Reconstruction Results Comparison on Verasonics Tissue
Test Set
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6. Results

Figure 6.9.: Scatter Plot of Results over all Test Datasets
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Chapter 7
Conclusion and Future Work

This thesis has demonstrated that state-of-the-art Denoising Diffusion Models, particu-
larly the developed Adapted Marigold model, offer significant potential for Ultrasound
RF data reconstruction. While the existing TransUNet model achieved slightly bet-
ter quantitative performance on a synthetic test dataset, the Adapted Marigold model
consistently outperformed TransUNet across almost all external datasets, demonstrating
superior performance in real-world scenarios. This highlights the practical advantages
of Denoising Diffusion Models, which excel at capturing the complexity and variability
inherent in real-world imaging tasks.

The Adapted Marigold model’s performance advantage on external datasets can be at-
tributed to the nature of diffusion models, which iteratively refine predictions through a
denoising process. This approach allows the model to focus on reconstructing fine-grained
details and preserving structural integrity, making it particularly well-suited for handling
the diverse and noisy conditions found in real-world ultrasound imaging. In contrast, the
Transformer-based architecture of TransUNet, while effective for synthetic datasets with
well-defined patterns, tends to produce over-smoothed results in more complex and vari-
able scenarios, as it relies heavily on attention mechanisms that may struggle to capture
the nuanced, localized details necessary for high-quality reconstructions.

This comparison underscores the complementary strengths of the two approaches and
emphasizes the importance of considering both synthetic benchmarks and real-world
evaluations. The Adapted Marigold model’s robustness and ability to generalize across
diverse datasets further validate the utility of the USDatarecycler pipeline. By integrating
physically-informed simulations with data-driven methodologies, the pipeline effectively
bridges the gap between synthetic data and real-world clinical applications, setting a
strong foundation for advancing RF data reconstruction.
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7. Conclusion and Future Work

Future Work

Several avenues for future research and development emerge from this work. One promis-
ing direction is to leverage the synthetic RF data generated by the pipeline in real-world
applications. Evaluating the performance of models trained on such an artificial dataset
in practical scenarios would provide critical insights into their utility and limitations.

Another area of focus could be the optimization of the Adapted Marigold model’s in-
ference process. Currently, it lacks full parallelization, which impacts its computational
efficiency. Parallelizing parts of the code or leveraging advanced Multi-GPU inference
could significantly reduce inference time.

Expanding the diversity of the training datasets is another important direction, par-
ticularly by including more varied tissue types and imaging conditions. This would
likely improve the model’s generalization capabilities even more. Additionally, generat-
ing datasets that better mimic real-world variability in ultrasound imaging would further
enhance robustness. Exploring hybrid architectures that combine the strengths of Denois-
ing Diffusion Models and transformer-based models like TransUNet could yield improved
performance by leveraging the quantitative strengths of TransUNet while retaining the
visual quality benefits of diffusion models.

In conclusion, this work has established a strong foundation for using Denoising Diffusion
Models in the field of ultrasound RF data reconstruction. By addressing the outlined
challenges and exploring the proposed future directions, the potential for broader adop-
tion of these models in medical imaging applications can be significantly enhanced.
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1. Project Outline

Medical ultrasound (US) imaging is a vital diagnostic tool and has many areas of appli-
cation. The raw data from US imaging, known as radio-frequency (RF) data, contains
more information than US images and has valuable use cases. Although large datasets
of processed US images are widely available, raw RF data remains scarce.

In a Master thesis [1] we explored the first system designed to predict raw RF data
from US images. We have developed a data-driven, physically-informed model that
combines deep learning (DL) techniques with numerical simulations of ultrasound waves.
Specifically, we employed a TransUNet neural network architecture [2] to predict the
acoustic properties of the underlying tissue. The neural network is trained using a custom
synthetic dataset generated by us. To create extensive and meaningful synthetic datasets
of paired RF data and US images, we proposed four different strategies. These include
using geometric features from standard images in the ImageNet dataset and information
from medical CT images [3].
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Figure 1: An example visual result, comparing the prediction of a medial gastrocnemius
muscle ultrasound image before and after fine-tuning our model.

The performance of our model using different synthetic datasets was compared and eval-
uated for real RF data and we found that the model which generalizes best is trained
on the CT phantom dataset. Additionally, we explored fine-tuning the trained models
to predict RF data for medial gastrocnemius muscle images using a dedicated synthetic
muscle phantom dataset created by us. We verifies that fine-tuning our model for prior-
known tissue types significantly improves the predicted RF data. By comparing our
physics-based model to an end-to-end DL model trained for RF data prediction, the
benefit of introducing the numerical simulation into our predictions was highlighted.

In this project we build upon the results achieved by Reitsam 2024 [1] and aim to develop
an even more robust system architecture with a particular focus on the machine learning
model.
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2. Research Questions

The research questions of this thesis are:

• What are other possible ML models for converting images to RF data. How large
are the conversion losses and what are strategies to improve conversion?

• Quantification of how well your model generalises between different domains at all
levels of the development.

2.1. Methodology

• Workpackage I - Literature and Code review: The aim of this task is to
develop a general understanding of the data-driven elements of the system archi-
tecture on the one hand and the physics of ultrasound, the generation of ultrasound
images, ultrasound beamforming and simulation on the other. In addition, the code
repository developed in the work of Reitsam [1] will be evaluated, replicated and
improved.

Deliverables:

– D1: Fine Grained Project Plan and Gantt Chart.

– D2: Documentation of the literature review findings.

– D3: Restructured Code Repository.

• Workpackage II - Evaluation of ML Models and Building of Mock-ups:
Recently, diffusion models have been soaring in the fields of text-to-image gen-
eration, text-to-video generation, and image-to-image mapping. Diffusion mod-
els [4, 5] are trained on large-scale data and outperform generative adversarial
networks (GAN) [6] in generating high-quality, realistic, and diverse outputs. In
addition, Mamba architecture arises as a rival to Transformer architecture, which is
claimed to achieve the modelling power of Transformers with a linearly increasing
computational complexity [7]. One important possibility in this thesis will be to
explore the utilization of state-of-the-art deep models such as diffusion models and
Mamba for the mapping from ultrasound images to phantoms.

Moreover, another important aspect in these investigations must be set on explain-
ability. Why does one model work better than the other? And how can I quantify
accuracy and losses? It will be important to also establish a statistical monitoring
framework for quantification.

Deliverables:

– D4: An investigation of different model architectures and in particular DiT [5]
and Mamba [7] for the ultrasound image-to-phantom mapping. Code to train,
validate, and test the investigated deep architecture.

3



– D5: An argumentation for a model of choice to be trained and integrated into
the existing Ultrasound Data Recycler System Architecture.

• Workpackage III - Integration, Training and Test: Utilisation of the model
of choice in the existing system architecture of the Ultrasound Data Recycler.

Deliverables:

– D6: Performance documentation of the implemented new model architecture.

– D7: Trained model and report on explainability and accuracy.

• Workpackage IV - Generation of Synthetic Training Data, and Transfer
of the Network to a Real World Dataconversion Problem: The aim of this
task is to explore new realistic phantom creation methods using, e.g., Ultrasound,
CT or MRI image databases. Furthermore, we want to apply our model to real
world data. Are the results comparable to those obtained with synthetic data?
If not, how can I adapt my methodology to increase accuracy. How robust is
our model architecture to data coming from different source (e.g. instruments,
probands,..)?

Deliverables:

– D8: Synthetic phantom data samples derived from realistic anatomical im-
ages.

– D9: Retrained model on the new dataset.

– D10: Application of the system architecture to real-world data and conversion
of an image database

• Workpackage VI - Report and Presentation: Work on the final report and
thesis presentation.

Deliverables:

– D11: Final report summarizing the entire project and clean and documented
code repository.

– D12: Prepared materials and presentation for the thesis run-through and
defense.

3. Project Realization

3.1. Project Plan

Within the first week of the project you will be asked to prepare a project plan. This
plan should identify the tasks to be performed during the project and sets deadlines for
those tasks. The prepared plan will be a topic of discussion of the first week’s meeting
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between you and your advisers. Note that the project plan should be updated constantly
depending on the project’s status.

3.2. Meetings

Weekly meetings and reports must be held. The exact time and location of these meetings
will be determined within the first week of the project in order to fit the student’s and
the assistant’s schedule. These meetings will be used to evaluate the status and progress
of the project. Besides these regular meetings, additional meetings can be organized to
address urgent issues as well.

3.3. Report

Documentation is an important and often overlooked aspect of engineering. One final
report has to be completed within this project. The common language of engineering
is de facto English. Therefore, the final report of the work is preferred to be written
in English. Any form of word processing software is allowed for writing the reports,
nevertheless, the use of LATEX with Tgif1 or any other vector drawing software (for block
diagrams) is strongly encouraged by the IIS staff.

Code Repository As many of our projects are heavily code-based, the documentation
of the code and its repository is also considered important in the grading of your thesis.
We suggest to follow coding standards and style guides when writing code, e.g. C [8],
Python [9],...

Final Report The final report has to be presented at the end of the project and a digital
copy need to be handed in. Note that this task description is part of your report and has
to be attached to your final report. Our LATEX template can be found here for download:
https://iis-projects.ee.ethz.ch/index.php?title=Final_Report)

3.4. Presentation

There will be a presentation (15 min for the semester thesis, and 20 min for the MS
thesis presentation followed by 5 min Q&A) at the end of this project in order to present
your results to a wider audience. The exact date will be determined towards the end
of the work. Additional tipps for preparing the presentation can be found here: https:
//iis-projects.ee.ethz.ch/index.php?title=Final_Presentation

1See: http://bourbon.usc.edu:8001/tgif/index.html and http://www.dz.ee.ethz.ch/en/
information/how-to/drawing-schematics.html.
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