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Abstract

Physiological signals, such as electroencephalography (EEG) and electrocardiography
(ECG), are crucial for monitoring health, diagnosing conditions, and understanding
complex physiological states. While deep learning has advanced their analysis, existing
models often focus on single modalities or are tailored to specific tasks, hindering the
development of unified, general-purpose frameworks capable of leveraging the inherent
complementarity that multimodal biosignal data possesses. Furthermore, the scarcity of
large-scale, multimodal labeled datasets remains a significant challenge in this domain.

This thesis introduces a novel multimodal foundation model designed for the com-
prehensive analysis of EEG and ECG signals. The proposed architecture integrates
modality-specific encoders for both modalities, employing temporal and channel at-
tention to learn intra-modal relationships, followed by a shared multimodal encoder
that employs cross-attention to learn inter-modal interactions, and global self-attention
for modality-agnostic multimodal fusion. To mitigate the reliance on multimodal la-
beled data, the model is pretrained using a multi-stage self-supervised learning strategy
based on masked reconstruction, first training the unimodal encoders on large modality-
specific datasets (TUEG for EEG, Icentia/PTB-XL for ECG), and subsequently training
the shared multimodal encoder on a large multimodal dataset containing both EEG and
ECG (SHHS). By effectively leveraging large amounts of unlabeled unimodal and multi-
modal data through this SSL approach, this work represents a step towards developing
unified, general-purpose models for multimodal physiological data.

The efficacy and robustness of the pretrained foundation model were evaluated
through finetuning on a diverse range of downstream tasks, including both multimodal
(sleep stage classification, emotion recognition, transcranial electrical stimulation region
classification) and unimodal EEG-only tasks (artifacts and slowing events classification,
and abnormality detection). Experimental results demonstrate that the proposed mul-
timodal architecture and multi-stage pretraining approach enable the model to learn
powerful, transferable representations, achieving an increase of 3.2% in AUPRC for the
TUAR dataset.
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Chapter 1
Introduction

The increasing demand for objective and quantitative insights into human physiological
and cognitive states underscores the critical role of biosignal analysis. Among the
most valuable and widely studied biosignals are Electroencephalography (EEG), a non-
invasive recording of the brain’s electrical activity, and Electrocardiography (ECG),
which captures the heart’s electrical patterns. These modalities provide essential, and
often complementary, information, providing invaluable insights for clinical diagnosis,
patient monitoring, and neuroscience research. Recent years have seen a paradigm shift
in automated biosignal analysis with the advent of deep learning. Notably, transformer
architectures [1], leveraging powerful attention mechanisms, have proven exceptionally
capable of modeling the complex temporal dependencies and multi-channel interactions
inherent in both EEG and ECG data.

Despite the advances in deep learning and transformers for biosignal analysis, a signif-
icant gap remains. Current research often focuses on specialized models for individual
modalities (EEG or ECG) or specific tasks and datasets. While the integration of multiple
biosignals, particularly EEG and ECG, holds great potential for understanding complex
physiological states, studies specifically focused on their joint analysis are relatively lim-
ited compared to unimodal research. Moreover, existing multimodal approaches within
this domain are frequently tailored to a specific task, employing architectures and fusion
strategies optimized solely for that purpose, which limits their broad applicability to
other problems [2, 3, 4]. This fragmentation restricts knowledge transfer and hinders the
creation of general-purpose AI tools for healthcare. Furthermore, the limited availability
of large, high-quality, labeled multimodal biosignal datasets poses a major obstacle to
training versatile supervised models. This context underscores the need for a unified,
large-scale, general-purpose multimodal foundation model. Such a model should be
capable of learning robust, shared representations from both unimodal and multimodal
unlabeled data, enabling concurrent EEG and ECG analysis that generalizes effectively
across diverse tasks.

This thesis proposes a novel framework to address this gap, introducing a multimodal
foundation model specifically designed for the concurrent analysis of EEG and ECG
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1. Introduction

signals. The proposed solution involves an architecture composed of modality-specific
encoders for initial feature extraction, followed by a shared core fusion module. This
core performs multimodal fusion through a combination of attention mechanisms: cross-
attention, which explicitly models the relationships between EEG and ECG features, and
self-attention, which processes the combined features in a modality-agnostic fashion,
resulting in a shared representation. To mitigate the reliance on scarce labeled data
and to yield more general representations, the model is trained through a multi-stage
Self-Supervised Learning (SSL) strategy. This strategy leverages large-scale datasets,
encompassing both unimodal EEG and ECG datasets in the initial pretraining stage, and
multimodal EEG and ECG datasets for the pretraining of the shared core module. This
approach aims to learn powerful representations of brain and heart activity that capture
inter-modal relationships and can successfully generalize across different tasks.

The proposed multimodal foundation model is evaluated by assessing the generaliz-
ability and effectiveness of its learned representations across a variety of downstream
tasks. This is achieved through finetuning the pretrained model on diverse labeled
datasets. Evaluation includes multimodal tasks such as sleep stage classification and
emotion recognition, and also unimodal EEG classification tasks, including artifact
classification, slowing events classification and abnormality detection. Successful perfor-
mance across these tasks demonstrates the model’s ability to learn robust and clinically
relevant representations from EEG and ECG signals.

This thesis is organized as follows: Chapter 2 provides the useful background on
the fundamental concepts of physiological signals, specifically EEG and ECG, self-
supervised learning, foundation models, and the datasets utilized. Chapter 3 reviews
related works in foundation models for multimodal biosignals, further highlighting
the research gap. Chapter 4 details the proposed method, including the full model
architecture, the multi-stage self-supervised pretraining strategy, the data preprocessing
pipeline, and the finetuning procedures. Chapter 5 presents and analyzes the experi-
mental results. Last, Chapter 6 concludes the thesis by summarizing the key findings
and discussing potential future developments.
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Chapter 2
Background

This chapter will provide the relevant background knowledge necessary to understand
the proposed methods and their applications. The chapter is divided into four areas, an
introduction to biosignals, self-supervised learning for physiological signals, transformer
models and attention, and lastly the datasets used in this thesis.

2.1. Signals Introduction

2.1.1. Biosignals

Biosignals are physiological signals that can be measured from living organisms, provid-
ing a window into the body’s internal states and processes [5]. These signals, which can
be electrical, chemical, mechanical, or optical in nature, carry valuable information about
various biological functions, ranging from neural activity to cardiovascular dynamics.
The analysis of biosignals has become increasingly crucial in diverse fields, including
medicine, neuroscience, and biomedical engineering, offering objective and quantita-
tive measures for diagnosis, monitoring, and understanding physiological mechanisms
[6, 7]. Among the most widely studied and clinically relevant biosignals are electroen-
cephalography (EEG) and electrocardiography (ECG), which will be discussed in detail
below.

2.1.2. EEG

The human brain, the most complex organ in the body, is composed of billions of neurons
that communicate with each other through electrical impulses. These impulses are gen-
erated by the flow of ions across the neuronal membrane, resulting in graded potentials.
When a large number of neurons fire synchronously, the resulting electrical activity can
be detected at the scalp level, leading to the formation of EEG signals. Electroencephalog-
raphy (EEG) then stands as a critical non-invasive neurophysiological technique for
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2. Background

capturing brain activity patterns. The signal is acquired by strategically placing elec-
trodes on the scalp to detect and record the subtle electrical signals originating from the
brain. These electrodes are typically arranged in a standardized manner, such as the 10-
20 system [8], which ensures consistent electrode placement across different individuals
and studies.

These multichannel EEG recordings are invaluable for monitoring sleep stages, ana-
lyzing cognitive and emotional states, but most importantly in clinical settings for the
diagnosis and monitoring of various neurological conditions, including epilepsy, tumors,
sleep disorders, and traumatic brain injuries [9, 10]. EEG signals are characterized by
their complex and dynamic nature, reflecting the intricate interplay of neural activity
across different brain regions. The signals are typically classified into different frequency
bands, each associated with distinct brain activities and states of consciousness. The
most commonly recognized frequency bands include delta (0.5–4 Hz), theta (4–8 Hz),
alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–100 Hz) [11]. Each of these bands
is linked to specific cognitive functions and mental states, providing valuable insights
into the brain’s functioning. For instance, delta waves are associated with deep sleep,
while alpha waves are linked to relaxed wakefulness. The analysis of these frequency
components allows clinicians and researchers to gain a deeper understanding of brain
functioning and its relationship to various neurological conditions. EEG signals also
present unique challenges due to their non-stationary behavior and non-linear dynam-
ics, making it difficult to establish deterministic mathematical models that accurately
capture the relationship between signal patterns and underlying brain conditions.

Consequently, machine learning and deep learning methodologies have become
increasingly vital for modeling brain activity and uncovering relationships between
EEG signal features and associated neurological states [12, 13]. Beyond diagnostics,
EEG analysis extends to diverse applications, notably in Brain-Computer Interfaces
(BCIs), where mental tasks like motor imagery are leveraged to control external devices
[14, 15, 16, 17, 18], where advanced deep learning techniques are applied to decode
emotional states from EEG patterns, sleep staging [17, 19], seizure detection [20, 21],
artifact detection [22], and cognitive workload assessment.

2.1.3. ECG

Electrocardiography (ECG) stands as the primary non-invasive technique for assessing
the heart’s electrical function, a cornerstone in the diagnosis and management of cardiac
conditions. By attaching electrodes to the limbs and chest, ECG captures the minute
electrical currents generated by the heart muscle during each beat. These signals are
displayed as characteristic waveforms, visually interpreted by cardiologists to identify
patterns indicative of healthy or diseased cardiac function.

The ECG waveform is composed of recognizable segments – the P wave, QRS com-
plex, and T wave – each reflecting a critical phase of the cardiac cycle, as outlined in
established guidelines [23]. Specifically, the P wave represents atrial depolarization,
the electrical signal that initiates contraction of the atria. Following the P wave, the
atria contract, pumping blood into the ventricles. The QRS complex signifies ventricu-
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2. Background

lar depolarization, the much larger electrical event that triggers the contraction of the
ventricles. Subsequently, the ventricles contract forcefully, ejecting blood into both the
pulmonary and systemic circulations. Finally, the T wave corresponds to ventricular
repolarization, the electrical recovery of the ventricles as they prepare for the next cycle.
This repolarization process marks the electrical completion of a cardiac cycle, allowing
the heart to relax and refill with blood before the next P wave initiates a new cycle.

These components provide a rich and fine-grained electrical representaion of the
heart’s activity, offering invaluable insights into overall cardiac health.

The clinical significance of ECG analysis is underscored by its crucial role in diag-
nosing cardiovascular diseases, the leading cause of mortality globally according to
the World Health Organization. Within this broad category, cardiac arrhythmias stand
out as particularly prevalent. Consequently, the accurate and reliable classification
of these rhythm disturbances has become a central objective in both clinical practice
and biomedical research, driven by the need for effective diagnosis and management
strategies [24].

While ECG’s non-invasive nature, ease of use, and cost-effectiveness [25] have solidi-
fied its position as a ubiquitous diagnostic tool, traditional visual analysis is resource-
intensive, demanding expert review of lengthy recordings. This limitation has spurred
significant research into machine learning applications for ECG processing [26, 27]. A
fundamental step in automated ECG analysis is signal delineation, accurately segment-
ing and locating key features like the QRS complex in the signal [28]. Subsequently,
machine learning models are employed to classify individual heartbeats as normal or
abnormal, and to identify specific arrhythmia types such as Premature Atrial Contrac-
tion (PAC), Premature Ventricular Contractions (PVC) [29, 30, 31], or Atrial Fibrillation
[32, 33]. Recent advancements highlight the growing role of transformer-based architec-
tures in tackling diverse ECG analysis tasks, from event detection to beat and rhythm
clssification and comprehensive arrhythmia classification .

2.1.4. EEG and ECG Comparison

Despite their different physiological origins, EEG and ECG share several properties as
biosignals: both are time-series data, often multichannel, non-stationary, and susceptible
to artifacts. However, they also differ significantly in terms of waveform characteristics,
dominant frequency bands, and spatial dimensionality. These differences present chal-
lenges when attempting to develop unified models that can generalize across modalities.

• Signal Origin and Generation: EEG signals originate from the cerebral cortex,
primarily reflecting the summed activity of post-synaptic potentials in large popu-
lations of neurons, while ECG signals are generated by the coordinated depolar-
ization and repolarization of myocardial cells within the heart.

• Frequency Content: EEG signals exhibit a broader and generally higher frequency
range, typically spanning from less than 0.5 Hz (delta waves) to over 100 Hz
(gamma waves). ECG signals instead operate within a narrower and generally
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2. Background

lower frequency range, predominantly below 100 Hz, with the most clinically
significant information concentrated below 40-50 Hz. The primary focus in ECG is
on the fundamental heart rate and the morphology of specific waves (P, QRS, T)
rather than a broad spectrum of frequencies.

• Amplitude: EEG signals are characterized by relatively low amplitudes, typically
measured in microvolts (µV). This low amplitude makes them highly susceptible
to noise and requires significant amplification during recording. ECG signals, on
the other hand, possess significantly higher amplitudes, typically in the millivolt
(mV) range. This stronger signal makes ECG less prone to certain types of noise
contamination compared to EEG.

• Morphology and Complexity: EEG waveforms are highly variable and complex,
reflecting the intricate and dynamic nature of brain activity. While EEG rhythms
exist, the overall morphology is less structured and repetitive compared to ECG.
EEG patterns are often described in terms of bursts, spindles, sharp waves, and
complex non-linear features. ECG waveforms, instead, exhibit a more structured
and repetitive pattern with each heartbeat, characterized by well-defined waves
that represent specific phases of the cardiac cycle.

• Spatial Resolution: scalp EEG has inherently poor spatial resolution due to volume
conduction, where electrical signals spread widely through the conductive tissues
of the scalp, skull, and brain. Electrodes pick up signals from a relatively broad
area, making precise localization of neural sources challenging. ECG instead offers
better spatial information relative to the heart, also due to the placement of the
ECG electrodes, which captures different electrical vectors of the heart.

• Temporal Resolution: both EEG and ECG boast excellent temporal resolution, ca-
pable of capturing rapid changes in electrical activity on the order of milliseconds.

• Susceptibility to Artifacts: EEG recordings are notoriously susceptible to various
artifacts, including muscle activity (EMG), eye blinks (EOG), movement artifacts,
electrode artifacts, and power line interference. Robust artifact removal techniques
are often essential for EEG data analysis. ECG is generally less artifact-prone than
EEG, but it can still be affected by muscle artifacts, movement artifacts, baseline
wander, and power line interference. However, ECG artifacts are often more
readily identifiable and removed compared to the complex artifact landscape of
EEG.

In summary, while both EEG and ECG are valuable tools for physiological monitoring,
their distinct signal characteristics reflect their origins and the specific physiological
processes they capture. EEG provides a complex and nuanced window into brain
activity, while ECG offers a more structured and rhythmic representation of cardiac
function. Understanding these differences is crucial for appropriately applying and
interpreting these signals in both clinical and research settings, and for leveraging their
complementarity in multimodal approaches, as explored in this thesis.
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2. Background

2.2. Self-supervised Learning for EEG and ECG

2.2.1. The Challenge of Labeled Data Scarcity

A significant impediment to advancing supervised machine learning for biosignal anal-
ysis is the scarcity of expertly labeled datasets. Unlike domains with readily available
annotations, biosignal labeling, particularly for complex signals like EEG and ECG,
demands specialized clinical knowledge and is inherently time-consuming. This anno-
tation bottleneck restricts the scale and diversity of labeled biosignal data, limiting the
applicability of purely supervised approaches and hindering the development of robust,
generalizable models capable of addressing the full spectrum of clinical and research
needs.

2.2.2. Leveraging unlabeled data

Self-Supervised Learning (SSL) offers a compelling paradigm shift to overcome the
limitations imposed by labeled data scarcity in the biosignal domain. SSL techniques,
such as masked signal modeling, capitalize on the inherent structure of unlabeled
biosignals, enabling models to learn meaningful representations without relying on
explicit annotations. Fortunately, vast quantities of unlabeled biosignal recordings,
particularly EEG and ECG, are routinely collected in clinical and research settings. By
harnessing this readily available unlabeled data, SSL unlocks the potential to pretrain
robust models that can then be effectively adapted to downstream tasks, significantly
reducing the dependence on expensive and limited labeled datasets and paving the way
for more powerful biosignal AI.

2.2.3. Self-supervised Learning Techniques

Within the realm of Self-Supervised Learning (SSL), a variety of techniques have emerged,
each leveraging different strategies to learn from unlabeled data. Two particularly promi-
nent and impactful approaches are masked reconstruction and contrastive learning.

In Masked Reconstruction [34], a portion of the input signal is intentionally masked or
removed, and the model is then trained to predict or reconstruct the missing segments
based on the available context. This process compels the model to learn the underlying
structure and dependencies within the data, effectively capturing temporal patterns and
signal characteristics necessary for successful reconstruction. By training on this pretext
task, the model develops robust representations that can be subsequently leveraged
for various downstream tasks, demonstrating the power of learning through signal
completion. Masked reconstruction has shown notable success across diverse domains,
including natural language processing, computer vision, and increasingly, in the analysis
of physiological signals.

Contrastive Learning [35] focuses on learning representations by discriminating be-
tween similar and dissimilar data points. The core idea is to train a model to pull
representations of "positive" pairs (e.g., different views or augmentations of the same
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2. Background

original data sample) closer together in an embedding space, while simultaneously
pushing representations of "negative" pairs (e.g., unrelated data samples) further apart.
This comparative learning process encourages the model to capture features that are
invariant to certain transformations (for positive pairs) and discriminative against irrel-
evant variations (for negative pairs). Contrastive learning has proven highly effective
in scenarios where defining a precise reconstruction target is challenging, and where
the goal is to learn robust and discriminative features for tasks like classification or clus-
tering. Like masked reconstruction, contrastive learning has found success in various
domains, including computer vision, natural language processing, and is also gaining
traction in biosignal analysis for learning representations that capture essential signal
characteristics and variations.

2.3. Foundation Models

Foundation models mark a shift in machine learning towards broadly applicable, general-
purpose models, trained on massive datasets instead of task-specific designs [36]. Char-
acterized by their large scale and adaptability, these models are pretrained using self-
supervised learning on extensive data [34, 37]. This pretraining yields rich, generalizable
representations, facilitating efficient transfer learning and fine-tuning for diverse appli-
cations, even with limited labeled task-specific data [38].

For biosignal analysis, particularly EEG and ECG, foundation models offer significant
potential. Traditional approaches often necessitate task-specific models and extensive
labeled data. In contrast, a foundation model for EEG and ECG aims to learn univer-
sal representations from large unlabeled datasets. This pretraining enables a single
model to be effectively adapted to numerous downstream tasks like sleep staging or
anomaly detection, reducing task-specific training needs and promoting more robust
and generalizable AI in healthcare and neuroscience.

This thesis contributes to this emerging field by introducing a modality-agnostic
foundation model specifically designed to process and integrate both EEG and ECG
signals, leveraging their inherent complementarity and addressing the growing need for
unified and versatile models in biosignal analysis.

2.3.1. Multimodal Transformers

Traditional transformer architectures are substantially augmented by multimodal trans-
formers, which are engineered to seamlessly process and integrate data from diverse
sources, including textual, visual, and auditory information [39]. These sophisticated
models capitalize on the inherent capabilities of transformers to discern temporal pat-
terns and extract intricate details from varied data streams. This enables the creation
of systems capable of generating outputs that synthesize information from multiple
modalities, leading to richer, more contextually aware applications. For instance, in
healthcare, multimodal transformers demonstrate exceptional utility by combining
clinical narratives with medical imagery or physiological signals, thereby significantly
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2. Background

improving the efficacy of diagnostic and classification procedures [40, 41].
Multimodal transformers can achieve the integration of information from multiple

modalities through various fusion strategies, which can be broadly categorized into
three types [42]:

• Early Fusion: the different modalities are combined at the input level before being
fed into the transformer model. This approach allows for simultaneous processing
of all modalities, enabling the model to learn joint representations from the outset.
However, it may limit the model’s ability to learn modality-specific representations
before fusion, as the modalities are mixed early in the processing pipeline.

• Late Fusion: each modality is separately processed through individual transformer
branches and then the outputs are combined at a later stage. This approach
allows for specialized processing of each modality, potentially leading to better
performance in tasks where modalities have distinct characteristics. However, it
may miss out on some inter-modal relationships that could be captured in early
fusion.

• Intermediate Fusion: strikes a balance between early and late fusion by integrating
information from different modalities at various stages within the transformer
architecture. This approach allows for flexible and adaptive learning of inter-
modal relationships while still maintaining the benefits of separate processing.
This can be achieved using techniques like cross-attention mechanisms, where
representations from one modality attend to representations from another, or by
concatenating or combining intermediate feature maps from different modality
encoders.

A multimodal approach, leveraging diverse data sources, has proven effective in
improving the performance of signal-based tasks. Research demonstrates that attention
mechanisms benefit from the inclusion of additional inputs like text, enabling better
integration and understanding of signal data. For instance, biosignals see a significant
boost in transformer model performance when combined with other biosignals, clinical
notes, or visual modalities.

For example, a combined analysis of ECG, PPG, and PCG signals allows for a more
complete and reliable assessment of cardiac output [43, 44], while the integration of EEG,
EMG, and EOG signals was shown to be beneficial in emotion recognition and sleep
staging [45, 46, 3].

This ability to integrate and process diverse data streams highlights multimodal
transformers as a pivotal technology for creating more precise, dependable, and context-
aware AI solutions across domains such as healthcare to human-computer interaction.

2.3.2. Attention Mechanism

Attention mechanisms, particularly self-attention and cross-attention, are pivotal com-
ponents in the proposed modality-agnostic foundation model, enabling it to effectively
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2. Background

process and integrate EEG and ECG signals. Self-attention, at its core, allows the model
to weigh the importance of different parts of the input sequence when processing each
time point. For time-series data like EEG and ECG, this is crucial as it enables the capture
of long-range temporal dependencies, where events distant in time can significantly
influence the current state.

Self-Attention

Self-attention is a core mechanism within Transformer architectures that enables a model
to weigh the importance of different parts of the input sequence when processing each
element [1]. Unlike recurrent neural networks that process sequences sequentially, self-
attention allows for parallel processing and directly captures relationships between
all positions in the input, regardless of their temporal distance. This is particularly
crucial for time-series data like EEG and ECG, where long-range dependencies are often
significant.

At its heart, self-attention operates by calculating attention weights based on three
learned matrices derived from the input sequence: Queries (Q), Keys (K), and Values
(V). For each position in the input, a Query vector is generated. This Query is then
compared to Key vectors from all positions in the sequence. The similarity between the
Query and each Key is computed, typically using a scaled dot product, to determine
the attention weights. These weights, often normalized using a Softmax function,
indicate the relevance of each position in the input sequence to the current position
being processed. Finally, these attention weights are used to perform a weighted sum of
the Value vectors. This weighted sum produces the self-attention output for the current
position, effectively incorporating information from relevant parts of the input sequence.

Mathematically, the self-attention mechanism can be expressed by the following
formula:

Attention(Q,K,V) = softmax

(
QKT
√

dk

)
V (2.1)

where Q is the Query matrix, K is the Key matrix, V is the Value matrix, and dk is the
dimensionality of the Key vectors. The scaling factor

√
dk is used to prevent excessively

large dot product values, which can lead to saturation in the softmax function.

Cross-Attention

Cross-attention extends the attention mechanism to enable interaction and information
fusion between two distinct input sequences [47]. Let us consider two input sequences,
X and Y. While self-attention allows a sequence to attend to itself, cross-attention allows
sequence X to attend to sequence Y (and potentially vice versa in a bidirectional manner).
This mechanism is fundamental in scenarios where information from one modality
or sequence needs to be integrated with another, such as in multimodal models or
encoder-decoder architectures. In cross-attention, the Queries (Q) are derived from one
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input sequence, for instance X. The Keys (K) and Values (V), however, are derived from
the other input sequence, Y. The attention weights are then computed by assessing the
similarity between Queries from X and Keys from Y, effectively determining which parts
of Y are most relevant to each element in X. These weights are subsequently used to
aggregate the Value vectors from Y, resulting in an output representation for X that is
informed by and aligned with relevant aspects of Y.

Mathematically, cross-attention shares a similar formulaic structure with self-attention,
but with the key distinction in the origin of Q, K, and V:

CrossAttention(QX,KY,VY) = softmax

(
QXKY

T
√

dk

)
VY (2.2)

Where:

• QX represents the Query matrix, derived from input sequence X.

• KY represents the Key matrix, derived from input sequence Y.

• VY represents the Value matrix, derived from input sequence Y.

• QX, KY, and VY are obtained through linear transformations of their respective
input sequences.

• The rest of the formula (matrix multiplication, scaling, Softmax, weighted sum) is
analogous to self-attention.

This cross-attention mechanism provides a powerful and flexible means for models to
perform inter-sequence attention, enabling them to learn alignments, relationships, and
fuse information between different modalities or input sources.

Temporal and Channel Attention

For complex sequential data, especially those acquired through multi-channel sensors,
attention mechanisms can be further refined to capture nuanced relationships along
different data dimensions. Beyond capturing temporal dynamics within the sequence
itself (temporal attention), it is often beneficial to also consider the varying importance
of different input features or channels (feature or channel attention). Assume the input
tensor is denoted as X with shape [B, N, D], where B is batch size, N is the total number
of tokens (representing flattened time and channel dimensions, N = T ∗ C with T being
time steps and C being channels), and D is the feature dimension.

• Channel Attention: To apply channel attention, we first reshape the input X to
group by batch and time, treating channels as the sequence dimension for attention:

Xchannel = X: (B, N, D) → (B*T, C, D) (2.3)
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Here, Xchannel now has shape (B ∗ T,C, D). Then self-attention is applied along the
channel dimension (dimension C), to learn the importance of each channel, and
then the output is reshaped back to the original shape (B, N, D).

• Temporal Attention: For temporal attention, we reshape the input X to group by
batch and channels, treating time steps as the sequence dimension for attention:

Xtemporal = X: (B, N, D) → (B*C, T, D) (2.4)

Now, Xtemporal has shape (B ∗ C, T, D). Then self-attention is applied along the
temporal dimension (dimension T) to capture temporal dynamics, and then the
output is reshaped back to the original shape (B, N, D).

This approach allows the model to learn the importance of each channel and time
step independently, enhancing its ability to capture complex relationships in the data.
Combining channel and temporal attention allows for a more comprehensive and flexible
processing of complex sequential data. This approach is particularly beneficial for signals
like EEG and ECG where both spatial (channel-related) and temporal characteristics are
crucial for understanding the underlying physiological processes.

2.4. Datasets

Several large-scale datasets support the development of EEG and ECG models. For EEG,
the Temple University EEG Corpus (TUEG) provides extensive unlabeled recordings,
while datasets like Sleep-EDF, SHHS, and TUAB offer labeled data for sleep staging,
pathology detection, and more. For ECG, PTB-XL and Icentia 11k offer diverse ex-
amples of cardiac activity with clinical annotations. These datasets vary in sampling
frequency, channel configuration, and labeling schemes, requiring careful preprocessing
and standardization to enable unified modeling.

2.4.1. Pretraining Datasets

Temple University EEG Corpus (TUEG)

TUEG [48] is the world’s largest publically available corpus of clinical EEG data. It
contains data acquired from 10,874 unique subjects, for a total of 16,986 sessions and
over 21,000 hours of recordings. The dataset presents a balanced gender distribution,
and the age of the subjects ranges from less than 1 to over 90 years old. The EEG signals
were acquired by placing electrodes on the scalp according to the 10-20 system, and the
sampling frequency of the recordings is variable, with the majority of signals sampled at
250 Hz.
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PTB-XL

The PTB-XL ECG dataset [49, 50, 51], is a large-scale dataset contaning 21,799 clinical
12-lead ECG records from 18869 patients, each of 10 second length, for a total of 60 hours
of recordings.

The raw signals were acquired with 16 bit precision at a resolution of 1 microV/LSB
and a sampling frequency of 500Hz. The signals were acquired following the standard
set of 12-leads (I, II, III, AVL, AVR, AVF, V1, V2, V3, V4, V5, V6) with reference electrodes
on the right arm, and they were collected with devices from Schiller AG between October
1989 and June 1996. The patients in the dataset are aged between 0 and 95 years, with
a median age of 62 years, and the gender distribution is relatively balanced, with 52
percent of the patients being male and 48 percent being female.

This raw waveforms were annotated with ECG statements (conform to the SCP-ECG
standard [52]) for each record, and they cover diagnostic, form, and rhythm statements.
The distribution of the diagnosis in the PTB-XL is described in Table 2.1. It should
be noted that the sum of the statements exceeds the number of records because of
potentially multiple labels per record, and in fact, the value of the dataset results from
the collection of several co-occurring pathologies.

Table 2.1.: Summary of PTB-XL Diagnosis

Diagnosis Count

Normal ECG 9514

Myocardial Infarction 5469

ST/T Change 5235

Conduction Disturbance 4898

Hypertrophy 2649

Icentia-11k

Icentia-11k [53, 54, 51] is a large-scale ECG dataset designed for arrhythmia classification.
The Icentia-11k dataset consists of raw ECG signals recorded from 11,000 patients, and

it contains 541,794 segments of 70-min each, for a total of 632,092 hours of recordings
with 2 billion labeled beats.

The raw signals were acquired with the CardioSTAT device, a single-lead heart mon-
itor from Icentia [55], in a modified lead 1 position. The signals were recorded with a
16-bit resolution and sampled at 250 Hz. They were acquired from patients who wore
the device for up to 2 weeks, although most patients wore the device for one week. Each
patient’s record was then segmented into segments of 70 minutes each, and 50 segments
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were randomly selected per patient. The average age of the patients is 62.2±17.4 years.
Furthermore, as it is noted by the authors, the dataset does not represent a true random
sample of the global population, since the CardioSTAT device is mostly used for third
line exam, therefore the majority of records in the dataset exhibit arrhythmias. The
annotations were performed by 20 technologists, who classified both beat and rhythm
types.

The beats are classified into four categories: Normal, Premature Atrial Contraction,
Premature or ectopic supraventricular beat, Premature Ventricular Contraction, and
Undefined. The rhythm types are classified into three categories: Normal Sinusal
Rhythm (NSR), Atrial Fibrillation (AFib), and Atrial Flutter (AFlutter). The dataset
contains 2 billion labeled beats, with each beat being annotated by twenty technologists.

The distribution of the beats in the Icentia-11k dataset is described in Table 2.2, and
the distribution of the rhythm types is described in Table 2.3.

Table 2.2.: Summary of Icentia-11k Beat Labels
Label Description Count
Normal 2,061,141,216
Premature or Ectopic Supraventricular beat, Premature Atrial Contraction 19,346,728
Premature Ventricular Contraction, Premature Ventricular Contraction 17,203,041
Unclassifiable beat 676,364,002

Table 2.3.: Summary of Icentia-11k Rhythm Labels
Rhythm Label Count
Normal Sinusal Rhythm 16,083,158
Atrial Fibrillation 848,564
Atrial Flutter 313,251

SHHS

The Sleep Heart Health Study [56, 57] is a multi-center cohort study implemented by
the National Heart Lung and Blood Institute to determine the cardiovascular and other
consequences of sleep-disordered breathing. It tests whether sleep-related breathing is
associated with an increased risk of coronary heart disease, stroke, all cause mortality,
and hypertension.

This SHHS dataset, which contains polysomnograms, is divided into two parts, SHHS1
and SHHS2.

• SHHS1: contains data collected from 6441 subjects between 1995 and 1998

• SHHS2: contains data collected from 3295 of the 6441 subjects between 2001 and
2003
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Of the 6441 subjects available, only the data for 5804 patients was made publically
available. The SHHS dataset contains 73,728 hours of recordings.

The polysomnograms were obtained in an unattended setting (most often participants’
home), and the recording montage consisted of: two-channels EEG (C3/A2 and C4/A1),
ECG from a bipolar lead (both EEG and ECG sampled at 125 Hz), and other signals,
such as EOG, EMG, and airflow.

The participants of the SHHS were recruited from nine existing epidemiological
studies which collected data on cardiovascular risk factors. The original cohorts include:
The Framingham Offspring Cohort, The Hagerstown and Minneapolis/St. Paul sites of
the Atherosclerosis Risk in Communities (ARIC) study, The Hagerstown, Sacramento
and Pittsburgh sites of the Cardiovascular Health Study (CHS), The Strong Heart Study
sites in South Dakota, Oklahoma, and Arizona and Studies of respiratory disease in
Tucson and of hypertension in New York. In many of these cohorts snorers were
purpusefuly over-sampled in order to increase the dataset prevalence of sleep-disordered
breathing.

The sample of participants selected from this cohort was recruited if the subjects were
aged 40 years or older, had no history of treatment of sleep apnea, no tracheostomy, and
no current home oxygen therapy.

The dataset is also annotated with a hypnogram, EEG arousal events, respiratory
events, and oxymeter artifact annotations.

2.4.2. Finetuning Datasets

DREAMER

The DREAMER [58] dataset is a multimodal emotional dataset. It contains data from
23 subjects (age range: 22-33, average age: 26.6), of which 14 are male and 9 are female.
In the experiment, the subjects watched 18 audio-visual film clips (each clip duration:
65 to 393 s, average duration: 199 s), designed to solicit specific emotions, such as
amusement, surprise or anger. Each session lasted approximately one hour, therefore
the dataset amounts to a total of 23 hours of recordings. The dataset contains EEG and
ECG recordings, and the participants’ self-assessment of their affective state after each
stimuli.

The recordings contain 14 channels of EEG signals, sampled at 128 Hz and using
electrodes placed according to the 10-20 international system, and 2 channels of electro-
cardiogram (ECG) signals, sampled at 256 Hz.

For the self assessment, the participants had to assign a score from 1 to 5 to Valence,
Arousal and Dominance.

For each subject, a 61-s pre-trial baseline was recorded before each clip, and they were
asked to rate the valence, arousal, and dominance levels for each film clip from 1 to 5.

A neutral clip was also shown to the participants before each film clip, in order to help
the subjects return to a neutral emotional state.
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CAP Sleep

The CAP Sleep Database [59, 51] contains 108 polysomnograms from 108 subjects, for a
total of 1009 hours, and it was collected at the Sleep Disorders Center of the Ospedale
Maggiore of Parma, Italy.

The recordings include EEG signals (variable channel number and montages across
subjects), ECG (bipolar lead), EOG, EMG, airflow, respiratory effort and SaO2. The CAP
Sleep is also annotated with sleep stages (W, S1, S2, S3, S4, REM) and with CAP events
annotations according to the Rechtschaffen and Kales rules [60]. The Cyclic Alternating
Pattern (CAP) is a periodic EEG activity occurring during NREM sleep, whose abnormal
amounts are associated with a variety of sleep-related disorders.

Of the 108 subjects, 16 are healthy subjects and 92 are patients with sleep disorders,
as it is shown in Table 2.4 below. In the participants cohort, there are 66 males and 42
females, with age ranging from 14 to 82 years old, with an average age of 39.8 years.

Table 2.4.: Summary of CAP Sleep Participants

Pathology Count

Healthy subjects 16

Bruxism 2

Insomnia 9

Narcolepsy 5

NFLE 40

PLM 10

RBD 22

SDB 4

Dataset for TES

The Dataset for TES [61] provides a rich, multimodal collection of data from human
participants undergoing High-Definition transcranial electrical stimulation (HD-tES).
It combines high-density electroencephalography (EEG), physiological signals (ECG,
electrooculography/EOG), and continuous behavioral measures (vigilance/alertness
metrics from a Compensatory Tracking Task). The data was collected across multiple ses-
sions where participants received nine different HD-tES stimulation montages, varying
by cortical target region (frontal, motor, parietal) and stimulation waveform frequency
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(DC, 5 Hz, 30 Hz). The dataset is designed to support research into the acute effects of
tES on brain-body-behavior interactions.

The dataset was acquired from 20 neurologically typical individuals, aged 19-43 years
(mean age: 29.10 ± 6.75 years), among which 13 are males and 7 are females. Of these 20
subjects, one was excluded from the study, due to inability to follow task instructions,
resulting in a total of 19 subjects.

The dataset is divided into two parts, Experiment 1 and Experiment 2, and it includes
62 sessions, which lasted 70 minutes for Experiment 1 and 70.5 minutes for Experiment 2.
This amounts to over 72 hours of continuous EEG, ECG, EOG, and behavioral recordings
across all sessions.

The EEG data was acquired using a 32-channel EEG cap, with electrodes placed ac-
cording to the 10/10 international placement system. These electrodes were interleaved
with 9 HD-tES stimulation electrodes.

The ECG data was acquired using a Lead-I bipolar configuration, with two bipolar
electrodes placed on the chest (approximately 5 cm below left and right clavicle bone)
and a ground electrode on the left hip. Both EEG and ECG signals were sampled at 2
kHz.

The labels present in the dataset indicate the specific HD-tES condition applied during
each stimulation trial, which depend on the cortical region and the frequency used, for a
total of nine labels: F0, F5, F30, M0, M5, M30, P0, P5, P30.

TUAR (Artifact Corpus)

TUAR is a specialized dataset for artifact detection. It is annotated with common artifacts
for EEG signals, such as eye blinks and muscle artifacts, for a total of six classes. This
dataset contains data from 213 subjects, for a total of 213 hours of recordings.

TUAB (Abnormal EEG Corpus)

TUAB is a specialized dataset for abnormality detection in EEG signals. It is a subset of
the Temple University EEG Corpus (TUEG) and is specifically annotated for abnormality
detection, with recordings labeled as either ’normal’ or ’abnormal’. The dataset contains
a total of 2,329 subjects, for a total of 2,329 hours of recordings, and features a balanced
class distribution.

TUSL (Slowing Corpus)

TUSL is a specialized dataset for EEG slowing event detection. It is annotated for
EEG slowing events, with recordings labeled as ’slowing events’, ’seizures’, ’complex
background’ or ’normal’, for a total for four classes. This dataset contains data from 38
subjects, for a total of 27.54 hours of recordings, and presents a highly imbalanced class
distribution.
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Table 2.5.: Summary of Pretraining Datasets

Dataset Type Task Num. Subj. Recording hrs. Num. Electr. Sampl. Frequency

TUEG EEG EEG monitoring 10,874 21,000+ 22 250 Hz

PTB-XL ECG ECG Diagnosis 21,799 60 12 500 Hz

Icentia-11k ECG Arrhythmia Classification 11,000 632,092 1 250 Hz

SHHS EEG Sleep study dataset 5804 73,728 3 125

Table 2.6.: Summary of Finetuning Datasets

Dataset Type Task Num. Subj. Recording hrs. Num. Electr. Sampl. Frequency

DREAMER EEG, ECG Emotion recognition 23 23 16 128 (EEG), 256 (ECG)

CAP Sleep EEG, ECG Sleep staging 108 1009 >2 [128, 512]

TES EEG, ECG Transcranial electrical stimulation 19 72 32 (EEG), 1 (ECG) 2000

TUAR EEG Artifact detection 213 83.74 22 256

TUAB EEG Abnormality detection 2,329 1139.31 22 256

TUSL EEG Slowing event detection 38 27.54 22 256
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Chapter 3
Related Work

In this section, previous works relevant to this study will be discussed, with a particular
focus on multimodal and modality-agnostic models. Finally, we highlight the gaps in
current research that motivate our proposed approach.

3.1. Multimodal and Modality-Agnostic Models

BIOT [62] is a flexible biosignal encoder architecture designed specifically to overcome
the challenges posed by format mismatches present in different datasets, such as different
number of channels, recording lengths, sampling rates, and missing values. BIOT aims
to enable "cross-data learning" and joint pretraining and finetuning on diverse datasets,
with different formats. To prove this, the authors pretrained and evaluated the model on
tasks which are EEG-only, and ECG-only, for instance seizure detection, abnormality
detection, event classification (EEG), and arrhythmia phenotype prediction (ECG). The
experiments carried out in this paper also show that the model pretrained on multiple
unimodal datasets perform better on that modality’s downstram tasks compared to
models that were pretrained from scratch on a single dataset. Even though this paper
addresses the crucial problem of format mismatch, it does not feature multimodal
pretraining, and does not include training the model on a dataset that combines both
EEG and ECG inputs concurrently.

Abbaspourazad et al. (2024) [63] present a foundation model trained on large-scale
wearable biosignal datasets containing ECG and PPG. In this work, the authors wanted
to address the challenge of limited labeled medical data and therefore leveraged the use
of SSL to train their models on a large-scale unlabeled dataset. Within the realm of SSL,
they used CL with participant-level positive pair selection. In this study, the authors
separately trained different models in ECG and PPG, without explicitly including any
fusion of the two modalities. They also extensively evaluated the models’ performances
by using linear probing on the pretrained embeddings. Although this study leverages
a massive unlabeled dataset, makes use of SSL frameworks, and trains on multimodal
data, it does not explicitly address the problem of training on two modalities at the same
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time, nor does it include any fusion of the two modalities.
Recent efforts, such as the large-scale CLIMB benchmark [64] , have highlighted the

critical need for unified datasets to advance multimodal clinical AI and have empiri-
cally validated the benefits of large-scale pretraining. Their evaluations, which covered
modalities including EEG and ECG, confirmed that pretraining on diverse clinical data
significantly improves model performance. Crucially, this pre-training fosters general-
izability; unlike hyperspecialized, dataset-specific models that can achieve maximum
performance on narrow tasks but often fail to adapt to new scenarios, as described in
[64], models pretrained on broad benchmarks like CLIMB demonstrate better adapt-
ability across diverse clinical modalities, tasks, and contexts. Furthermore, CLIMB
demonstrated that strong unimodal representations learned during pre-training transfer
successfully enhance multimodal task performance, when making use of appropriate
fusion strategies. This aligns directly with and supports our approach of first developing
powerful, dedicated EEG and ECG encoders via pre-training on large respective datasets,
which are then integrated using our proposed cross-modal attention fusion mechanism.

In this work [65] , the authors propose a multimodal foundation model for physio-
logical signals, specifically EEG, EMG, EOG and ECG from the PhysioNet 2018 sleep
dataset. The key hypothesis tested in this study is that the quality of model represen-
tations can be improved by encouraging masked reconstruction of the modalities. In
fact, a multimodal masked autoencoding (MultiMAE) objective is employed, where
concatenated tokens from all modalities (this is an example of early fusion) are masked
and they are all separately reconstructed by the modality-specific decoders. The authors
also added modality dropout, showing that the performance of the introduced model
surpasses that of the traditional MutiMAE in downstream tasks, such as sleep staging
and arousal detection. Thus, Fang et al. effectively demonstrate that implicitly encour-
aging cross-modal learning through both the multimodal masked autoencoding and
modality dropout improves representation quality. However, their work leaves a gap
regarding the development of models specifically designed and trained for functional
robustness when a modality is entirely unavailable during inference. Furthermore, the
emphasis on complex decoders (here containing cross-attention) contrasts with the goal
of building a powerful, generalizable encoder, subsequently paired with a simpler model
head, which can benefit from pretraining on diverse, large-scale datasets beyond the
single one utilized in their study. Lastly, their implicit cross-modal learning mechanism
leaves unexplored explicit ones within the core fusion process.

Mostafaei et al. [66] propose a novel deep learning model, specifically designed for
sleep stage classification. The model utilizes multiple physiological channels (EEG, EOG,
ECG, EMG, respiratory) from the SHHS dataset, also employed in this work. In this work,
the authors explored the use of raw physiological signals together with handcrafted
features. In the model, features are initially extracted with different CNN-Attention
blocks based on the characteristics of the different modalities, then two transformer
encoders are employed to process features from the raw signals and the hand-crafted
features, which are the two modalities, as is written in the paper. Then, cross-attention is
used between the two modalities, meaning between the raw signal’s features and the
handcrafted features, for all the modalities together. Lastly, a transformer decoder is
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used to predict the sleep stages.
Lee et al. propose SynthSleepNet [67] a ViT model specifically designed for sleep anal-

ysis, using multimodal polysomnography data, EEG, EOG, EMG, and ECG. It proposes
a hybrid SSL strategy that combines masked reconstruction and contrastive learning.
This model contains modality-specific backbones, a multimodal ViT encoder, and sepa-
rate modality-specific ViT decoders. The multimodal ViT is responsible for fusing the
embeddings and uses masked reconstruction. The model also uses a contrastive loss
to align the unimodal representations learned from modality-specific encoders to the
multimodal average representation learned by the multimodal ViT encoder.

Gong et al. [3] propose a novel deep learning network for emotion recognition
using multimodal physiological signals, specifically focusing on EEG and Peripheral
Physiological Signals (PPS) like EOG, EMG, and ECG. Their key idea is to simultaneously
consider inter-modality and intra-modality relationships. The way this is achieved is by
using three parallel blocks, two intra-modal encoders with self-attention specific for EEG
and PPS, and a pairwise cross-modal transformer to capture inter-modal correlations
and complementarity. The model is trained with a joint loss that considers outputs
from the three blocks. Modality-agnosticism or robustness to missing modalities is not
explicitly addressed in this study.

Sun et al. [68] propose START, a transformer model designed specifically for sleep
stage classification, which uses EEG and EOG signals. START uses two modality-specific
transformer encoders with CLS tokens, and after this a cross-modal fusion block, which
takes as input the CLS tokens produced by the two modality-specific encoders and trains
in addition another CLS tokens, specific to learn cross-modal interactions. Then the final
prediction is made using this CLS token, after passing it through a feedforward network.

sDREAMER [69] is a transformer-based model specific for automatic sleep staging
that uses EEG and EMG signals from a mouse dataset. sDREAMER uses the MoME
(Mixture-of-Modality-Experts) architecture with parallel paths and partially shared
weights. Specifically, there are three paths; two are modality-specific for EEG and EMG,
and the third is modality-agnostic, made with self-attention, for both signals together.
To enhance cross-modal interaction, the authors use self-distillation training, in which
the output of the shared path distills knowledge into the single-modality pathaways.
This design is also inherently robust to missing modalities.

Twins-PainViT [2], is a modality-agnostic model specifically developed for automatic
pain assessment that employs facial videos and fNIRS signals. The modality-agnosticism
in this model is achieved by transforming all the inputs (which have different formats)
into a standardized format, a 2D image, which can then be processed by a common
ViT, independently of the original data type. Specifically, the authors used two different
encoders, the first to extract embeddings from the data used, and the second to output
pain assessment predictions.

Chang et al. propose VigilanceNet [70], a multimodal model for vigilance estimation
that uses EEG and EOG. Their main contributions are the outer product embedding
(to capture multiplicative relationships within EOG features), and the decoupling of
intra- and inter-modality learning. Specifically, they enforce the intra-modality learning
using separate feature extractors for the two signal modalities, and by making them
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independently predict the vigilance level. Inter-modality learning is allowed by a cross-
modal fusion transformer that captures complementary information between EEG and
EOG.

Götz et al. [4] propose a Modality-Agnostic Transformer-Based Self-Supervised Learn-
ing Specific for Emotion Recognition Using ECG and EDA from the WESAD dataset.
The model uses modality-specific feature extractors (CNNs), followed by concatenation
of the features, which are then processed together in a transformer encoder via self-
attention. For the downstream task, the frozen CLS tokens are fed into a transformer
decoder followed by a classifier that outputs the prediction. The model does not imply
robustness to missing modalities during inference. While presenting a modality-agnostic
approach, this model is not designed to be explicitly robust to missing modalities, em-
ploys a transformer decoder, and is emotion recognition specific.

3.2. Research Gap and Contribution

Despite significant progress in applying deep learning to multimodal physiological
signals, several critical gaps remain, particularly in leveraging the synergistic potential
of EEG and ECG.

First, there is a notable scarcity of studies explicitly focusing on fusing EEG and
ECG signals, despite their combined importance in various clinical scenarios like sleep
analysis and cardiovascular monitoring.

Second, many existing multimodal models are task-specific and often evaluated
on limited or single datasets, hindering the assessment of their generalizability and
robustness across diverse clinical conditions and data sources. This reliance on narrow
evaluations contrasts sharply with the need for broadly applicable foundation models.

Third, architecturally, while various fusion methods exist, there is limited exploration
of models that employ a dedicated intermediate fusion block utilizing explicit cross-
attention mechanisms to directly model the interactions between separately processed
EEG and ECG feature sequences, combined with joint self-attention.

Fourth, the crucial challenge of functional modality agnosticism, ensuring robust
model performance even when one modality (EEG or ECG) is entirely absent during
inference, has not been adequately addressed through targeted training strategies.

Finally, the potential benefits of specific multi-stage pretraining paradigms (large-
scale unimodal pretraining followed by dedicated multimodal fusion training) and
the integration of domain-specific handcrafted features within advanced transformer
architectures for these biosignals remain largely untapped.

To address these gaps, this study introduces a novel foundation model framework
specifically designed for robust and synergistic EEG-ECG analysis. Our main contribu-
tions are as follows.

• EEG-ECG Focused Foundation Model: We propose a novel foundation model
architecture specifically targeting the integration of EEG and ECG signals, trained
and evaluated on multiple large-scale and diverse datasets to promote generaliz-
ability.
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• Novel Intermediate Fusion Architecture: Our model features a dedicated in-
termediate fusion block that processes outputs from separately pretrained EEG
and ECG encoders. This block uses explicit cross-attention to model inter-modal
dependencies between EEG and ECG and joint channel/temporal self-attention
on the combined representation.

• Targeted Training for Modality Agnosticism: We explicitly train the fusion com-
ponent using modality masking, directly optimizing the model for robust per-
formance even when provided with only unimodal input during fine-tuning or
inference.

• Multi-Stage Training and Feature Integration: We employ a distinct training
approach that involves large-scale unimodal pretraining followed by multimodal
fusion training and demonstrate the effective integration of both raw physiological
signals and expert-derived handcrafted features within our transformer-based
framework.

Through this approach, we aim to develop a generalizable, robust, and modality-
agnostic foundation model for EEG-ECG analysis, improving performance and adapt-
ability across various downstream tasks compared to task-specific or less robust multi-
modal models.
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Implementation

4.1. Model Architecture Structure

This section details the architecture of the proposed modality-agnostic foundation model,
designed for joint processing of EEG and ECG signals. The architecture is based on
the Transformer framework and employs specialized attention mechanisms for both
unimodal and cross-modal feature extraction, enabling the learning of shared represen-
tations. The main components of the architecture are the modality-specific EEG and
ECG encoders, the fusion encoder, and the decoders (for pretraining and finetuning), as
it will be discussed in this chapter.

As it can be seen from Figure Fig. 4.1, the model processes segments of both EEG and
ECG signals, which are first processed separately in their modality-specific encoders,
and then combined together in the cross-modal fusion encoder. After the encoder, the
embeddings are processed by the patch reconstruction decoder during pretraining, or
by the classification head, during finetuning.

4.1.1. Input Processing and Tokenization

The tokenization separately processes the raw time series, EEG and ECG, transforming
them into token sequences that will later be input in the transformer encoders.

Before the tokenization, EEG and ECG have shapes:

[B,Cexg, T] (4.1)

where B is batch size, Cexg is the number of channels for EEG or ECG, and T is the
sample time points, which in this model corresponds to a 5-second window of signals
with sampling frequency of 256 Hz.

EEG and ECG are patched and tokenized separately, as a part of their modality-specific
processing. The tokenization is performed using a 2D convolution with a kernel size of
(1, patch_size) and a stride of (1, patch_size), which is applied independently for each
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Figure 4.1.: Architecture of the Multimodal Foundation Model for EEG and ECG. EEG
and ECG are first processed separately by the two modality-specific encoders
(in blue for EEG and orange for ECG), and then combined together in the
multimodal fusion block (in pink). The produced shared embedding is
then input to one of the model heads (in green), specifically to the masked
reconstruction decoder during pretraining, or to the classification head for
the finetuning downstream tasks.

channel. This convolution effectively partitions the input signals into non-overlapping
patches.

After the patching the shapes become:

[B,Cexg, T]→ [B,Cexg,S, P] (4.2)

where S is the number of patches, and P is the patch size.
These patches are then mapped to an embedding dimension D:

[B,Cexg,S, P]→ [B,Cexg,S, D] (4.3)

The patches are finally rearranged multiplying the number of channels C with the
number of patches S:

[B,Cexg,S, D]→ [B, Nexg, D] (4.4)

where Nexg = Cexg ∗ S is the number of tokens for the EEG modality.
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4.1.2. Feature extraction

Before entering the core Transformer blocks, the tokenized sequence is augmented with
additional handcrafted features extracted from the original raw signals. In the feature
calculations, all channels are treated independently.

Both time and frequency features are calculated, specifically the features employed
are: mean, standard deviation, zero-crossing rate, kurtosis, skewness, energy, entropy
and a spectral feature to express frequency content.

This frequency feature is calculated using the Real Fast Fourier Transform (RFFT) ap-
plied along the time dimension. From this frequency representation, both the magnitude
and the phase are extracted and concatenated, forming a frequency feature vector for all
the patches. This frequency feature then represents the energy distributions across all
frequencies in all the patches and channels.

It should be noted that the features used in this thesis are modality-agnostic, which
means that they are not specific to either EEG or ECG.

Similar features were used in previous works, such as [66], where mean, standard
deviation, kurtosis, skewness, zero-crossing rate and entropy are used. This is because
these features are indicative of time-domain characteristics of the waveforms used,
as pointed out in [71]. Differently from the cited works, in this thesis a frequency
representation (agnostic to the modality type) is calculated, instead of specific features
tailored specifically to EEG (e.g. band-specific frequencies) or to ECG (e.g. R peak
features, R-R Interval).

The calculated features are then embedded using dedicated Multi Layer Perceptrons,
which consists of three linear layers interleaved with a non-linear activation function
(GELU), projecting the features into the tokens dimension, such that the features can
be summed to the patched input [B, N, D]. This passage allows for the integration of
the complementary information offered by the raw signal and its statistical and spectral
features.

4.1.3. Positional and Channel Encoding

After the initial patching and feature extraction, learned positional and channel encod-
ings are added to the tokens. These embeddings serve the purpose of capturing the
original channel identity and the temporal position of each token. The channel and posi-
tional encodings are concatenated together, and are then added to the feature-augmented
token embeddings, providing essential spatio-temporal context.

For the finetuning datasets, in which there is variability in the channel montages used
(as will be discussed in Section 4.3.2), a channel index dictionary is employed to pair each
channel with the correct channel encoding, to ensure compatibility between the channels
of the finetuning data set and the encoding learned by the model on the pretraining
dataset. This is done specifically for EEG, since ECG in the finetuning datasets contains
lead I signals, and is then mapped correctly to the first position in the channel encoding.
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4.1.4. Modality-Specific Encoders (EEG and ECG)

The modality-specific encoders, inspired by CEReBrO [72] take as input the tokenized
sequence augmented by the handcrafted features, after this has been summed to the
channel and positional encodings. There are two modality-specific encoders, one for
EEG signals and one for ECG signals. Each of them internaly performs Multi-Head
Two-Axis Self-Attention. The encoder initially reshapes the input as follows:

[B, Nmodality, D]→ [B,Cmodality, T, D] (4.5)

and then applies channel attention along the channel dimension, Cmodality, for each time
step independently:

[B,Cmodality, T, D]→ [B ∗ T,Cmodality, D] (4.6)

and temporal attention along the temporal dimension, T, for each channel indepen-
dently:

[B,Cmodality, T, D]→ [B ∗ Cmodality,T, D] (4.7)

where the sequence dimension in the attention mechanism is highlighted in bold.
The outputs of these two attention computations are then summed and linearly

projected. This two-axis approach enables the unimodal encoders to capture complex
spatio-temporal relationships within each modality.

The Two-Axis attention block (it should be noted that the same operations are also
applied Hybrid Attention described below) receives an input the normalized x (Layer
Normalization), then layer scaling is applied to its output, a residual connection is
implemented to stabilize gradient flow through the network, and finally drop path is
applied as a regularization technique.

The x processed as such is further normalized, then it is input into an standard MLP
with GELU as the activation function, and finally layer scaling and drop path are applied
again.

4.1.5. Shared Modality-Agnostic Encoder

The shared modality-agnostic encoder receives as input the concatenated outputs of the
two modality-specific encoders, xeeg and xecg, which result in the combined sequence x,
with shape [B, N, D], where:

N = Neeg + Necg (4.8)

where Neeg and Necg are the number of tokens for EEG and ECG respectively.
This shared block implements a hybrid attention mechanism, implemented by sequen-

tially applying Multi-Head Two-Axis Self-Attention on the full concatenated embedding
x, and Multi-Head Cross-Attention between the EEG and the ECG components of the
Two-Axis Self-Attention output.
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Specifically, the Two-Axis Self-Attention performs self-attention along both the tempo-
ral and channel dimensions of the concatenated token space, as discussed in 2.3.2, refining
the spatio-temporal relationships across the entire observation space. The output of this
attention function has shape [B, N, D].

This is followed by a Cross-Attention mechanism that explicitly facilitates interaction
and information flow between the EEG and ECG modalities, enabling the model to learn
how features in one signal relate to features in the other. This module takes the output
of the Two-Axis Self-Attention step as its input. The Cross-Attention mechanism first
splits the x into xeeg and xecg, and then applies attention from EEG to ECG and from
ECG to EEG.

In the first case, the attention is computed between Qeeg, Kecg and Vecg, producing
output of shape [B, Neeg, D]:

xeeg → ecg = Attention(Qeeg,Kecg,Vecg) (4.9)

In the second case, the attention is computed between Qecg, Keeg and Veeg, producing
output of shape [B, Necg, D]:

xecg → eeg = Attention(Qecg,Keeg,Veeg) (4.10)

These two outputs will then be concatenated in the tokens dimension, restoring the
original shape [B, N, D]:

x = Concat(xeeg → ecg, xecg → eeg) (4.11)

where x has shape [B, N, D].
To summarize, this sequential hybrid approach employed within every shared encoder

block first refines the spatio-temporal context across the combined multimodal input
space and then explicitly fuses information between the two modalities.

4.1.6. Modality-Agnosticism Analysis

While the model employs two modality-specific encoders, each designed to capture
features unique to EEG or ECG, the subsequent shared encoder operates within a unified
framework achieving modality-agnosticism.

The application of Two-Axis Self-Attention to the full multimodal input within the
shared blocks is inherently modality-agnostic, as it processes all tokens in the combined
space uniformly. This distinguishes this step from the Two-Axis attention computation
in the modality-specific encoders, which is performed separately on EEG and ECG, in
order to learn specific intra-modal relationships.

The following Cross-Attention mechanism necessarily relies on knowing the modali-
ties’ channels to be able to compute attention between the two sets of tokens, serving
the purpose to enforce explicit cross-modal relationships learning.

Stacking these two attention mechanisms sequentially allows the model to first build
robust, contextualized representations within the combined multimodal space, and then to
leverage these refined representations for explicit cross-modal fusion.
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The shared encoder outputs a single, integrated tensor which combines information
from both EEG and ECG, allowing downstream task-specific modules to connect directly
and function without needing to know the original modalities or channel configurations.
This design provides flexibility, enabling the shared encoder to learn adaptable represen-
tations of inter-modal dynamics. These representations can then be used by task-specific
modules trained on a variety of tasks, all leveraging this single, unified embedding.

4.1.7. Decoder

Two different decoders are used for this model, a patch reconstruction head for the
pretraining, and a classification head for the finetuning.

The patch reconstruction head is used in the context of masked reconstruction, which
is the SSL strategy employed in this project. This decoder takes as input the shared
latent representation produced by the cross-modal block, and maps it back to the input
signals. This module head consists of a simple linear layer that projects the embedding
dimension D to the original patch size P.

The classification head is used for the downstream tasks, it also receives as input the
latent representations output from the shared multimodal encoder, and it consists of
a Multi Layer Perceptron. in the model head the input, with shape [B, N, D], is first
averaged on the tokens dimension, N, and then processed by the MLP, which produces
classification logits, projecting the embedding dimension D to the number of classes.

4.2. Training Methodology

4.2.1. Overall Strategy

The overview of the model training will be detailed below, and it can be summarized as
follows: first, a multi-stage pretraining is performed, utilizing the two modality-specific
encoders in a first stage, and the shared modality encoder, in a second stage; then the
pretrained model is finetuned on six different datasets and downstream tasks.

4.2.2. Multi-stage Pretraining

The proposed foundation model employs a multi-stage pretraining strategy designed to
effectively learn from both unimodal and multimodal biosignal data. This motivations
behind this approach are threefold.

First, EEG and ECG signals possess distinct characteristics, highlighting the need to
learn modality-specific features.

Second, EEG and ECG often offer complementary information, when acquired si-
multaneously, highlighting the need to learn cross-modal interactions between the two
signals.

Third, despire the abundance of unimodal datasets containing either EEG or ECG,
even large-scale ones, such as TUEG or Icentia-11k, there is a scarcity of datasets, (espe-
cially large-scale) containing both modalities together.

29



4. Implementation

These reasons motivate us to leverage the abundant unimodal data to learn intra-
modal relationships in EEG and ECG in a first stage, and to leverage the available simul-
taneous data in a second stage, while refining inter-modal interactions in a modality-
agnostic fashion.

Implementation

In the first stage, separate encoders are pretrained for EEG and ECG independently,
utilizing modality-specific datasets, TUEG for EEG and an Icentia-11k subset combined
with PTB-XL for ECG. This stage is crucial to allow each encoder to specialize in ex-
tracting features relevant to its unique signal properties, and to leverage the extensive
data available for a single modality . EEG and ECG exhibit significant differences in
frequency content, morphology, and physiological origin, necessitating distinct feature
extraction strategies at the initial encoding layers.

In the second stage of the multi-stage pretraining strategy, the already pretrained
EEG and ECG encoders (obtained from Stage 1) are loaded. These unimodal encoders’
weights are initialized from their respective pretrained checkpoints. A newly initialized
Shared Modality-Agnostic Encoder is then added on top of these two unimodal encoders,
and initialized from scratch. Pretraining is continued on the entire model using the
multimodal SHHS dataset, which contains both EEG and ECG. The objective remains
masked reconstruction, now applied to the combined EEG and ECG inputs. This is
the stage in which the Hybrid-Attention mechanism is trained, enabling the model to
learn effective cross-modal information fusion and joint representations based on the
previously learned unimodal features.

By learning both modality-specific and cross-modal representations, this strategy is
expected to enhance the model’s generalization capabilities and improve its performance
on downstream tasks that leverage both EEG and ECG signals.

4.2.3. Pretraining Self-Supervised Learning

Masked reconstruction and MSE loss

The core self-supervised pretraining task for this model is Masked Reconstruction, which
has been successfully employed in previous works, such as LaBram [73], CEReBrO [72]
and [74]. Each input segment is first patched, and then a random subset of patches
is masked, using a learnable mask embedding. The model then processes the input
masked as such, and subsequently the decoder is tasked with the reconstruction of the
signal, both in visible and in masked regions.

The model is trained using the L2 or Mean Squared Error (MSE) loss function calcu-
lated in both the visible and masked region, as expressed below:

Ltotal = Lmasked + α · Lvisible (4.12)

where Lvisible is the L2 calculated for the visible patches, Lmasked is the L2 calculated
for the masked patches, and α is a hyperparameter set to 0.1.
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The L2 loss measures the squared differences between the predicted values for a set of
patches and their true values, and is calculated as:

L2(Xpred, Xtarget) = (Xpred − Xtarget)
2 (4.13)

where Xpred is the prediction made by the model head, and Xtarget is the true, masked
input.

Modality masking

During the pretraining process, specifically in Stage 2, a modality masking strategy is
applied probabilistically to the input batches.

With a certain probability, the data for either EEG or ECG modality within a given
batch (probability to mask EEG or ECG is set to 0.5), is randomly set to zero.

This forces the model to process batches where only a single modality is present,
simulating scenarios where one signal might be unavailable or noisy. To ensure the
model is not penalized for failing to reconstruct the modality that it did not receive, the
masked reconstruction loss is calculated only based on the unmasked modalities in that
specific batch.

This technique contributes to the modality-agnosticism of the learned representation
by explicitly training the model to extract meaningful information and perform recon-
struction when relying on input from just one modality, enhancing its ability to function
even with partial multimodal inputs.

4.2.4. Task-Specific Supervised Finetuning

Finetuning Tasks

Following the multi-stage self-supervised pretraining, the learned representations within
the model’s encoders are utilized to solve specific downstream classification tasks.

The finetuning process involves leveraging the pretrained model as a feature extractor
and finetuning its parameters on smaller, labeled datasets relevant to each target task.
This is achieved by discarding the model head responsible for masked reconstruction,
and attaching the classification head, described in 4.1.7.

The tasks used for evaluation in this project are:

• Sleep stage classification: Performed on the CAP Sleep dataset, multimodal EEG
and ECG dataset.

• Emotion recognition: Evaluated on the DREAMER dataset multimodal EEG and
ECG dataset.

• TES region classification (frontal, motor, parietal): multimodal EEG and ECG
dataset.

• Artifact classification: TUAR dataset, EEG only.
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• Slowing events detection: TUSL dataset, EEG only.

• Abnormality detection: TUAB dataset, EEG only.

Layer-wise Learning Rate Decay

In this work, Layer-wise Learning Rate Decay is applied in both the second stage of self-
supervised pretraining (Shared Encoder pretraining) and during task-specific supervised
finetuning.

In the second pretraining stage, this strategy is used to continue pretraining the already
pretrained EEG and ECG encoders with smaller learning rates while training the newly
added Shared Encoder layers with larger rates.

During finetuning, Layer-wise Learning Rate Decay it is applied across the entire
pretrained model, allowing the pretrained layers to retain their learned features while
the new classification head adapts quickly to the downstream task. T

his approach helps stabilize training and improve performance when leveraging
powerful pretrained representations.

Focal Loss

The loss function used for the finetuning tasks is the focal loss [75].
This choice was motivated by the severe class imbalances encountered in some of the

finetuning datasets, in which the cross-entropy loss function would have rendered the
model biased towards majority classes, resulting in poor performances on the minority
classes.

Focal Loss modifies the standard Cross-Entropy loss to down-weight the contribution
of easy-to-classify, abundant examples, focusing the training on hard, misclassified
examples, which are often from the minority classes.

The focal loss formula is expressed as follows:

Lfocal = −α · (1 − pt)
γ · log(pt) (4.14)

where pt is the model’s estimated probability for each class, α is a balancing factor for
the class, and γ is a focusing parameter that adjusts the rate at which easy examples are
down-weighted.

The label distribution for the finetuning datasets is presented in . The FocalLoss
implementation utilized takes two main parameters: α and γ.

The α parameter is a weighting factor assigned per class, which is set inversely
proportional to the class-frequency to balance the importance of different classes.

The γ parameter is a modulating factor that adjusts the rate at which easy examples are
down-weighted. By reducing the loss contribution from well-classified examples, Focal
Loss effectively addresses the class imbalance issue by directing the model’s learning
capacity towards the hardest-to-classify samples from minority classes.
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Evaluation Metrics

The performance of the finetuned model on each downstream task is evaluated using a
set of metrics, which include:

• Accuracy: calculates the proportion of correctly classified examples.

• Precision: measures the proportion of true positive predictions among all positive
predictions (relevant to false positives).

• Recall: measures the proportion of true positive predictions among all actual
positive examples (relevant to false negatives).

• AUROC (Area Under the Receiver Operating Characteristic Curve): quantifies
the overall performance of a binary classifier by measuring its ability to discrim-
inate between positive and negative instances across a range of classification
thresholds.

• AUPRC (Area Under the Precision-Recall Curve): informative for binary classifi-
cation tasks with severe class imbalance, as it focuses on the performance on the
positive class.

• Cohen’s Kappa: measures the agreement between the model’s predictions and the
true labels, adjusted for the agreement expected by random chance.

The metrics were macro-averaged across all classes.

4.2.5. Data Handling for Varying Shapes

In this project a custom data loader was used in order to take care of the different number
of channels present in the pretraining (TUEG, Icentia and PTB-XL) and in the finetuning
datasets (CAP Sleep). Specifically, regarding the TUEG, this contains samples with
22-channels or 20-channels, for the ECG encoder the Icentia-11k contains 1-channel, and
the PTB-XL contains 12-channels, and for the CAP Sleep this contains twelve different
EEG channels montages.

This custom dataloader creates batches with samples having the same number of
channels, which is required in order to stack the samples in a batch for further processing
in the transformers. The dataloader reads files created with a fixed number of channels,
such that samples (also potentially belonging to different files) with equal channel
number will be stacked together. This dataloader has been extended to work also for
the ECG pretraining block, in which the Icentia and the PTB-XL datasets were also
processed in different formats, respectively LMDB and HDF5. For the CAP Sleep, during
data preprocessing a combination index was assigned to each subject based on the
channels number and types it contained after data cleaning, preprocessing and channel
standardization. This combination index was then stored in the HDF5 files as attribute
for each group. During data loading, the combination index is read, and batches are
created with samples having the same specific montage. In the data loading process,
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one dataloader is created for all the samples sharing the same combination index. These
dataloaders are then combined and iterated through sequentially.

4.3. Data Preprocessing

This section describes the diverse biosignal datasets used for both pretraining and
finetuning, outlining the standardized preprocessing pipeline applied to ensure compat-
ibility with the model architecture, and the necessary label handling for the finetuning
datasets.

4.3.1. Overview of Data Sources

In this project diverse datasets were employed, containing both EEG and ECG, or just
one modality, as described in Tables 2.5 and 2.6.

Specifically, these datasets are:

• Unimodal Pretraining datasets: TUEG, Icentia-11k, PTB-XL.

• Multimodal Pretraining datasets: SHHS.

• Multimodal Finetuning datasets: CAP Sleep, DREAMER, Dataset for tES.

• Multimodal Finetuning datasets: TUAB, TUAR, TUSL.

These datasets exhibit significant heterogeneity, in terms of sampling frequencies,
ranging from 125 Hz to 2000 Hz, number of electrodes and montage used (especially
for EEG signals), ranging from 1-channel to over 30, level of noise present in the data,
labeling scheme, and overall dataset structure.

Furthermore, the total recording durations span a vast range, from tens of hours (e.g.,
TUAR, TUSL, DREAMER) to hundreds of thousands of hours (e.g., Icentia-11k).

This substantial initial diversity across datasets, subjects, signal types, recording dura-
tions, channel configurations, and sampling rates necessitates a consistent preprocessing
and standardization pipeline to create a unified data format suitable for the training and
finetuning of the proposed foundation model.

4.3.2. Core Standardization Pipeline

To prepare the heterogeneous biosignal data for the Transformer-based model, a consis-
tent core preprocessing pipeline was applied across all datasets. This pipeline transforms
raw signals into standardized, fixed-length segments with uniform characteristics:

• Discard invalid values: data was checked for invalid values (NaN/Inf). Segments
with excessive invalid data were discarded, while limited NaN or Inf values were
replaced with zero.

34



4. Implementation

• Bandpass Filtering: signals were filtered to remove unwanted frequency compo-
nents.

Specifically, EEG signals was bandpass filtered with frequencies of 0.1 Hz and 75.0
Hz.

ECG signals were bandpass filtered with frequencies of 0.5 Hz and 120 Hz.

The sampling was modified for the CAP Sleep dataset, in accordance with the
guidelines of the American Academy of Sleep medicine [76], which suggests to
filter EEG with frequencies of 0.3 Hz and 35 Hz, and ECG with frequencies of
0.3 Hz and 70 Hz. Thus, a narrower frequency range was considered in order to
obtain optimal conditions for sleep scoring.

• Notch Filter: in the various datasets, a notch filter of either 50 Hz or 60 Hz was
applied in order to eliminate contaminations from powerline interferences.

• Resampling to common frequency: a crucial aspect of this preprocessing pipeline,
is to take care of the different sampling frequencies different datasets use for the
same modality, but most importantly to take care of the inherent differences be-
tween EEG and ECG signals, that, if as evident as a a different sampling frequency
of different order of magnitudes for the amplitudes, could bias the model into
trivially distinguishing between the two modalities.

Hence, it was necessary to resample EEG and ECG in all the datasets to a common
frequency, that was chosen to be 256 Hz. This effectively standardized the temporal
resolution across all datasets and modalities.

• Channel Standardization and Ordering: the channel montage was standardized
across all datasets, especially regarding the EEG signals, which were acquired
following the 10-10, the 10-20 international system or unique layouts as seen
in the CAP Sleep dataset. This standardization involved: converting original
unipolar measurements to a bipolar format, and ordering the resulting channels
according to a consistent layout, in this case the TCP montage was chosen. To
accurately manage the variability in original channels and montages, a mapping
dictionary was generated for each subject during preprocessing. This dictionary
explicitly defined a correspondence between the position of a channel in the data
and in the standardized TCP montage. This mapping was crucial to maintain
consistency in the channel encodings, guaranteeing that the model associated its
learned representations with the same anatomical locations across all data, which is
vital for effective learning with channel-specific features.

The case of the CAP Sleep dataset proved particularly challenging, due to strong
internal montage variations, which amounted to twelve different channel montages
across all subjects. It should also be noted that for the CAP dataset, out of the 95
subjects considered (the ramaining 13 were excluded due to corrupt files), 4 were
excluded because they contained no standard EEG channels.
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• Windowing: continuous recordings were segmented into fixed-length, non-overlapping
5-seconds windows, equivalent to 1280 timepoints at 256 Hz. These windows
serve as the fundamental input samples for the model.

• Label Extraction: for the finetuning datasets preprocessed in this project (DREAMER,
CAP Sleep and Dataset for tES), the labels were extracted from the annotation data.
Details for each dataset are discussed below in 4.3.3.

• Normalization: min-Max normalization in the range on [-1, 1] was applied to all
data, independently for each 5-second sample and for each channel.

This was another crucial step in the preprocessing pipeline, together with the
resampling, to avoid biasing the model, which would otherwise receive amplitudes
in the range of mV for ECG and of µV for EEG signals. This also avoided potential
training instability due the very different input amplitudes.

Filtering thresholds motivation

A standard practice while filtering EEG or ECG signals, involves applying bandpass
filters to remove unwanted frequency components using linear digital filters with zero
phase distortion, implemented here by applying a Butterworth filter forwards and
backwards.

Specific frequency cutoffs are chosen to align with the physiologically relevant signal
content and common noise sources for each modality, while also being constrained by
the original data acquisition parameters (sampling frequency).

For both modalities, a high-pass filter is applied to remove slow baseline drifts,
respiration artifacts, and DC offsets. A cutoff of 0.1 Hz is used for EEG, while a slightly
higher cutoff of 0.5 Hz is applied for ECG. For ECG, common recommendations for
the low-frequency cutoff in diagnostic recordings, which aim to minimize ST segment
distortion and to preserve the overall waveform, range from 0.05 Hz for routine filters
up to 0.67 Hz for linear digital filters with zero phase distortion, as discussed in the
Recommendations for the Standardization and Interpretation of the Electrocardiogram
from the American Heart Association Electrocardiography and Arrhythmias Committee
[77]. Our 0.5 Hz high-pass filter for ECG falls within this clinically recommended range
for zero-phase filters.

The upper cutoff frequency, however, differs more significantly between the modalities
and is fundamentally limited by the original data sampling rates. For EEG, a low-pass
filter at 75 Hz is applied, in accordance with the guidelineds of the American Clinical
Neurophysiology Society [78], which recommend to use high-frequencies not below 30
Hz, and low frequencies not above 1 Hz. This cutoff is chosen to encompass the full
range of established brain rhythms, including important gamma band activity (up to
around 70-100 Hz), while effectively attenuating higher-frequency noise such as muscle
artifacts (EMG). In contrast, for ECG, while many works in the literature use a high cutoff
of 100 Hz [27], clinical guidelines emphasize that preserving even higher frequencies is
fundamental for accurate measurement of rapid deflections and detailed QRS complex
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morphology, with recommendations often suggesting an upper-frequency cutoff of
at least 150 Hz, or even 250 Hz for infants, for precise amplitude measurements [77].
However, achieving such bandwidth is fundamentally limited by the data’s original
sampling rate due to the Nyquist theorem. Our ECG datasets were originally sampled
at varying rates, including 500 Hz, 250 Hz, and 125 Hz, corresponding to Nyquist
frequencies of 250 Hz, 125 Hz, and 62.5 Hz. Consequently, a consistent upper cutoff of
150 Hz is not feasible across all data due to these Nyquist limits. We therefore selected a
uniform low-pass filter at 120 Hz for all ECG data.

4.3.3. Handling Finetuning Datasets

For the downstream finetuning tasks, specific procedures were implemented to process
the diverse original label formats into a consistent representation compatible with the
model’s classification head.

For CAP Sleep, the original labels were provided as hypnograms for 30-second epochs,
and they were propagated to align with our standardized 5-second analysis windows.
This involved assigning the 30-second epoch label to all 5-second windows falling en-
tirely within that epoch. Missing labels in the original hypnogram were also propagated
to the corresponding 5-second windows. Furthermore, original sleep stage labels (W, S1,
S2, S3, S4, REM) were converted to the standard (W, N1, N2, N3, REM) nomenclature
according to established guidelines [79].

For DREAMER, which provided self-assessment scores on a scale from 1 to 5 for
valence, arousal, and dominance, these scores were further discretized into binary
categories: scores of 1 to 3 were mapped to a ’Low’ category, and scores of 4 and 5 were
mapped to a ’High’ category, as previously done in the literature. Additionally, a distinct
label (’0’) was created and assigned to data segments corresponding to the baseline,
neutral video signals. This was done to explicitly teach the model to differentiate
between physiological states elicited by stimulus videos and those during a neutral
baseline period.

For the TES region classification task, labels were derived from the trigger annotations
indicating occurring transcranial electrical stimulation (tES). The original triggers contain
information on the specific stimulation montage, which includes information about the
stimulated brain region (Frontal, Motor, or Parietal) and the stimulation current applied
(DC, 5Hz, 30Hz). During preprocessing, data segments were labeled based on the brain
region targeted by the tES, discarding the specific stimulation frequency information.
The trigger sequences containing triggers for the start and end of the stimulation was
checked for invalid trigger sequences, which were excluded from the finetuning data.
Non-stimulation periods were implicitly treated as a separate category or assigned a
baseline label, in this case 0.

4.3.4. Label Distribution

Below the label distribution for the finetuning datasets is shown. It can be seen that
most datasets are imbalanced. This is in fact what motivated the use of the focal loss, as
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described in 4.2.4.

Figure 4.2.: Class distributions for the CAP Sleep and the tES datasets

As it can be seen in Figure 4.2, the datasets are imbalanced. For instance, the tES
datasets, whose majority of the data corresponds to the absence of stimulation, has one
class which only constitutes 1.8% of the data, while the majority makes up for 86.5% of
the data. This is the original labels distribution, but in this project the TES classification
task is actually a binary one, with the two classes being the frontal and the motor regions,
which make up for a balanced dataset instead.

The CAP Sleep is also imbalanced, with the N1 class which is 3.8% of the data, and
the N2 which corresponds to 31.4%.

Figure 4.3.: Class distributions for the DREAMER dataset

The DREAMER dataset, while not perfectly balanced, is more evenly distributed, with
the low and high classes being 40.4% and 41.2% respectively, while the neutral class is
18.4%.

As it can be seen in Figure 4.4, while the TUAB dataset is relatively balanced, the
TUAR and most importantly the TUSL datasets are imbalanced. In the TUSL, one class
constitues 97% of the total data, while the remaining three contribute to the total data
for 1% each.

38



4. Implementation

Figure 4.4.: Class distributions for the TUAR, TUSL and TUAB datasets
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Chapter 5
Results

In this chapter, the results obtained from the evaluation of the proposed method are
presented. The model is analyzed in the downstream task performance, and in the
evaluation of the latent representations obtained from the pretrained model on the
downstream task datasets.

5.1. Training Curves

The training curves, both for train and validation, are shown in Figure Fig. 5.1 and
Figure Fig. 5.2.

These curves were obtained from the pretraining of the shared fusion model, starting
from pretrained checkpoints obtained from the initial stage pretraining of the modality-
specific encoders.

5.2. Masked Reconstructions

In this section the masked reconstructions produced by the pretraining of the fusion en-
coder are shown, with both EEG and ECG, in Figure and in Figure . The reconstructions,
obtained during the validation stage, are presented here both for EEG and ECG, and
they were obtained pretrained the shared encoder for 40 epochs.

These reconstructions are produced from the SHHS dataset, which contains two EEG
channels, and one ECG channel.

5.3. Downstream datasets embedding visualizations

In this section, the t-SNE visualizations for some of the finetuning datasets are shown.
These embedding visualizations were obtained using the pretrained encoder (in this case
the three encoders, modality-specific and modality-agnostic) and using it to produce
latent representations of the finetuning datasets. Figure Fig. 5.6 shows the embedding
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5. Results

Figure 5.1.: Training curve for the shared fusion model.

Figure 5.2.: Validation curve for the shared fusion model.

visualizations for the TES dataset. In Figure Fig. 5.5 the embeddings for the arousal
prediction of the DREAMER dataset are shown. Lastly, in Figure Fig. 5.7 the embeddings
produced using the TUAR dataset, EEG-only, are shown.
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Figure 5.3.: EEG validation reconstruction produced by the shared encoder

Figure 5.4.: ECG validation reconstruction produced by the shared encoder

5.4. Finetuning Results

In this section, the finetuning results obtained from the downstream tasks conducted on
TES, DREAMER, CAP, TUAB, TUAR and TUSL are shown.

For the EEG only datasets, the finetuning results on TUAB, TUAR and TUSL are
reported respectively in Table 5.1, Table 5.2 and Table 5.3.

The results obtained finetuning on the TES dataset, are instead shown in Table 5.4.
The results obtained on the CAP Sleep dataset are shown in Table 5.5 .

The results obtained after finetuning on the DREAMER dataset are shown in Table 5.7.
In the finetuning results presented in Tables 5.5, 5.7, 5.4 we can observe the model

performance on EEG and ECG datasets. Comparing the metrics for the full model and
the baseline, we can observe that for the DREAMER dataset, the baseline model, which
was only pretrained on the SHHS dataset, and not on the TUEG, the Icentia-11k, and
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5. Results

Figure 5.5.: Embedding visualization of Arousal prediction of the DREAMER dataset

Figure 5.6.: Embedding visualization of the TES dataset

the PTB-XL, achieves slightly higher metric values than the full model. The general
hypothesis is that the baseline model, being pretrained on a less datasets, and also
without multi-stage pretraining, should perform worse than the full model. Although
the slightly higher metric values seem to contradict this hypothesis, it should also
be noted than these values are chance values for a binary classification, therefore the
baseline does not actually perform better than the full model, given the meaning of these
metrics for a binary classification task.

Looking at the finetuning results on the CAP dataset, a five classes classification task
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5. Results

Figure 5.7.: Embedding visualization of the TUAR dataset

Table 5.1.: Results on TUAB

Models AUROC AUPRC Accuracy

Full, no feat 0.8949 ± 0.0018 0.9036 ± 0.0019 0.8229 ± 0.0037
Full, feat 0.8936 ± 0.0020 0.9031 ± 0.0016 0.8227 ± 0.0045
Full, mod mask 0.8968 ± 0.0029 0.9059 ± 0.0033 0.8205 ± 0.0070
Baseline, no feat 0.8929 ± 0.0017 0.9025 ± 0.0012 0.8200 ± 0.0026
Baseline, feat 0.8883 ± 0.0004 0.8984 ± 0.0009 0.8165 ± 0.0012
Baseline, mod mask 0.8829 ± 0.0038 0.8914 ± 0.0042 0.8096 ± 0.0065

for sleep staging, we can see that the performance achieved my baseline and full model
is comparable, the full model does not perform consistently better than the baseline. It
should still be noted that for the CAP dataset, as for the DREAMER, the performance of
the multimodal EEG-ECG model is suboptimal, and also inferior to the state-of-the-art
results for the F1 score metric, the only one reported in the two previous works.

While performance on DREAMER and CAP is suboptimal, performance onthe TES
dataset is more promising. The TES dataset confirms the hypothesis according which the
full model should perform better than the baseline model, and the hypothesis according
to which adding handcrafted features should improve model performance. We can in
fact see that the model with the features, both full and baseline, performs consistently
better than the corresponding model version without features. The modality masking
experiment, intended primarily for EEG only datasets, was also tested here. We can see
that for the full model, it achieved comparable results to the features-enriched model,
while for the baseline model, it achieved much worse performance. This can confirm
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Table 5.2.: Results on TUAR

Models AUROC AUPRC Accuracy

Full, no feat 0.9161 ± 0.0068 0.5909 ± 0.0238 0.4743 ± 0.0087
Full, feat 0.8966 ± 0.0076 0.5048 ± 0.0108 0.4423 ± 0.0068
Full, mod mask 0.8925 ± 0.0159 0.5072 ± 0.0252 0.4511 ± 0.0203
Baseline, no feat 0.9051 ± 0.0175 0.5398 ± 0.0471 0.4565 ± 0.0263
Baseline, feat 0.9020 ± 0.0092 0.5185 ± 0.0169 0.4501 ± 0.0075
Baseline, mod mask 0.9021 ± 0.0100 0.5095 ± 0.0187 0.4408 ± 0.0104

Table 5.3.: Results on TUSL

Models AUROC AUPRC Accuracy

Full, no feat 0.7058 ± 0.0971 0.2791 ± 0.0184 0.4166 ± 0.0530
Full, feat 0.6730 ± 0.0527 0.2720 ± 0.0064 0.3266 ± 0.0794
Full, mod mask 0.6995 ± 0.0367 0.2895 ± 0.0172 0.3650 ± 0.0806
Baseline, no feat 0.7053 ± 0.0409 0.2722 ± 0.0075 0.4960 ± 0.0754
Baseline, feat 0.7347 ± 0.0451 0.2816 ± 0.0132 0.3308 ± 0.1088
Baseline, mod mask 0.6902 ± 0.0330 0.2718 ± 0.0054 0.3290 ± 0.0496

the hypothesis according to which training a model on more data, as it was done for the
full model, would improve the quality of the learned representations of the network. In
fact, while the baseline model, trained on less data, was not robust to modality masking
for what concerns the TES classification task, the full model was instead more robust,
keeping comparable performance levels on the TES dataset despite being trained on less
data.

For the EEG only datasets, we can observe that there are no significant differences
between the different models for the TUAB dataset, while for the TUAR dataset, the
models without the features seem to perform better than the versions that include them.
For the TUSL instead, the baseline model (with features) is the one that achieves highest
AUROC and Accuracy among them, appearing to be performing worse than the full
model.

5.5. Comparison to related work

In this section, the proposed method is compared to state-of-the-art-works. From Table
5.8 we can observe than the proposed multimodal model achieves results comparable
with the state of the art for the TUAB dataset, specifically slightly higher than Femba-
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Table 5.4.: Results on TES

Models AUROC AUPRC Accuracy Recall

Full, no feat 0.8514 ± 0.1083 0.8892 ± 0.0659 0.7024 ± 0.2230 0.7506 ± 0.1544
Full, feat 0.9746 ± 0.0308 0.9878 ± 0.0147 0.9167 ± 0.0660 0.9028 ± 0.0481
Full, mod
mask

0.9737 ± 0.0105 0.9870 ± 0.0057 0.9259 ± 0.0150 0.8982 ± 0.0212

Baseline, no
feat

0.5077 ± 0.0652 0.6986 ± 0.0187 0.2949 ± 0.0084 0.4888 ± 0.0156

Baseline,
feat

0.8012 ± 0.1133 0.8478 ± 0.0939 0.6789 ± 0.3117 0.7091 ± 0.2089

Baseline,
mod mask

0.7417 ± 0.1210 0.7980 ± 0.1015 0.4437 ± 0.2521 0.5620 ± 0.1695

Huge, but still lower then LaBram-Huge and CBraMod.
From Table 5.9 we can observe the performance of the proposed model on TUAR

and TUSL datasets. For TUSL, we can observe that the model achieves comparable
performance to state of the art for the AUROC metric, but still lower performance than
EEGFormer-Base. For TUAR instead we can observe that the model achieves slightly
higer AUROC tham previous methods, including EEGFormer-Base and Femba-Large,
and most importantly it achieves +3.2% AUPRC with respect to previous works. For th
CAP dataset comparison in Table 5.11, we can see that the performance achieved by the
model in terms of F1 score, is consistently lower than the one achieved by the present
model.

Lastly, the TES dataset performance compasison is reported in Table 5.10, where we
can see that the performance of the model is inferior to the one reported in the GIST
paper.

5.6. Current limitations

This project presents some limitations, which are discussed below. First, the EEG-only
self-supervised pretraining phase was conducted on the full TUEG dataset, including
data from the TUAR and TUSL subsets later used for finetuning and evaluation. Al-
though no labels from the evaluation subset were used during pretraining since the
pretraining process remained entirely unsupervised, this overlap may have caused
the model to have implicitly adapted to the distribution of the finetuning data, even
without accessing labels. For future work, the EEG-only encoder should be pretrained
on the TUEG subset that excludes subject in TUAR and TUSL, allowing a more rigorous
assessment of the model’s ability to generalize to entirely unseen data.

Second, due to time and resource constraints, the full model (shared encoder pre-
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Table 5.5.: Results on CAP

Models AUROC AUPRC Accuracy F1 Score

Full, no feat 0.6753 ± 0.0132 0.3293 ± 0.0117 0.3075 ± 0.0109 0.2773 ± 0.0110
Full, feat 0.6196 ± 0.0631 0.2812 ± 0.0493 0.2512 ± 0.0475 0.1866 ± 0.0840
Full, mod
mask

0.6554 ± 0.0074 0.3059 ± 0.0078 0.2778 ± 0.0161 0.2369 ± 0.0159

Baseline, no
feat

0.6663 ± 0.0064 0.3174 ± 0.0033 0.2950 ± 0.0084 0.2637 ± 0.0083

Baseline,
feat

0.6715 ± 0.0108 0.3208 ± 0.0118 0.2912 ± 0.0122 0.2498 ± 0.0146

Baseline,
mod mask

0.6583 ± 0.0160 0.3085 ± 0.0135 0.2837 ± 0.0093 0.2456 ± 0.0101

Table 5.6.: Results on DREAMER

Models AUROC AUPRC Accuracy

Full, no feat 0.4217 ± 0.0372 0.3227 ± 0.0264 0.3583 ± 0.0085
Full, feat 0.4464 ± 0.0540 0.3288 ± 0.0318 0.3593 ± 0.0000
Full, mod mask 0.4184 ± 0.0899 0.3219 ± 0.0595 0.3593 ± 0.0000
Baseline, no feat 0.4324 ± 0.0283 0.3274 ± 0.0170 0.3510 ± 0.0138
Baseline, feat 0.4868 ± 0.0352 0.3874 ± 0.0147 0.3593 ± 0.0000
Baseline, mod mask 0.4519 ± 0.0299 0.3538 ± 0.0280 0.3593 ± 0.0000

training) could not be pretrained for a higher number of epochs, which renders the
reconstructions and the finetuning results suboptimal.

Third, the model was designed with the aim to learn EEG and ECG, focusing on
intra-model knowledge and inter-model knowledge, which motivates the use of the
modality-specific encoders, and the cross-attention in the shared encoder. These steps
are not inherently modality-agnostic. Despite this, with the explicit objective of fusing
the knowledge of the two modalities, a global self-attention was also introduced in
the shared encoder, with the objective of learning a shared latent representation in a
modality-agnostic fashion.

Last, the limited availability of multimodal models tailored to EEG and ECG, and of
multimodal datasets, especially labeled, with EEG and ECG, limits the comparisons that
can be made with the present project.
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Table 5.7.: Performance Comparison on the DREAMER Dataset

Metric Model

Proposed
Model

Emotion
Recogni-
tion [3]

Bi-ANN
[16]

Valence

Accuracy 60.69 99.47 92.68
F1 0.0 99.41 90.91
AUROC 58.06 – –

Arousal

Accuracy 51.55 99.47 92.95
F1 7.72 99.38 91.61
AUROC 63.52 – –

Dominance

Accuracy 51.41 – –
F1 62.61 – –
AUROC 65.21 – –

Note: Accuracy, F1-Score (macro), e AUROC (macro) are given for each prediction
(Valence, Arousal, Dominance). The values ’–’ indicate the absence of the data in the
studies here reported.
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Table 5.8.: TUAB Literature comparison

Models TUAB AUROC TUAB AUPRC TUAB Accuracy

Multimodal model (no
feat)

0.8949 0.9036 0.8229

Multimodal model
(features)

0.8936 0.9031 0.8227

Multimodal model (mod.
mask)

0.8968 0.9059 0.8205

CBraMod [80] 0.9156 0.9221 0.8249
LaBraM-Huge [73] 0.9162 0.9204 0.8258
Femba-Huge [74] 0.8921 0.9005 0.8182

Table 5.9.: TUAR and TUSL literature comparison

Models TUAR AUROC TUAR AUPRC TUSL AUROC TUSL AUPRC

Multimodal model (no
feat)

0.9161 0.5909 0.7058 0.2791

Multimodal model
(features)

0.8966 0.5048 0.673 0.272

Multimodal model (mod.
mask)

0.8925 0.5072 0.6995 0.2895

Femba-Large [74] 0.915 0.521 0.714 0.282
Femba-Base [74] 0.900 0.559 0.731 0.289
EEGFormer-Base [22] 0.847 0.483 0.713 0.393

5.7. Pretraining and Finetuning setup

The hyperparameters used in pretraining and finetuning are summarized respectively in
Table 5.12, for the pretraining setup, in Table 5.13 for the EEG-only finetuning datasets
and in Table 5.14 for the EEG and ECG finetuning datasets.
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Table 5.10.: TES literature comparison

Models TES Accuracy TES Recall

Multimodal model (no feat) 0.7024 0.7506
Multimodal model (features) 0.9167 0.9028
Multimodal model (mod. mask) 0.9259 0.8982
GIST [81] 0.994 0.988

Table 5.11.: CAP literature comparison

Models F1 Score

Multimodal model (no
feat)

0.2773 ± 0.0110

Multimodal model
(features)

0.1866 ± 0.0840

Multimodal model (mod.
mask)

0.2369 ± 0.0159

U-Time [82] 0.68
CNN [83] 0.68
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5. Results

Table 5.12.: Hyperparameters for EEG and ECG pretraining

Hyperparameters EEG encoder ECG Encoder Shared Encoder

Non-masked regions loss weight 0.1

Patch size 64

Number of layers 10

Embedding dimension 768

Attention type Two Axis Two Axis Hybrid

Attention head number 12

Image size 1280

Model drop path 0.2

Layerwise learning rate decay None None 0.9

Batch size 350 8000 (Icentia-11k),
512 (PTB-XL)

1024

Gradient accumulation 8

Learning rate scheduler CosineAnnealingLR

Base learning rate 10e-4

Warmup epochs 5

Warmup initial learning rate 10e-6

Minimum learning rate 10e-6

Optimizer AdamW

Optimizer β [0.9, 0.999]

Weight decay 0.05

Total epochs 195 223 52

Loss type L2

Mask ratio 0.5

Precision bf-16mixed
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Table 5.13.: Hyperparameters for EEG finetuning

Hyperparameters TUAB TUAR TUSL

Model drop path 0.2 0.1 0.2

Layerwise learning rate decay 0.5 0.7 0.5

Batch size 128 128 128

Gradient accumulation 8

Learning rate scheduler CosineAnnealingLR

Base learning rate 10e-4

Warmup epochs 5

Warmup initial learning rate 10e-5

Minimum learning rate 10e-5

Optimizer AdamW

Optimizer β [0.9, 0.999]

Weight decay 0.05

Max epochs 20 20 20

Loss type Focal Focal Focal

Focal loss weights [1.42, 1.41] [1.36, 9.99, 3.61,
2.27, 2.38, 45.30]

[0.01, 0.9, 1.1, 0.85]

Precision bf-16mixed
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Table 5.14.: Hyperparameters for EEG and ECG finetuning

Hyperparameters TES CAP DREAMER

Model drop path 0.2 0.2 0.2

Layerwise learning rate decay 0.8 0.7 0.75

Batch size 128 256 128

Gradient accumulation 8

Learning rate scheduler CosineAnnealingLR

Base learning rate 10e-4

Warmup epochs 5

Warmup initial learning rate 10e-5

Minimum learning rate 10e-5

Optimizer AdamW

Optimizer β [0.9, 0.999]

Weight decay 0.05

Max epochs 50 50 50

Loss type Focal Cross-entropy Focal

Focal loss weights [1.42, 1.41] None [0.78, 1.40]

Label smoothing None 0.1 None

Precision bf-16mixed
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Chapter 6
Conclusion and Future Work

This thesis addressed the challenge of developing generalizable AI models for diverse
biosignals by proposing a novel multi-modal foundation model for simultaneous EEG
and ECG analysis.

We introduced a Transformer-based architecture with initial modality-specific en-
coders and a shared multimodal encoder, trained through a multi-stage self-supervised
learning strategy on large-scale unimodal (TUEG, Icentia-11k, PTB-XL) and multimodal
(SHHS) datasets using masked reconstruction. This approach was able to learn rich,
shared multimodal representations capable of integrating information from both signal
types. Experimental evaluations across unimodal and multimodal finetuning tasks
(including abnormality detection, artifact classification, and transcranial electrical stimu-
lation region classification), validated the model’s flexibility and the generalizability of
its learned representations.

The key contributions of this project include the proposed multimodal architecture
and multi-stage SSL pretraining strategy tailored for EEG and ECG, which employed
four large-scale unimodal and multimodal datasets for pretraining, specifically TUEG
(EEG), Icentia-11k and PTB-XL (ECG), and SHHS (EEG and ECG), and six unimodal and
multimodal datasets for finetuning, respectively, TUAB, TUAR, TUSL, and TES, CAP
and DREAMER.

Future works should primarily focus on evaluating the proposed approach on uni-
modal ECG datasets, and on leveraging explainability or interpretability methods to
understand what the model "focuses on", for instance, in the attention mechanism.
This could contribute to making clearer the role of the multimodal interaction, possibly
highlighting correlations between EEG and ECG that the model is making use of for its
predictions.

In conclusion, this work shows the potential of the proposed multimodal EEG and
ECG Foundation Model in both multimodal and unimodal-EEG finetuning tasks, to-
gether with the robustness shown while using either one or both modalities at the same
time, as shown by the increase of 3.2% obtained in AUPRC for the artifact classification
task in the TUAR unimodal EEG dataset with respect to state-of-the-art works.
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Electroencephalography (EEG) is a non-invasive method used to record electrical activ-
ity in the brain, playing a critical role in both neurological research and clinical diagnos-
tics [1]. By offering a window into the brain’s activity, EEG helps diagnose and treat
various neurological disorders. However, the analysis of EEG signals presents substan-
tial challenges due to the complexity of these signals and the fine distinctions required
between normal and abnormal brain activity [2].

Recent advancements in artificial intelligence and deep learning have opened up new
possibilities for analyzing EEG data. Foundation models—large, pre-trained neural net-
works that can be fine-tuned for specific tasks—have reshaped fields such as natural
language processing and computer vision [3]. Their potential to improve EEG analysis
is promising but still in its early stages.

Progress has been made with models like LaBraM, which segments EEG signals into
channel patches to enable cross-dataset learning and fine-tuning [4]. Additionally, Brant-
X offers a unified physiological signal alignment framework by leveraging EEG alongside
other physiological signals, improving performance in EEG classification tasks like sleep
stage and emotion recognition [5]. Another model, EEGFormer, takes a self-supervised
learning approach with vector quantization to pre-train on large-scale EEG datasets,
producing state-of-the-art results in tasks like seizure detection [6].

Despite these advancements, significant challenges in EEG analysis remain:

1. Limited Multi-Modality Integration: Due to the scarcity of datasets containing
multiple modalities recorded simultaneously, existing models often cannot leverage cross-
modal information effectively.

2. Data Augmentation: The application of advanced data augmentation techniques in
EEG analysis is underexplored, limiting the diversity and robustness of training data.

This project seeks to address these issues by developing a foundation model capable of
learning from different modalities independently (EEG, iEEG, PPG, ECG) and lever-
aging shared representations to improve performance on downstream tasks, even when
only one modality is available.

1 Project Description

The project aims to enhance EEG signal analysis through three primary objectives:

Objective 1: Develop a modality-agnostic foundation model capable of transferring
knowledge across different physiological signal modalities (e.g., EEG, iEEG, PPG, ECG).
The model should be designed to be pre-trained on one or more modalities and effectively
fine-tuned on datasets consisting of only another modality, leveraging shared representa-
tions to enhance performance on downstream tasks.
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Objective 2: Utilize selected data augmentation techniques to enrich the training data
and improve model robustness, focusing on practical and feasible methods within the
project timeline.

The primary tasks for this project are as follows:

• Task I: Literature Review
Conduct a comprehensive review of recent advancements related to:

– Focus on modality-agnostic models and transfer learning techniques.

– Review practical data augmentation methods applicable to physiological sig-
nals.

• Task II: Dataset Collection and Preprocessing
Gather and preprocess datasets to ensure diversity in subjects and modalities:

– Data Acquisition: Collect publicly available datasets for EEG and one to
two other modalities (such as iEEG, PPG, and ECG), even if they are not
recorded simultaneously.

– Dataset Alignment: Preprocess the data, ensuring consistency across modal-
ities.

• Task III: Modality-Agnostic Model Development
Develop a foundation model that can transfer knowledge across different modalities,
allowing pre-training on certain modalities and fine-tuning on others:

– Design a Modality-Agnostic Architecture:

∗ Create a unified model with a shared encoder capable of processing various
modalities.

∗ Implement modality-specific adaptation layers for fine-tuning on new modal-
ities.

– Pre-Training on Available Modalities:

∗ Train the model using available datasets (e.g., EEG, iEEG) to learn ro-
bust, generalizable features.

∗ Focus on capturing shared patterns across physiological signals.

– Fine-Tuning on New Modalities:

∗ Adapt the pre-trained model to new modalities (e.g., PPG-only datasets)
through fine-tuning.

∗ Utilize the shared representations to improve learning efficiency and per-
formance.
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– Implement Cross-Modal Learning Techniques:

∗ Use multi-task learning, contrastive learning, or meta-learning to align
representations across modalities.

∗ Encourage the model to learn modality-invariant features.

– Evaluate Transfer Learning Effectiveness:

∗ Compare performance on new modalities against models trained from
scratch.

∗ Assess the benefits of shared representations and pre-training.

• Task IV: Simplified Data Augmentation Techniques
Enhance training data using data augmentation methods:

– Implement Basic Augmentation Methods:

∗ Apply straightforward augmentation techniques like noise injection, scal-
ing, and time-shifting.

– Evaluation of Augmented Data:

∗ Assess the quality and utility of synthetic data in improving model per-
formance for each modality.

∗ Compare models trained with augmented data to those trained on original
data.

• Task V: Evaluation and Performance Analysis
Conduct comprehensive evaluations to assess the model’s effectiveness:

– Benchmarking:

∗ Compare the proposed model with existing state-of-the-art models on
standard tasks for each modality.

∗ Evaluate performance using metrics such as accuracy, F1-score, AUC, and
computational efficiency.

– Ablation Studies:

∗ Analyze the impact of shared representations on downstream task perfor-
mance.

∗ Investigate the contribution of data augmentation techniques.

– Modality Transfer Evaluation:

∗ Test the model’s ability to leverage knowledge from one modality to im-
prove performance on another.
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∗ Assess the practical benefits of the modality-agnostic approach.

• Task VIII: Report and Presentation Work
Prepare documentation and presentations to communicate the project’s findings.
Highlight key insights, challenges, and future directions for self-supervised pre-
training in EEG research.

Expected Outcomes

- A Modality-Agnostic Foundation Model: A model capable of learning from dif-
ferent physiological signals independently, utilizing shared representations to improve
downstream task performance even when only one modality is available.

- Enhanced Training Data: Augmented datasets for each modality demonstrating the
effectiveness of data augmentation techniques.

- Academic Contributions: Potential publications and presentations contributing to
the fields of EEG analysis and multi-modal deep learning.

2 Project Realization

2.1 Meetings

Weekly meetings and reports must be held. The exact time and location of these meetings
will be determined within the first week of the project in order to fit the student’s and
the assistant’s schedule. These meetings will be used to evaluate the status and progress
of the project. Besides these regular meetings, additional meetings can be organized to
address urgent issues as well.

2.2 Report

Documentation is an important and often overlooked aspect of engineering. One final
report has to be completed within this project. The common language of engineering
is de facto English. Therefore, the final report of the work is preferred to be written
in English. Any form of word processing software is allowed for writing the reports,
nevertheless, the use of LATEX with Tgif1 or any other vector drawing software (for block
diagrams) is strongly encouraged by the IIS staff.

1See: http://bourbon.usc.edu:8001/tgif/index.html and http://www.dz.ee.ethz.ch/en/
information/how-to/drawing-schematics.html.
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Final Report The final report has to be presented at the end of the project and a digital
copy need to be handed in. Note that this task description is part of your report and
has to be attached to your final report.

2.3 Presentation

There will be a presentation (15 min for the semester thesis, and 20 min for the MS thesis
presentation followed by 5 min Q&A) at the end of this project in order to present your
results to a wider audience. The exact date will be determined towards the end of the
work.
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