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Abstract

Electroencephalography (EEG) provides a non-invasive window into brain activity
with critical clinical and research applications such as seizure detection, sleep-stage
analysis, and brain–computer interfaces. However, EEG signals are complex—they
exhibit low signal-to-noise ratios, limited spatial resolution, and high inter-subject
variability—which makes extracting robust and generalizable features a challenging
task. Motivated by the need to leverage large volumes of unlabelled EEG data and reduce
the reliance on costly annotations, this project investigates self-supervised learning (SSL)
as a strategy for automatic EEG representation learning.

The objectives are threefold: (1) to explore diverse SSL pretraining methods, including
masked reconstruction (with techniques such as random and clustered patch masking as
well as lowpass-filtered target reconstruction) and contrastive learning (using frequency-
domain, topological channel-mixing, and masking-based augmentations); (2) to evaluate
these strategies across multiple model architectures—namely MEST (a transformer-
based encoder with alternating attention), FEMBA (a scalable state-space model), and
LaBraM (a well-established EEG foundation model with public weights); and (3) to
assess the impact of these approaches on downstream EEG classification tasks using
three diverse clinical datasets.

Key challenges include managing outliers, severe class imbalances, and addressing
the computational complexity of processing long, multi-channel recordings. This work
combines carefully designed SSL objectives with varying EEG-specific model architec-
tures, evaluated on three downstream classification tasks. Extensive experiments —
both through direct finetuning and via evaluations of frozen encoder embeddings —
demonstrate that optimized SSL pretraining techniques can outperform the current
standard of Random Masked Reconstruction. Specifically, using Contrastive Learning
with Channel-Mixing, the AUROC performance of FEMBA on the TUSL dataset has been
improved by +4.9% compared to the original work.
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Chapter 1
Introduction

Electroencephalography (EEG) offers a unique, non-invasive window into the human
brain through the measurement of electrical activity. Its clinical applications span from
seizure detection to sleep-stage identification [1, 2], making it valuable in both diagnostic
and research settings. However, despite its transformative potential, EEG remains a
challenging signal to work with due to its inherent low signal-to-noise ratio, limited
spatial resolution and high inter-subject variability.

In recent years, advancements in deep learning, both architectural and methodical,
have transformed domains such as language and image processing [3, 4, 5], opening
new avenues for their application on complex signals such as EEG. The success of
large-scale transformer models in language and vision has demonstrated that models
pretrained on vast unlabelled datasets can later be finetuned effectively for downstream
tasks with superior performance compared to pure supervised training. EEG, with
a scarcity of annotated data but large availability of unlabelled recordings, stands to
benefit considerably from such self-supervised learning (SSL) approaches.

Existing research in EEG foundation models has largely focused on architectural
adaptations. Researchers have explored various transformer-based designs, with custom
attention functions to adapt to EEG-specific spatio-temporal characteristics [6], or state-
space models tailored to handle long-sequence data in an efficient manner [7]. Most work
to date employs either masked reconstruction or, less frequently, contrastive methods.
Yet, a systematic exploration of dedicated SSL training strategies specific to EEG signal
data remains an open research question.

This work addresses that gap by exploring, developing and evaluating a range of SSL
pretraining strategies specifically designed for EEG. Both masked reconstruction and
contrastive learning methods are systematically investigated across three distinct model
architectures. These models are pretrained on a large corpus of unlabelled EEG data
and subsequently evaluated by finetuning on three different EEG classification tasks. In
doing so, this work aims to answer the following research questions:

1. How can SSL techniques be leveraged for meaningful representation learning
in EEG? Which pretraining strategy leads to superior downstream performances?
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1. Introduction

How do they affect the quality of embeddings? What challenges arise in the
transfer of SSL methodologies from vision and language to EEG?

2. How well do SSL strategies apply to different model architectures and down-
stream tasks? Are there differences in which methods are most effective between
the model architectures, and which methods promise to be the most consistent
across varied tasks?

3. What specific challenges do the pretraining and finetuning datasets present,
and how can these challenges be effectively addressed? In particular, mitigating
issues related to large outliers, imbalanced class distributions and overfitting are
crucial for developing effective EEG analysis models.

The main contributions of this thesis are as follows:

• Novel Pretraining Strategies: A variety of SSL strategies are explored that extend
beyond standard masked reconstruction and contrastive approaches. In a compar-
ative study, different masking schemes as well as EEG specific signal preprocessing
and augmentations for contrastive learning are proposed.

• Comprehensive Evaluation: The proposed SSL methods are evaluated from two
perspectives. First, by finetuning the pretrained models on diverse EEG down-
stream tasks, and second, through both qualitative and quantitative analysis of the
embedding quality of the learned representations without finetuning.

• Insights into Model and Downstream Tasks Adaptation: By comparing three
different model architectures, understanding of the influence of architectural choice
on the effectiveness of the SSL strategy is gained. Differences of applicability of
the methods to the three downstream tasks are revealed.

The remainder of this report is structured as follows. In Chapter 2 (Background), we
review the fundamentals of EEG, discuss the clinical and research significance of the
signal, and provide an overview of foundation models and SSL techniques. Chapter
3 (Related Work) surveys the current landscape of EEG foundation models and SSL
strategies, pinpointing the research gap that this work addresses. Chapter 4 (Imple-
mentation) details the various model architectures and pretraining strategies developed
for this study, as well as an overview of additional explorations and various functional
implementations necessary for the model trainings . Chapter 5 (Results) presents both
quantitative and qualitative evaluations of the methods across multiple EEG down-
stream tasks, along with an analysis of the challenges encountered during pretraining
and fine-tuning. Finally, Chapter 6 (Conclusion and Future Work) summarizes the key
findings and outlines directions for further research.

In summary, this thesis investigates the potential of SSL techniques to unlock more
robust and transferable representations from EEG data. By leveraging large unlabelled
datasets and exploring a diverse set of pretraining strategies, this work aims to offer
new insights into how these methods can be effectively applied to deep-learning for
EEG signals in clinical and research settings.
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Chapter 2
Background

2.1. Electroencephalography

Electroencephalography (EEG) is a non-invasive technique to record the electrical activity
of the brain. EEG signals are typically recorded using electrodes placed on the scalp
of the patient according to standardized positioning systems, with the International
10-20 system [8] being the most widely adopted. Recordings may be configured as
either unipolar or bipolar montages. In unipolar recordings, each electrode’s potential
is measured against a common reference electrode or the reference average. Bipolar
recordings measure the potential differences between pairs of electrodes, which can
emphasize local activity while reducing common artifacts. These representations are
generally mathematically convertible; this work primarily uses bipolar measurements,
performing the necessary conversion where unipolar datasets demand it.

EEG signals typically contain frequency components primarily in the range between 1
and 100 Hz. These frequencies are conventionally divided into distinct bands that are
associated with different cognitive states: delta (<4 Hz), theta (4–8 Hz), alpha (8–13 Hz),
beta (13–30 Hz), and gamma (>30 Hz). [9]

In a clinical setting, EEG can serve as a crucial diagnostic tool for epilepsy [1], sleep
stage detection [10] and anomaly detection [11]. Furthermore, EEG is not only used for
clinical applications, but also used for other venues such as Brain-Computer Interfaces
(BCI) [12] or communication assistance [13].

Furthermore, EEG is used in research settings for applications such as brain-computer
interfaces (BCI) [12].

2.2. Temple University EEG Corpus

2.2.1. Datasets for Pretraining

The Temple University EEG Corpus (TUEG) [2] represents one of the largest publicly
available EEG datasets, comprising approximately 26,000 recordings collected from over
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2. Background

14,000 patients. This extensive collection amounts to roughly 21,000 hours of EEG data,
making it an ideal resource for large-scale pretraining.

The majority of recordings follow the standard 10-20 international system with 22
EEG channels and are sampled at 256 Hz. For this research, the continuous recordings
were segmented into non-overlapping 5-second windows, creating manageable units for
model training while preserving temporal dynamics. To ensure valid evaluation during
downstream finetuning, all recordings from patients whose data appear in the finetuning
datasets (TUAB, TUSL, and TUAR) were excluded from the pretraining corpus.

2.2.2. Datasets for Finetuning

For the purpose of evaluating the pretrained models, the following datasets were used
for finetuning and assessing the classification performance on downstream tasks:

• TUAB (Abnormal EEG Corpus): Binary classification of normal vs. abnormal EEG
recordings. This dataset includes 2,329 subjects with balanced class distribution.

• TUAR (Artifact Corpus): Detection and classification of various artifacts in EEG
recordings (6 classes). This dataset contains 213 subjects with annotations for
artifacts such as eye blinks and muscle movements.

• TUSL (Slowing Corpus): Multi-class classification to of slowing events, seizures,
complex background, and normal EEG (4 classes). The dataset consists of 38
subjects with a highly imbalanced class distribution.

2.3. Foundation Models

Foundation models represent a paradigm shift in machine learning, characterized by
their scale, generalizability and adaptability across a wide range of tasks. As defined by
[14], foundation models are large-scale models trained on vast amounts of data, often
using self-supervised learning techniques. These models are designed to be finetuned
for specific downstream tasks, leveraging their pretrained knowledge to achieve state-of-
the-art performance across various applications. Unlike traditional task-specific models,
foundation models serve as versatile building blocks that capture generalizable patterns
and representations in the unlabelled data.

2.3.1. Transformer Models

Transformers [15] have emerged as the dominant architecture for foundation models
across various domains. Originally developed for natural language processing tasks,
this attention-based architecture has demonstrated remarkable versatility and scalability,
becoming the backbone of models like BERT [4] and GPT [3].

The defining characteristic of transformer architectures is the self-attention mechanism
(see section 2.3.1.1), which allows the model to weigh the importance of different parts
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2. Background

of the input sequence when processing each element. This enables capturing global
dependencies across the entire input context, a significant advantage over previously
dominant architectures: CNNs are inherently limited to local patterns through fixed re-
ceptive fields, while RNNs process information sequentially, struggling with long-range
dependencies due to the vanishing gradient problem. In contrast, transformers establish
direct connections between any elements in the sequence regardless of distance, allow-
ing efficient modelling of both local and global relationships. For foundation models
operating on time series data, this property is crucial, as it allows learning complex
patterns and relationships within data without requiring explicit feature engineering.

Vision Transformers (ViT) [5] demonstrated that this architecture could be successfully
applied beyond language to image data, by splitting images into patches and treating
them as a sequence of tokens. Their impressive performance on image classification tasks
highlighted the transferability of transformer architectures to other multi-dimensional
data domains. Based on this success, transformers are promising candidates in other
domains such as EEG, where multi-channel signals can similarly be viewed as sequences
with spatial relationships.

However, transformers face a significant limitation in their quadratic computational
complexity with respect to sequence length. The self-attention operation requires com-
puting pairwise relationships between all elements, resulting in O(n2) complexity for
a sequence of length n. For long EEG recordings with high sampling rates, this can
become prohibitively expensive in terms of computation and memory requirements.

To reduce the total sequence length, while preserving the ability to extract local fea-
tures, transformers are often paired with convolutional neural network (CNN) tokenizers
[16, 17]. These tokenizers patch and embed the input signals into tokens before passing
them to the transformer, effectively reducing sequence length while preserving essential
fine-grained spatial information. This hybrid approach combines the local feature ex-
traction capabilities of CNNs with the global relationship modeling of transformers, and
has proven effective for processing raw physiological signals like EEG [18].

2.3.1.1. Attention

Attention mechanisms form the core of transformer architectures, enabling models to
selectively focus on relevant parts of input data when generating output elements. The
self-attention mechanism, introduced in the original transformer model [15], computes
relationships between all positions in a sequence by projecting the input into query (Q),
key (K), and value (V) representations.

For each position in the sequence, attention weights are computed as the scaled dot
product between its query vector and the key vectors of all positions, followed by
softmax normalization. These weights determine how much information from each
position contributes to the output representation:

Attention(Q,K,V) = softmax

(
QKT
√

dk

)
V
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2. Background

Multi-head attention extends this by running multiple attention operations in parallel
with different learned projections, allowing the model to attend to information from
different representation subspaces. This enables capturing diverse relationships within
the data.

The primary limitation of standard self-attention is its quadratic computational com-
plexity with respect to sequence length, as it computes interactions between all pairs
of tokens. For EEG data with multiple channels and long sequences, this can quickly
become computationally prohibitive.

2.3.1.2. Alternating Attention

Alternating Attention [19] addresses the computational limitations of standard self-
attention for multi-channel temporal data like EEG by decomposing the attention com-
putation into separate temporal and spatial dimensions.

The mechanism works by alternating between two types of attention across trans-
former layers:

• Intra-channel (temporal) attention: Computes attention independently within
each channel across time points, with complexity O(CN2

p) where C is the number
of channels and Np is the number of patches per channel.

• Inter-channel (spatial) attention: Computes attention across channels at each time
point, with complexity O(C2Np).

This approach significantly reduces memory requirements compared to standard
self-attention, which has complexity O((CNp)2).

The implementation involves reshaping the input tensor to perform attention along
different dimensions in alternating layers. Odd-numbered layers perform inter-channel
attention by reshaping the tensor to attend across channels, while even-numbered layers
perform intra-channel attention by reshaping to attend across temporal patches within
each channel.

This approach is particularly valuable for EEG processing, as it efficiently captures
both spatial relationships between electrodes and temporal dynamics within each chan-
nel’s signal.

2.3.2. MAMBA

The Mamba [20] model architecture represents a recent alternative to transformer-based
architectures for sequence modelling. As a form of State Space Models, Mamba ad-
dresses the computational limitation of transformers, thanks to its linear computational
complexity with respect to sequence length O(n), while achieving similar performance.
The improved efficiency enables the processing of longer continuous segments without
the need for excessive windowing or downsampling, potentially preserving important
temporal patterns in the signal. This makes Mamba an attractive alternative for EEG
analysis, where long sequences are common and preserving temporal relationships is
crucial for accurate modelling.

6



2. Background

2.4. Self-Supervised Learning for Foundation Models

As large foundation models require vast amounts of data for training, the availability of
labelled data often becomes a bottleneck in their development. Self-supervised learning
(SSL) has emerged as a powerful approach to leverage unlabelled data for pretraining
foundation models. Rather than relying on human-annotated labels, which are often
expensive to acquire, self-supervised methods are designed to use some inherent aspects
of the data itself as the supervisory signals. This makes self-supervised learning particu-
larly valuable when labelled data is scarce but unlabelled data is plentiful.

In the context of EEG, acquiring labelled data is particularly challenging, as it requires
human domain expertise and controlled experimental conditions, often making data col-
lection and annotation prohibitively expensive and time-consuming, as well as suffering
from varying expert assessments [21]. Acquisition of raw EEG data without annotation
is comparatively easy and cheap, with research institutions and clinical environments
generating substantial volumes of unlabelled EEG data. While such data is unsuitable for
training a model on specific downstream tasks, it does share the general characteristics
of EEG data and thus holds potential for models to effectively learn the data distribution
and improve their generalization capability.

Self-supervised learning provides a methodology to capitalize on such more readily
available unlabelled data. In this paradigm, a foundation model, consisting of a feature
encoder and potentially a pretraining-specific head, is pretrained on a large amount
of unlabelled data. The goal of this pretraining stage is for the encoder stage of the
model to learn effective extraction of features from the data and embed these features
in a meaningful latent space. For this purpose, the data, either in raw form or through
some transformation, serves both as model input as well as pseudo-labels.

In the following downstream task training stage, the pretraining head of the foun-
dation model is discarded and the feature-extracting encoder is combined with a task-
specific model head and subsequently trained on the downstream task, using labelled
data. If the domain shift between the pretraining and the downstream data is low,
such a model can be expected to perform better than a model purely trained on the
specific task using only the labelled data, especially when the volume of labelled data is
significantly limited. This transfer learning approach is particularly valuable for EEG
analysis, where datasets are often collected under different protocols or with different
equipment, leading to significant variability in the signal characteristics.

Two prominent approaches for such self-supervised learning are masked reconstruc-
tion and contrastive learning. These methods differ in how they form and utilize
pseudo-labels derived from the input data, as well as their respective model architec-
tures.

7



2. Background

2.4.1. Masked reconstruction

Masked reconstruction is a commonly used self-supervised learning strategy for feature
extraction in images, using vision transformer models [22, 23]. While these models
have proven very effective in visual tasks, the learning paradigm itself is not limited to
applications in images and can be adapted to any arbitrary signal type and lends itself
well to the nature of multi-channel EEG signals.

Portions of input signals are masked and used as model input, whereas the unmasked
signals represent the target label that is to be reconstructed. Foundation models trained
with masked reconstruction typically consist of an Encoder section, which transforms
the masked input signals into a latent embedding space, and a Decoder section, which
tries to reconstruct the original unmasked signal. The model thus effectively acts as a
denoising autoencoder.

During training, the model learns to infer missing information from surrounding
context, requiring it to develop an understanding of the underlying signal structure
and relationships between different components of the data. This pretext task forces the
encoder to capture meaningful representations that encode sufficient information for
the decoder to perform accurate reconstruction. The quality of the reconstructions in
masked regions of the input signal can serve as a measure of how well the encoder has
learned to extract and embed the essential characteristics of the data.

A key advantage of masked reconstruction for EEG analysis is its ability to handle the
multi-dimensional nature of the signals without requiring explicit domain knowledge
about what signal characteristics are important. Instead, the model learns to prioritize
features that are most useful for reconstruction, which often correlate with features
relevant for downstream tasks.

2.4.2. Contrastive Learning

Contrastive learning represents an alternative training objective that operates on the prin-
ciple of learning discriminative representations without requiring signal reconstruction.
Unlike masked reconstruction methods, contrastive learning employs an encoder-only
architecture, without the need for an additional pretraining-specific task head.

The fundamental mechanism involves creating pairs of signal examples that are
either semantically similar (positive pairs) or dissimilar (negative pairs). For EEG data,
these relationships can be established through various criteria: segments from the same
subject, temporally adjacent recordings, or signals recorded under similar experimental
conditions may constitute positive pairs, while segments not fitting the defined criteria
form negative pairs. Such a criteria is especially easy to define in labelled data, where
positive pairs may be formed by selecting segments from the same class label, while
negative pairs are formed by selecting segments from different classes. Alternatively, a
positive pair may also be formed by creating two different views from a single sample,
through suitable transformations or augmentations. In this case, any two views formed
from different samples constitute a negative pairing. Such a criteria is particularly useful
for self-supervised training, where no class information is available.

8



2. Background

Having defined positive and negative pairings, the training objective is to then opti-
mize the distances between embeddings of pairs of samples. A distance loss enforces
proximity of positive pairs in the latent embedding space, while negative pairings are
pushed apart. This creates a latent space where semantically related signals cluster
together, while unrelated signals remain separated. Such a latent space lends itself well
to downstream tasks such as classification, where a classification head effectively tries to
separate embeddings of different classes. Given a well-chosen clustering criterion that
correlates to the downstream class distributions, the emerging decision boundaries may
align well with class distinctions.

9



Chapter 3
Related Work

3.1. Foundation Models for EEG

Foundation models have demonstrated remarkable success in various domains, includ-
ing natural language processing and computer vision, by leveraging large datasets for
pre-training and enabling effective transfer learning. The application of foundation
models to electroencephalography (EEG) aims to address the challenges posed by data
variability and the scarcity of labelled data in EEG research. These models strive to
learn generalizable representations from EEG signals that can be fine-tuned for specific
downstream tasks.

Several EEG foundation models have emerged, each with its own strengths and limi-
tations. BENDR [18] utilizes a convolutional architecture inspired by speech recognition
models, focusing on learning compressed representations of raw EEG signals. Brain-
BERT [24] adapts the Transformer architecture, employing masked autoencoding on
spectrogram patches of intracranial EEG data. LaBraM[25] introduces a learned neural
tokenizer to encode EEG channel patches, which are then used to pre-train Transformer
models with masked reconstruction. Similarly, EEGFormer [26] adopts a discrete rep-
resentation learning algorithm using vector-quantization along with reconstruction.
MAEEG [27] explores masked auto-encoders for learning EEG representations, adopting
a BENDR-inspired architecture, with findings suggesting that masking larger segments
improves downstream performance.

More recent models like CeReBro [19] and CBraMod [6] have addressed some limita-
tions by developing specialized architectures for EEG. CBraMod incorporates a criss-
cross transformer to model spatial and temporal dependencies separately, while CeReBro
introduces alternating attention to efficiently capture both dimensions. FEMBA [7] in-
troduces a Mamba-based architecture, establishing new efficiency benchmarks for EEG
analysis through bidirectional state-space modelling.

While these models have shown promising results, many rely on complex architec-
tures or introduce additional components like neural tokenizers, which can increase
computational overhead. Furthermore, the exploration of different self-supervised
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3. Related Work

learning (SSL) tasks for EEG foundation models remains limited. Most existing models
primarily focus on masked autoencoding or simple contrastive learning approaches and
explore different model architectures instead.

3.2. Self-Supervised Learning Strategies

Self-supervised learning has become a prominent technique for pre-training models on
unlabelled data. Two common SSL strategies are masked reconstruction and contrastive
learning.

Masked reconstruction involves masking portions of the input data and training
the model to reconstruct the missing information. This approach has been successfully
applied in both the image and time series domains. In the image domain, models like ViT
[5], ChannelViT [28], MAE [29], and SimMIM [23] have demonstrated the effectiveness
of masked image modelling for learning visual representations. These approaches have
directly influenced EEG foundation models such as BrainBERT and MAEEG, which
adapt similar masking strategies to the unique temporal and spatial characteristics of
EEG signals.

Contrastive learning, on the other hand, aims to learn representations by contrast-
ing positive and negative examples. While contrastive learning has been explored
extensively in vision and language domains, its application to EEG foundation models
remains relatively limited. One notable exception is the work by Huang et al. [30], who
propose a learning framework that extends masked reconstruction with a contrastive
learning objective, using a momentum branch processing unmasked images. This hybrid
approach hints at the potential benefits of combining multiple SSL strategies in the EEG
domain, similar to JEPA frameworks.

Beyond general EEG foundation models, some studies have explored self-supervised
learning for bio-signals on specific tasks. JEPA-based approaches, such as S-JEPA [31]
(for EEG) and ECG-JEPA [32], have shown promise in learning representations from
bio-signals by predicting masked signal portions at the hidden representation level.

3.3. Research Gap and Contribution

The review of existing literature reveals a gap in the exploration of self-supervised
learning strategies for EEG foundation models. Current EEG foundation models have
primarily focused on a limited set of SSL tasks, mainly masked autoencoding and basic
contrastive learning. Despite the evolution from BENDR’s contrastive reconstruction
approach to the various masked autoencoding strategies employed by later models, the
potential of other SSL strategies and their combinations remains largely unexplored.

Specifically, variations of masked reconstruction techniques, more sophisticated con-
trastive approaches, and hybrid methods like those combining masked reconstruction
with JEPA have not been thoroughly investigated in the EEG domain. This limitation
is particularly noteworthy given the success of diverse SSL strategies in other domains
such as computer vision and natural language processing.
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3. Related Work

This work addresses this gap by systematically exploring different masked recon-
struction tasks and contrastive learning approaches for EEG pre-training. By evaluating
various SSL strategies and their combinations, this research aims to identify the most ef-
fective pre-training methods for learning robust and generalizable EEG representations.
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Chapter 4
Implementation

4.1. Models

This section details the neural network architectures employed to evaluate the proposed
pretraining methods. All models share a similar high-level structure, consisting of three
main components: a patch embedder for tokenization, an encoder producing embed-
dings, and a decoder for reconstruction. During finetuning, the decoder is replaced with
a linear classification layer. All models process robust-normalized EEG signals, either as
full sequences or in patches. The model hyperparameters are listed in appendix B.

4.1.1. MEST with Alternating Attention

MEST (Masked EEG Sequential Transformer) is a transformer-based architecture imple-
mented for this thesis. It is designed as a relatively straightforward architecture without
novel features, making it a representative model for general EEG transformer architec-
tures, while allowing for quick prototyping and evaluations of pretraining methods
without sacrificing performance.

The patch embedder uses a convolutional approach adapted from FEMBA (see section
4.1.2), which efficiently extracts features from raw EEG signals. The transformer encoder
employs Alternating Attention, a mechanism introduced in CeReBro [19], which alter-
nates between temporal and spatial attention across layers, as explained in background
section 2.3.1.2. Due to memory constraints associated with the alternating attention
implementation, which combines the non-attended dimension with the batch dimension,
the patch size was set to 32 samples, resulting in more manageable sequence lengths.
The decoder consists of a single transformer decoder layer that operates on the flat-
tened sequence-channel dimension, reconstructing the original input from the encoded
representation.

This model was employed for the majority of the pretraining experiments to perform
thorough explorations of the pretraining methods and hyperparameters. Figure 4.1
shows the general architecture of the MEST model, which is also representative of
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4. Implementation

the other transformer-based masked reconstruction models used in this thesis. The
Transformer layers in this case employ alternating attention, while the convolutional
patch embedder, borrowed from FEMBA, is shown in figure 4.2a.

Encoder

Transformer

Decoder

Reconstruction Loss

Out Projection

Transformer

TransformerTokenizer

+ x10

Figure 4.1.: General Encoder-Decoder architecture. The encoder processes the masked
input EEG data, while the decoder reconstructs the original signal. The en-
coder uses alternating attention to capture temporal and spatial relationships,
while the decoder employs a conventional transformer layer to generate the
output.

4.1.2. FEMBA

FEMBA [7] was introduced as a state-space model alternative to transformer-based
architectures for EEG processing, and is based on Mamba as introduced in background
section 2.3.2. It leverages the Mamba architecture [20] to achieve efficient long-sequence
processing with linear scaling properties.

(a) FEMBA convolutional To-
kenizer. (b) FEMBA Encoder.

Figure 4.2.: FEMBA architecture components. Figures adapted from Tegon et al. [7].

The model introduces the same convolutional patch embedder also used in the MEST
implementation. Instead of attention-based transformer layers, the encoder utilizes
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state-space Mamba blocks that enable processing of longer sequences with reduced
computational requirements. As in MEST, the decoder consists of a single transformer
decoder layer operating on the flattened sequence-channel dimension.

For the evaluation experiments, the FEMBA-tiny configuration is used, as it was
shown to achieve similar performance as the larger model sizes while being faster to train.
According to the original paper, this smaller variant achieves comparable results to larger
configurations while requiring significantly less computational resources. Thanks to
quick training times, this model has also been used for a large portion of the pretraining
evaluations.

4.1.3. LaBraM

LaBraM is an established EEG foundation model developed by Jiang et al. [25]. It
employs a transformer-based architecture with a two-stage pretraining strategy: first
training a vector-quantization tokenizer with a codebook, followed by masked recon-
struction with a patch size of 200. The availability of publicly released pretrained weights
makes LaBraM particularly valuable as a benchmark. It allows for direct comparison
between our best-performing pretraining methods and an established baseline by fine-
tuning both on the same datasets. The model architecture follows the transformer
paradigm with a patch embedder and transformer encoder, completed by a single-layer
transformer decoder operating on the flattened sequence-channel dimension.

Figure 4.3.: LaBraM Encoder component, also containing Tokenizer, here called Tempo-
ral Encoder. For the full reconstruction model, the Encoder is paired with a
similar Decoder Head as used in MEST and FEMBA.
Figure adapted from Jiang et al. [25].

4.1.4. MEST with sparse attention

This variant investigates whether significant information exists in cross-channel, cross-
temporal correlations in EEG signals. While alternating attention is capable of capturing
intra-channel and intra-temporal patterns, it may miss interactions where brain activity
at one location propagates to different electrodes with temporal delay.
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To capture these relationships while maintaining reasonable memory requirements,
this MEST variant implements a sparse attention mechanism over a flattened sequence-
channel dimension in the encoder. The attention mask is specifically designed to allow:

• Full temporal attention within each channel

• Cross-channel attention within a limited temporal neighbourhood

The temporal neighbourhood window spans 7 patches, resulting in approximately
20% of all possible token pairs participating in attention computations. This approach
offers a compromise between computational efficiency and the model’s ability to capture
complex spatio-temporal relationships in EEG data.

Due to computational constraints further detailed in section 5.1.1.1, this model could
not be fully trained and has not been further evaluated.

(a) Alternating attention (b) Sparse Attention (c) Sparse Attention mask

Figure 4.4.: Attention mechanisms in MEST transformer models: (a) Alternating atten-
tion separates temporal and spatial dimensions, (b) Sparse attention allows
cross-dimensional interactions within a local neighborhood, and (c) Visual-
ization of the sparse attention mask on a 3-channel signal over 5 temporal
steps, temporal attention window size 3, showing which token pairs partic-
ipate in attention computations in white. Larger squares in red represent
temporal patches, subdivisions represent 3 channels per signal.

4.2. Masked Reconstruction Pretraining Methods

Masked reconstruction forms the basis of the self-supervised learning methods discussed
in this section. The input EEG data is first divided into 80 patches of size 16 (equivalent
to 62.5ms at 256Hz) along the temporal dimension. These patches are then used as input
for the pretraining methods, with the original data serving as the reconstruction target.

The general workflow for all masked reconstruction methods follows these steps:

1. Patch the input EEG data into fixed-size segments
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2. Replace selected patches with fixed mask token according to masking strategy:
xm =M(x)

3. For model-specific processing, masked data is reassembled and re-patched accord-
ing to each model’s requirements (MEST: 32 samples, LaBraM: 200 samples), while
FEMBA processes the unpatched input directly

4. The model reconstructs the original signal from the masked input: x̂ = f (xm)

5. Reconstruction quality is evaluated using smooth L1 loss between the model
output x̂ and the reconstruction target x: Lreconstruction = SmoothL1(x, x̂)

The Smooth-L1 loss [33] is preferred over standard MSE or L1 loss as it combines
the advantages of both: behaving like L2 (MSE) loss for small errors to provide stable
gradients near the minimum, while behaving like L1 loss for larger errors to reduce the
impact of outliers. This is particularly beneficial for the TUEG EEG data, which contains
some significant outliers, see section 4.5. The loss function is defined as:

SmoothL1(x, x̂) =

{
0.5 · (x − x̂)2, if |x − x̂| < 1
|x − x̂| − 0.5, otherwise

(4.1)

where x represents the target signal and x̂ is the model’s prediction.
Unmasked patches are also reconstructed and included in the loss calculation with a

weight of 0.1 to ensure that the model learns to reconstruct the entire signal, not just the
masked regions.

The masked reconstruction strategies generally use a mask ratio of 0.5. Different mask
ratios were evaluated in earlier experimentations, ranging from 0.3 to 0.9. Visual inspec-
tion of reconstructions and early finetuning results on downstream tasks indicated that
ratios between 0.5 and 0.6 provided the best balance between reconstruction difficulty
and amount of visible signal data. This empirical finding aligns with the established
literature, particularly the ablation studies conducted by Jiang et al. [25] for LaBraM.
Consequently, a mask ratio of 0.5 was adopted for all final evaluations.

4.2.1. Random Patch Masking

Random patch masking follows the masking procedure established in image-based
SimMIM [34] and adapted to multi-channel EEG data. In this approach, patches are
randomly selected for masking with the mask ratio of 0.5.

A key implementation detail is that patches are masked independently across chan-
nels. This independence encourages the model to learn inter-channel relationships,
as information absent in one channel must be inferred from other channels where the
corresponding temporal segment remains visible. The approach leverages spatial redun-
dancy inherent in EEG signals, where neural activity is often reflected across multiple
electrodes with varying amplitude and phase.

The random distribution of masks creates diverse reconstruction challenges during
training, forcing the model to develop robust representations that capture both local
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and global signal characteristics. This method serves as our baseline masking strategy
against which other techniques are compared.

4.2.2. Clustered Random Patch Masking

A limitation of standard random masking is that spatially isolated masked patches may
be too easily reconstructable through simple interpolation from adjacent patches, poten-
tially limiting the model’s need to learn deeper contextual representations. Clustered
random patch masking addresses this limitation by ensuring that masked regions form
contiguous segments of a minimum width while maintaining the same overall masking
ratio of 0.5.

The implementation uses a resolution-reduction approach:

1. First, a lower-resolution mask is generated by dividing the temporal dimension by
a cluster size factor

2. Random masking is applied at this reduced resolution, where each mask element
corresponds to multiple consecutive patches

3. The mask is then upsampled back to correct size by cluster size factor

The implementation maintains channel independence, applying the same clustering
approach separately to each channel. This ensures that reconstruction tasks require
understanding both local temporal context and cross-channel relationships. The clus-
tered approach creates a more challenging reconstruction task that cannot be solved
through simple interpolation between adjacent time points, encouraging the model to
learn broader contextual patterns within the data.

(a) Random (b) Random Clustered

Figure 4.5.: Comparison of masking strategies: (a) Random masking and (b) Random
Clustered masking, applied to single channel signal. Masked patches in grey.

4.2.3. Lowpass-filtered Reconstruction Target

EEG signals are characterized by a complex mixture of frequency components, as de-
scribed in background section 2.1, with research indicating that lower frequencies (below
50Hz) contain most of the task-relevant information for many cognitive processes [35, 36].
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Higher frequencies often contain a significant proportion of noise and artifacts that may
not contribute meaningfully to downstream tasks.

This method exploits this frequency characteristic by using a lowpass-filtered version
of the original data as the reconstruction target while maintaining the standard masked
data as input. Specifically, the implementation applies a 5th-order Biquad lowpass
filter with a cutoff frequency of 50Hz to the original signal to create the target for
reconstruction. During training, the loss is calculated between the model output and the
lowpass-filtered target rather than the original signal.

The reconstruction objective thus becomes learning a lowpass-filtered and ideally
de-noised representation of the EEG signal, rather than reproducing the original signal
precisely. This approach effectively incorporates a form of signal denoising into the
pretraining process, potentially yielding more robust representations for downstream
tasks.

Reconstruction LossLPF50Hz

Encoder Decoder

Figure 4.6.: Lowpass-Filtered Reconstruction Target pretraining scheme.

This method may be applied in combination with any of the masked reconstruction
strategies.

4.2.4. JEPA

Joint Embedding Predictive Architecture (JEPA) is a self-supervised learning technique
originally proposed by Assran et al. [37] for computer vision and adapted for EEG
data in recent works [31, 32]. Our implementation differs from these prior studies by
using JEPA as a complementary objective alongside masked reconstruction rather than
as a stand-alone pretraining method. As such it is a similar framework as proposed
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by Huang et al. [30] for vision transformers, although with a different loss function
compared to their contrastive loss.

The motivation for incorporating JEPA stems from two fundamental limitations ob-
served with pure masked reconstruction approaches:

• Noise sensitivity: Reconstruction-based methods aim to replicate the input signal
precisely, including any noise or artifacts present in the original data. This can
limit the model’s ability to distinguish between meaningful neural activity and
irrelevant noise.

• Misalignment of loss and objective: The reconstruction loss in the input space
may not be a good descriptor for the model’s ability to extract meaningful features,
and thus can be a misguided objective to optimize. To use a visual example:
suppose a visual model may be equally adept at extracting the features designating
a blue sky or a hand. If both features are equally relevant for downstream tasks, the
ideal loss would guide training to improve extraction of both equally. However, the
hand is inherently more complex to reconstruct due to its intricate details, resulting
in higher reconstruction loss regardless of feature importance. However, the higher
complexity of the hand is not necessarily indicative of better or more relevant
features. When operating in the input space, the loss is unavoidably biased by the
reconstruction difficulty, which may lead to disproportionate optimization focus
on complex patterns that may not necessarily contain more relevant information.

The JEPA implementation employs a secondary teacher model to calculate the JEPA
loss alongside a student model, trained via masked reconstruction.

1. The student network follows the standard encoder-decoder architecture used
in masked reconstruction, receiving masked input and being trained through
backpropagation.

2. The teacher network consists only of an encoder (without a decoder) and is
updated as an exponential moving average (EMA) of the student’s encoder weights.
The teacher receives and processes the complete unmasked signal as input.

3. The total JEPA loss is calculated as

LJEPA = 1 − cosine_similarity(zt,zs)

, where:

• zt is the embedding produced by the teacher encoder from unmasked input

• zs is the embedding produced by the student network at an intermediate
stage of decoding

4. The final training objective combines the JEPA loss with the traditional masked
reconstruction loss:

Ltotal = Lreconstruction + λ · LJEPA

, where λ controls the contribution of the JEPA component.
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Encoder

Trained

Transformer
Decoder

Out Projection

Encoder

EMA
JEPA Loss

Reconstruction Loss

Figure 4.7.: Joint Embedding Predictive Architecture (JEPA) implementation. The stu-
dent network (top) processes masked EEG data, while the EMA teacher
network (bottom) processes unmasked data. The JEPA loss is calculated
between the teacher’s output embedding and an intermediate embedding
from the student’s decoder.

This approach effectively creates a dual learning objective: the reconstruction loss
trains the model to predict raw signal values, while the JEPA loss encourages learning
representations that capture the essential information needed to create embeddings
matching those derived from complete data. By operating in the latent space rather
than the raw signal space, JEPA helps focus learning on meaningful features rather than
precise signal reconstruction.

An important implementation detail is the selection of which student embedding
to compare with the teacher embedding. By taking the student embedding part-way
through the decoder (after the transformer decoder layer but before output projection),
we allow the decoder to perform "latent in-painting" of masked portions before compari-
son. This creates a more appropriate comparison point with the teacher’s complete-data
embedding than using the student-encoder output directly.

4.2.5. Further MAE Experiments

Beyond the primary masked reconstruction approaches described above, several ex-
ploratory experiments were conducted with alternative pretraining strategies. These
approaches, while theoretically promising, demonstrated limited effectiveness in early
experiments and were therefore not included in the final evaluation. The following sec-
tions describe these approaches, the rationale behind them, and the specific challenges
that prevented their further exploration.
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4.2.5.1. Forecasting Masking

In addition to the random and clustered masking strategies, a forecasting masking
approach was also explored, where the rear temporal portion of the input sequence is
masked. Unlike random masking, which distributes masked regions throughout the
signal, forecasting masking creates a prediction task that requires reconstructing future
signal values based solely on past observations.

This paradigm presents a more challenging reconstruction task for two key reasons:

1. Continuous masking with one-sided context: The masked region forms a single
long continuous section with unmasked signal available only at the temporally
older side of the masked region, eliminating most of the available within-channel
surrounding contextual information.

2. No cross-channel context: Since all channels are masked in the same temporal
region, no contextual information from adjacent channels in the masked region is
available.

The underlying hypothesis was that this increased difficulty would force the model to
develop a deeper understanding of temporal dynamics and signal evolution patterns
rather than relying on simple interpolation or cross-channel inference.

However, despite extensive experimentation, forecasting masking consistently failed
to produce meaningful representations. In all configurations, models trained with this
approach converged to trivial solutions, primarily outputting constant values approxi-
mating the signal mean in the masked regions.

Several variations to improve performance were explored:

• Curriculum Learning: Gradually increasing the mask ratio over training to allow
the model to learn from easier reconstruction tasks first, see also section 4.2.5.3.

• Noise-based Masking: Rather than complete replacement with mask tokens,
adding increasing amounts of Gaussian noise to the masked region, with noise
magnitude increasing either over training epochs or with distance from the last
observed value.

• Loss weighting strategies: Applying variable weights to the reconstruction loss
based on temporal distance from the last observed value, both with increasing and
decreasing weighting.

Despite these efforts, all forecasting configurations resulted in the model producing
trivial reconstructions approximating the mean signal value (see figure 4.9a). This
suggests that predicting future EEG values without any surrounding context may be
inherently too difficult for the current model architectures and training objectives.
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(a) Forecasting mask (b) Forecasting noise mask

Figure 4.8.: Comparison of masking strategies: (a) Forecasting masking, (b) Forecasting
noise masking, applied to single channel signal. Masked patches in grey.

4.2.5.2. Spectral Reconstruction Loss

In addition to standard reconstruction in the time domain, incorporating frequency-
domain information through a spectral reconstruction loss was explored. This approach
calculated an additional loss in the frequency domain, potentially capturing important
spectral characteristics of EEG signals that time-domain reconstruction might miss.

The implementation involved transforming both the reconstruction target and the
model output to the frequency domain using Fast Fourier Transform (FFT). The spectral
loss was then calculated on the absolute magnitudes of the frequency components:

Lspectral = L(|FFT(x)|, |FFT(x̂)|)

where x represents the original signal, x̂ is the reconstructed signal, and L is the same
smooth L1 loss used for time-domain reconstruction. Note that unlike in time-domain
reconstruction, the spectral loss is calculated with equal weighting over the whole signal,
without special significance given to the masked regions.

The primary motivation for this approach was addressing the observation that model
reconstructions were particularly deficient in high-frequency components. Visual anal-
ysis of reconstructions showed that models tended to capture low-frequency trends
well but struggled with higher-frequency details. By explicitly including spectral char-
acteristics in the loss function, we aimed to improve reconstruction across the full
frequency spectrum. Specifically for the case of forecasting masking, the hope was that
this approach would encourage some less conservative predictions.

The combined loss function was defined as:

Ltotal = Ltime + λ · Lspectral

where λ controlled the contribution of the spectral component.
While this approach did produce visually somewhat improved reconstructions with

better high-frequency content (see figure 4.9), downstream task performance did not
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improve. This suggests that the additional high-frequency components captured were
likely above the relevant EEG frequency ranges (typically below 50Hz) and may have
represented noise rather than meaningful signal.

(a) Forcasting Masked Reconstruction (b) Forecasting Masked Reconstruction with
Spectral Loss

Figure 4.9.: Spectral Loss improves reconstruction of high frequency spike, but not
reconstruction quality in masked region

Some practical challenges also emerged during implementation:

• Computing FFT on long sequences was computationally expensive, requiring
chunk-wise processing and increasing training time significantly.

• Balancing the weights between time and spectral losses required careful tuning.

Due to the lack of improvement in downstream performance and the additional
complexity, this approach was ultimately not pursued further.

4.2.5.3. Curriculum Learning for Mask Ratio

To better guide the model through the training process and potentially achieve higher
maximal mask ratios with good reconstruction quality, a Curriculum Learning approach
for the mask ratio parameter was implemented. Curriculum learning is a training
paradigm based on gradually increasing the task difficulty over time, allowing models
to learn from simpler examples before progressing to more complex ones.

The implementation dynamically adjusted the mask ratio based on validation perfor-
mance. The mask ratio was determined using an inverse linear map of the validation
loss. This approach created a challenge, however: changing the masking ratio directly
influenced the validation loss itself, creating an undesired feedback loop that could lead
to oscillating behaviour.

To address this issue, a one-way progression rule was used: the mask ratio could
only be increased, never decreased. The next curriculum step would then only be taken
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after the validation loss had decreased further following a previous mask ratio increase,
indicating that the model had successfully adapted to the current difficulty level.

Besides this measure, the linear map from loss to mask ratio still required manual
tuning of several parameters, such as minimum and maximum mask ratio, as well as
the expected minimum validation loss. The best values for these parameters were often
unique to each model and training setup.

The curriculum learning mask ratio is defined as:

r′(t) = (rmax − rmin) ·
L0 − L(t)
L0 − LT

+ rmin

r(t) = min(rmax,max(r(t − 1),r′(t)))
(4.2)

, with L0 being the initial validation loss, LT the target validation loss and (rmin,rmax)
being minimum and maximum mask ratios. Figure 4.10 shows the development of
validation loss and mask ratio over a training run.

(a) Validation Loss using Mask Ratio Curricu-
lum Learning over training steps

(b) Mask Ratio using Curriculum Learning
over training steps

Figure 4.10.: Development of mask ratio, ratio approaches rmax = 0.5 as validation loss
nears LT = 0.3.

Even with a well-tuned setup, this method did not demonstrate improved reconstruc-
tion capability compared to fixed mask ratio training. In early experiments, models
trained with curriculum learning achieved similar downstream task performance as
those trained with an optimal fixed mask ratio. This suggests that the benefits of cur-
riculum learning might be limited in this specific masking-based pretraining context
for EEG data. Due to the limited benefit and the additional requirement for manual
parameter tuning, this approach was not further pursued.
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4.3. Contrastive Learning Pretraining Methods

As explained in background section 2.4.2, contrastive learning methods aim to learn
representations by contrasting positive and negative sample pairs. In the self-supervised
context, where no labels are available to define positive pairs, we create these pairs
through augmentations of the same underlying EEG signal. The fundamental principle
is that different views of the same signal sample should have similar representations
(positive pairs), while views from different samples should have distinct representations
(negative pairs).

The implementation follows a standard contrastive learning framework using the
InfoNCE loss [38]:

LInfoNCE = − log
exp(sim(zi,z+i )/τ)

∑N
j=1 exp(sim(zi,zj)/τ)

(4.3)

where zi and z+i represent embeddings of two distinct views from the same signal sam-
ple, sim(·, ·) is the cosine similarity function, τ is a temperature parameter controlling
the concentration of the distribution, and the denominator sums over all other samples
in the batch (including one positive and N − 1 negatives).

Previous research by Li et al. [39] demonstrated the potential of contrastive learning
for EEG data, but utilized augmentations such as stretching, squeezing, cutting and re-
assembling the signals. Such time-domain augmentations were shown to be suboptimal
by Yang et al. [40] and Rommel et al. [41]. Furthermore, Rommel at al.’s work indicated
that different augmentations may be better suited to different downstream tasks, which
motivates the exploration of multiple augmentation strategies.

For all contrastive methods shown, the model architecture is modified by removing
the decoder and operating on the embeddings produced by the encoder. Depending on
the specific model, the encoder embeddings are averaged over the sequence dimension.
The contrastive loss is then calculated on these embeddings.
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Encoder
Augment

Augment

Figure 4.11.: Scheme of Contrastive learning approach for EEG signals. The Encoder
processes two distinct views of each sample. Green lines indicate positive
pairings (embeddings from the same original sample) that should be pulled
together in the embedding space. Red lines indicate negative pairings
(embeddings from different samples) that should be pushed apart. In
practice, the model is trained on a batch of N samples, with each sample
paired with one positive and 2N − 2 negative samples.

4.3.1. Frequency-domain Augmentations

EEG signals contain significant information in their spectral characteristics, with dis-
tinct frequency bands corresponding to different neural activities. To learn meaningful
spectral features, the frequency-domain augmentation strategy combines three comple-
mentary techniques, as presented in [41]:

• FTSurrogate Augmentation [42]: This technique adds random phase to the Fast
Fourier Transform (FFT) of all channels while preserving the magnitude spectrum.
The motivation for this augmentation is that for EEG signals, the magnitude of
frequency components often carries more task-relevant information than the exact
phase relationships. While the magnitude characteristics are preserved, the time-
domain representation of the signal is entirely different, as is shown in figure 4.12.
The transformation follows:

F [FTSurrogate(X)]( f ) = F [X]( f )ei∆ϕ( f )

where F denotes the Fourier transform, X is the original signal, and ∆ϕ( f ) is a
random phase shift drawn from a uniform distribution over [0,2π].

• FreqShift Augmentation [43]: This augmentation randomly shifts the frequency
components of all channels, simulating the inter-subject variability in common
frequency expressions observed in EEG data. The implementation uses the Hilbert
transform to perform the frequency shift on the complex analytic signal:

Xa(t) = X(t) + jH[X](t) (4.4)

where X(t) is the original signal and H[X](t) denotes the Hilbert transform. The
frequency shift is then applied as:
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FrequencyShift[X](t) = Re
(

Xa(t) · e2πi∆ f ·t
)

(4.5)

where the shift value ∆ f is randomly sampled from a uniform distribution over
[−∆ fmax,+∆ fmax], with ∆ fmax = 3.

• Gaussian Noise Augmentation: Simple additive Gaussian noise (zero mean,
standard deviation 0.1) is applied to all channels, enhancing model robustness
against recording noise and artifacts.

Figure 4.12.: Original signals (top), phase shifted using FTSurrogate (bottom).

These augmentations were selected based on Rommel et al.’s comprehensive analysis
[41], which demonstrated their effectiveness for EEG data. For the pretraining, the
positive pair is defined as the original signal and its augmented version after applying
the combination of these frequency-domain transformations.
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4.3.2. Topological Channel-mixing Augmentation

The topological channel-mixing augmentation exploits the spatial arrangement of EEG
electrodes, leveraging the fact that neighbouring channels often record similar neural
activity with slight variations. This novel approach creates augmented views by re-
combining information from topologically adjacent channels, ideally preserving the
information content while altering the signal’s time-domain expression.

The implementation consists of three components:

• Channel Mixing: For each channel, a weighted average is computed of its topo-
logical neighbours (excluding the channel itself). The mixing is determined by:

x′i = ∑
j∈N3\i

wijxj (4.6)

where x′i is the mixed signal for channel i, N3\i represents the triplet of neighbour-
ing channels (not including channel i itself), wij are randomly generated weights
normalized to sum to 1, and xj is the signal from neighbour channel j. The neigh-
bour relationships are defined based on the physical locations of electrodes on the
scalp, a neighbour set consists of 3 topologically adjacent channels (for neighbour
definitions, see table B.4 in appendix B).

• Random Scale: A channel-wise random scaling factor drawn from uniform distri-
bution over [0.5,1.5] is applied to simulate amplitude variations while preserving
relative patterns.

• Random Bias: A small random offset drawn from uniform distribution over [−1,1]
is added to each channel, simulating baseline shifts that commonly occur in EEG
recordings.
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Figure 4.13.: Electrode layout in bipolar 10-20 system. Neighborhood example: channel
F4-C4 marked in blue, with its neighbor channels in green. Image Source
[44].

To the best of our knowledge, this topological mixing approach represents a novel
augmentation strategy for EEG data not previously explored in the literature. The
positive pairs for contrastive learning consist of the original signal and its topologically
mixed counterpart.

4.3.3. Masking-based Augmentation

Unlike the previous augmentation methods that transform the entire signal, the masking-
based approach creates two distinct views by selectively revealing different portions of
the same signal.

The motivation for this approach stems from the work Myna for musical represen-
tation learning by Yonay et al. [45]. They demonstrated that using masked views for
contrastive learning rather than masked reconstruction offers significant advantages:
the model can focus on extracting meaningful features (like pitch and rhythm) rather
than reconstructing exact waveform details. For EEG data, this concept may also be rele-
vant, as the model can potentially learn to identify cognitive states and neural patterns
without being constrained by the need to reconstruct precise signal amplitudes.

The implementation creates two non-overlapping binary masks applied to the original
signal:

• Two random positive masks M1 and M2 are generated, defining visible sections,
while ensuring there is no overlap between them, see figure 4.14.

• Each mask reveals approximately 38% of the original signal.
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• Hidden signal regions are replaced by a fixed mask token, analogous to the masked
reconstruction implementation.

• The same pair of masks is applied to all samples within a batch to prevent the
model from learning to match based on mask patterns rather than signal content

The resulting views are defined as:

v1 = x ⊙ M1 (4.7)
v2 = x ⊙ M2 (4.8)

where ⊙ represents element-wise multiplication.
This masking-based approach differs fundamentally from the masked reconstruction

method in section 4.2. While that approach aims to predict the content of masked regions,
this contrastive method focuses on learning representations that are consistent across
different observed portions of the same signal.

Figure 4.14.: Positive (visible) masks M1 and M2 in yellow and green, revealing separate
signal portions used for Masking Augmenation pair formation.

In this augmentation settings, the original signal is not part of the positive pair, instead
it is formed by the two masked views of the same signal. It this sense it differs from
the previous two contrastive methods, which contrast between original and augmented
view.

4.4. Finetuning

After pretraining, the models were evaluated by finetuning on downstream classification
tasks. The finetuning process replaces the decoder with a lightweight classification

31



4. Implementation

head while keeping the pretrained encoder architecture intact. This approach allows
the models to leverage the representations learned during pretraining for specific EEG
classification tasks.

The classification head consists of average pooling the embeddings over the sequence
dimension and a linear projection layer to map to the appropriate number of output
classes. Figure 4.15 illustrates the modified model architecture for finetuning.

Encoder
Transformer

Decoder

Out ProjectionTransformer

TransformerTokenizer

+ x10

Avg. Pool 
Classifier

Linear Layer
y

ŷ

Masked Reconstruction 
Pretraining

Classification Finetuning

Reconstruction Loss

Classification Loss

Figure 4.15.: Model architecture showing adaptation for finetuning with classification
head. The pretrained encoder processes EEG data while the lightweight
classification head replaces the reconstruction decoder.

Finetuning was performed on the three EEG classification datasets TUAB, TUEG and
TUSL, as described in background section 2.2.2.

4.4.1. Training Methodology

The finetuning process differed in some aspects between the models and the downstream
datasets. For TUAB with balanced classes cross-entropy loss was used, while weighted
Focal Loss (section 4.4.1.2) was applied for the imbalanced TUAR and TUSL datasets to
address class distribution issues. Class weights were set inversely proportional to class
frequency. Significant overfitting was observed during initial experiments. To mitigate
this, layer-wise learning rate decay (section 4.4.1.1) was employed alongside several
common regularization techniques such as dropout and weight-decay (see table B.5
for details). The finetuning furthermore employed Stochastic-Weight-Averaging [46] to
improve generalization. Table B.5 in appendix B details the hyperparameters used in the
finetuning.

Model performance was evaluated using the following metrics:
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• AUROC (Area Under Curve - Receiver Operating Characteristic): Measures the
model’s ability to discriminate between classes

• AUPRC (Area Under Precision-Recall Curve): Particularly informative for imbal-
anced datasets like TUAR and TUSL

Macro-averaged metrics were computed across the classes.

4.4.1.1. Layer-wise Learning Rate Decay

A critical component to address overfitting was implementing a layer-wise learning
rate decay (LwLRD). Learning rates were scaled by a decay factor for deeper layers
of the pretrained encoder, with higher learning rates for layers closer to the output.
This preserved the encoders well-generalized feature extracting capabilities of the lower
layers, while allowing task-specific adaptation of later layers, mainly the classifier.

4.4.1.2. Focal Loss

For the imbalanced TUAR and TUSL datasets, Focal Loss [47] was employed to address
class imbalance:

FL(pt) = −αt(1 − pt)
γ log(pt)

where pt is the model’s estimated probability for the correct class, αt is a class-
balancing weight, and γ is the focusing parameter. Focal Loss offers two key advantages
over standard cross-entropy:

• Down-weighting easy examples: The (1 − pt)γ term reduces the contribution from
well-classified examples, allowing the model to focus on harder, often minority-
class examples that would otherwise be overwhelmed by the abundant majority
class samples.

• Class balancing: The αt factor explicitly weights classes inversely to their frequency,
preventing the model from achieving high accuracy by simply predicting the
majority class.

This approach proved particularly valuable for TUSL, where significant class imbalance
exists, ensuring all classes receive appropriate attention during training regardless of
their representation in the dataset.

4.5. Data Characteristics

4.5.1. Pretrain Data Characteristics

Understanding the characteristics of the EEG data proved crucial for developing effective
pretraining strategies. Initial experiments were plagued by training instabilities due to
NaN values, prompting a detailed investigation into the data distribution.
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Analysis of the TUEG dataset revealed significant outliers in the signal amplitude
distribution. While the majority of the data exhibited reasonable amplitude ranges, a
small percentage of values were extremely large, potentially causing gradient explosion
and NaN values during training. Specifically, we found that the inner 96% of mean signal
values fell within a relatively narrow range (-20.16 to 19.96), while the remaining 4%
contained values with substantially higher magnitudes, with absolute maximal values
exceeding 4000. The distribution of the signal mean values is shown in figure 4.16.

Figure 4.16.: Distribution histogram of mean signal values across the TUEG dataset, y
log axis showing number of occurences. The 2nd and 98th percentiles, as
used by robust normalization, are marked.

Despite the presence of these extreme values, the deliberate decision not to remove
outliers was made for two reasons:

• Maintaining dataset integrity: To enable fair comparison with other works that
use the full TUEG pretraining corpus

• Enhancing model robustness: Experiments conducted after resolving initial sta-
bility issues indicated that outlier removal actually decreased downstream perfor-
mance, likely by reducing the model’s exposure to challenging samples

Instead of outlier removal, two measure were taken to address the data distribution
challenges:

• Smooth-L1 Loss: As described in section 4.2, this loss function combines the
stability of L2 loss for small errors with the robustness of L1 loss for larger errors.
The L1-based component is the main contributor to stabilizing the training and the
prevention of NaN values.
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• Robust Normalization: A specialized scaling approach that focuses on bringing
the majority of data values into a standard range without excessive compression of
the entire distribution. This normalization method is described in detail in section
4.5.3.

4.5.1.1. 20-Channel Samples

The TUEG pretraining dataset predominantly consists of 22-channel EEG recordings, but
a small portion of samples was recorded using only 20 channels, while still following the
standard 10/20 system. To ensure compatibility with the models expecting 22 channels,
the following procedure was implemented:

1. Set the data in missing channels to zero.

2. Flag the missing channels in a dedicated inherent channel mask.

3. Explicitly exclude any such marked channel from the reconstruction loss computa-
tion.

By excluding the zero-filled missing channels from the loss calculation, the model is
prevented from learning to reconstruct non-existent data.

4.5.2. Downstream Data Characteristics

Initial attempts at finetuning revealed significant challenges across the downstream
datasets TUAR and TUSL. Looking at the evaluation metrics revealed consistently
low precision scores, suggesting underlying class imbalance might be hampering the
finetuning performance.

A detailed examination of the dataset class distributions confirmed substantial imbal-
ances (Figure 4.17):

• TUAB: Nearly perfectly balanced binary classification between normal and abnor-
mal samples.

• TUAR: Strong imbalance with six classes, where the majority class comprises
54.25% of samples, while the smallest class contains only 24 samples (0.05%).

• TUSL: Strong imbalance with the majority class representing 96.83% of all samples,
while the three remaining classes each constitute approximately 1% of the dataset.

These imbalances explain the initial poor finetuning performance when training with
standard cross-entropy loss, which tends to bias predictions toward the majority classes.
To address this issue, Focal Loss (4.4.1.2) was employed, with class weights inversely
proportional to class frequencies. This combination proved to significantly improve
precision metrics of TUAR and TUSL finetuning.
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Figure 4.17.: Relative distributions of classes in TUAB, TUAR, TUSL.

4.5.3. Robust Normalization

Conventional min-max normalization would compress the entire data range into [0, 1],
causing the meaningful signal variations to occupy only a tiny fraction of the normalized
range due to the extreme outliers. To address this, a robust normalization approach
was implemented. The approach is conceptually similar to interquartile range (IQR)
normalization [48], but uses the 2nd and 98th percentiles instead of the standard 25th
and 75th percentiles.

Using the 2nd and 98th percentiles across the dataset, the resulting normalization
function is defined as:

xnorm =
x − qlower

qupper − qlower

where the percentile values for TUEG are defined as (qlower,qupper) = (−20,20). Values
outside this range are allowed to exceed the [0, 1] bounds, preserving their relative
magnitude.

This approach effectively brings the majority of the data (inner 96%) into a standard-
ized range while allowing outliers to remain proportionally larger without compromis-
ing the resolution of the typical signal values.
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Chapter 5
Results

5.1. Evaluation setup

The various pretraining strategies presented in previous sections were evaluated on the
three models MEST, FEMBA and LaBraM. The MEST model was used for pretraining
experiments with all methods, including the ones previously mentioned as no longer
pursued. The FEMBA model was also pretrained using all final methods presented
in the following. To gauge the benefit of doing any pretraining in the first place, the
FEMBA model was also finetuned from scratch on the TUAR and TUSL datasets.

Due to computational constraints, the LaBraM model is evaluated only on a selection
of the most promising methods. In addition, finetunings with the LaBraM model are
also performed on the publicly available pretrained LaBraM weights from the original
work [25]. It used a random masking scheme combined with a vector quantization stage
and was pretrained on a different dataset, notably containing the datasets TUAR and
TUSL in the pretraining data.

The pretrained models were evaluated in two ways:

• Finetuning: Finetuning was performed on the TUAR, TUSL and TUAB datasets,
as described in section 4.4.
Table B.5 in appendix B details the hyperparameters used for finetuning.

• Embeddings Evaluation: The pretrained models were used to extract embeddings
from the TUAR, TUSL and TUAB datasets. These embeddings were then evaluated
using linear regression classifiers to assess their quality without the influence of
finetuning, and visualized using t-SNE dimension reduction.

5.1.1. Finetuning Performance

Extensive experiments were conducted comprising 18 pretraining configurations (7
strategies each for MEST and FEMBA, 4 for LaBraM) followed by finetuning runs across
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three clinically relevant EEG classification tasks. For the smaller TUAR and TUSL
datasets, each finetuning procedure was repeated with 5 different random seeds to en-
sure statistical robustness, while the larger TUAB dataset was evaluated with a single run
due to computational constraints. Performance is reported using three complementary
metrics established in the literature [25, 19, 7]: Accuracy for overall classification perfor-
mance, AUROC for discrimination ability, and AUPRC for performance on imbalanced
datasets.

5.1.1.1. Note on computational constraints

This work relied on two external services proving high-performance computing clusters
for training. Some technical limitations have impacted the scope and completeness
of the experiments. During the project, one of the two services proved unsuitable for
pretraining, due to I/O speed limitations when loading the large datasets. This meant
all the pretraining relied on the other service.

During the final three weeks of the project, a crucial time when a large portion of final
experiments was scheduled to be performed, the remaining cluster experienced approx-
imately two weeks of cumulative downtime due to maintenance. This necessitated a
strategic prioritization of experiments:

• The LaBraM model was only evaluated on a subset of the pretraining methods, as
the computational resources were limited.

• TUAB finetuning was restricted to single runs rather than the statistically preferred
multiple seed.

• The sparse-attention model was not further pursued, as it would have required
more experimentation and fundamental tuning to get working at all.

Despite these limitations, a total of 18 distinct pretraining configurations across three
architectures and three downstream tasks could be finetuned and evaluated, providing
substantial evidence for our conclusions regarding the relative effectiveness of different
self-supervised learning strategies.

5.1.2. Embeddings Evaluation

To further assess the effectiveness of the pretraining strategies described above, the
quality of the learned embeddings was evaluated using non-finetuning methods. This
approach directly gauges how well the encoder separates EEG data without the potential
compensating or altering influence of the subsequent finetuning steps.

1. Embedding Extraction: The pretrained encoder was used to generate embeddings
for each sample in the TUAB, TUAR and TUSL datasets, omitting the decoder or
classification head.
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2. Dimensionality Reduction: For a visual inspection of class separability, a t-SNE
transformation was applied to reduce each embedding to two dimensions. This 2D
visualization allows for a qualitative assessment of how well samples belonging to
the same class group together.

3. Clustering Metrics: While the 2D visualization provides insight into cluster struc-
ture, a quantitative analysis of clustering quality was also conducted. Specifically,
linear regression for classification was performed directly on the encoder embed-
dings, using the same train-test split as finetuning uses. The classification metrics
Accuracy, AUROC, and AUPRC were then measured.

Examining embeddings without finetuning ensures performance improvements can-
not be attributed solely to a powerful classifier head or the finetuning process compen-
sating for subpar pretraining. This methodology focuses on the raw representational
ability of the encoder itself.

Visual inspection using the t-SNE plots often revealed that the embeddings showed
coherent, well-defined clusters for certain classes, though some boundaries remain
overlapping. This indicates that good class separation can be accomplished on the raw
embeddings. Using a simple linear regression classifier ensures that the results are not
influenced by an overly capable classifier head, nor is its training overly sensitive to
small or imbalanced datasets.

Clustering-based evaluation of the embeddings can thus provide a clearer picture of
intrinsic embedding quality across the different SSL approaches. While less relevant to
the final intended use-case and not necessarily indicative of downstream performance,
such analysis can be valuable when the finetuning procedure is flawed and its results
might be inconsistent.

5.2. Results

5.2.1. TUSL Results

Table 5.1.: Finetuning results of MEST on TUSL dataset

SSL Task Accuracy AUROC AUPRC

Reconstruction - Random 0.367 ± 0.079 0.643 ± 0.020 0.265 ± 0.009
Reconstruction - Clustered Random 0.512 ± 0.042 0.711 ± 0.023 0.275 ± 0.005
Reconstruction - Random with Lowpass 0.474 ± 0.068 0.682 ± 0.053 0.267 ± 0.007
Reconstruction - Random with JEPA 0.352 ± 0.013 0.606 ± 0.013 0.257 ± 0.003
Contrastive - Frequency 0.570 ± 0.025 0.673 ± 0.040 0.270 ± 0.005
Contrastive - Channel-mixed 0.412 ± 0.050 0.681 ± 0.013 0.278 ± 0.005
Contrastive - Masking 0.468 ± 0.078 0.717 ± 0.036 0.279 ± 0.005
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Table 5.2.: Linear Regression results on MEST embeddings of TUSL dataset

SSL Task Accuracy AUROC AUPRC

Reconstruction - Random 0.976 0.7298 0.2764
Reconstruction - Clustered Random 0.976 0.7503 0.2978
Reconstruction - Random with Lowpass 0.976 0.7734 0.2972
Reconstruction - Random with JEPA 0.976 0.7486 0.2775
Contrastive - Frequency 0.976 0.662 0.2894
Contrastive - Channel-mixed 0.976 0.7721 0.2883
Contrastive - Masking 0.976 0.7645 0.2933

Table 5.3.: Finetuning results of FEMBA on TUSL dataset

SSL Task Accuracy AUROC AUPRC

No Pretraining 0.481 ± 0.053 0.666 ± 0.046 0.260 ± 0.003
Reconstruction - Random 0.485 ± 0.051 0.699 ± 0.039 0.280 ± 0.007
Reconstruction - Clustered Random 0.500 ± 0.064 0.712 ± 0.023 0.281 ± 0.019
Reconstruction - Random with Lowpass 0.519 ± 0.062 0.750 ± 0.035 0.294 ± 0.009
Reconstruction - Random with JEPA 0.463 ± 0.060 0.747 ± 0.062 0.285 ± 0.019
Contrastive - Frequency 0.597 ± 0.072 0.751 ± 0.020 0.291 ± 0.014
Contrastive - Channel-mixed 0.579 ± 0.050 0.757 ± 0.019 0.296 ± 0.014
Contrastive - Masking 0.441 ± 0.040 0.695 ± 0.020 0.272 ± 0.004

Table 5.4.: Linear Regression results on FEMBA embeddings of TUSL dataset

SSL Task Accuracy AUROC AUPRC

Reconstruction - Random 0.976 0.727 0.267
Reconstruction - Clustered Random 0.976 0.733 0.279
Reconstruction - Random with Lowpass 0.975 0.713 0.278
Reconstruction - Random with JEPA 0.976 0.715 0.275
Contrastive - Frequency 0.976 0.730 0.274
Contrastive - Channel-mixed 0.976 0.753 0.280
Contrastive - Masking 0.976 0.800 0.285
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Table 5.5.: Finetuning results of LaBraM on TUSL dataset

SSL Task Accuracy AUROC AUPRC

Reconstruction - Public Weights 0.431 ± 0.015 0.794 ± 0.013 0.296 ± 0.012
Reconstruction - Random 0.451 ± 0.055 0.656 ± 0.040 0.259 ± 0.003
Reconstruction - Clustered Random 0.588 ± 0.027 0.770 ± 0.018 0.270 ± 0.002
Contrastive - Masking 0.669 ± 0.008 0.745 ± 0.012 0.271 ± 0.003

Table 5.6.: Linear Regression results on LaBraM embeddings of TUSL dataset

SSL Task Accuracy AUROC AUPRC

Reconstruction - Public Weights 0.976 0.7126 0.271
Reconstruction - Random 0.976 0.6418 0.2823
Reconstruction - Clustered Random 0.976 0.7605 0.2843
Reconstruction - Random with JEPA 0.976 0.7329 0.2712
Contrastive - Masking 0.976 0.7116 0.2603

5.2.2. TUSL Results interpretation

The TUSL dataset presents unique challenges for EEG classification due to its small size
and highly imbalanced class distribution. With the three non-base classes each only
representing around 1% of the total dataset (16k samples), finetuning on this dataset
is particularly difficult, as the model may struggle to learn meaningful representations
for these minority classes, leading to overfitting and poor generalization. Considering
this characteristic, the AUPRC is particularly relevant for results on TUSL. Besides the
challenge from class imbalance, the overall small size of the dataset means there is a lot
of potential to benefit from pretraining on large unlabelled data.

For the FEMBA model architecture, Contrastive Learning with Frequency Augmentation
achieved highest accuracy, while Contrastive Learning with Channel-Mix Augmentation
showed superior performance in both AUROC and AUPRC metrics. Similarly, for
MEST, Contrastive Learning with Frequency Augmentation led in accuracy, while Contrastive
Learning with Mask Augmentation showed superior performance in both AUROC and
AUPRC metrics. The public-weights pretrained model performs best out of the LaBraM
variants, with the Clustered Masked Reconstruction variant best out of the proposed
methods.

The finetuning results on TUSL show substantial variability across the training runs
with different random seeds. This variability can be attributed to the small dataset size,
and limits the reliability of the finetuning results.

A notable observation is that the best linear regression classifiers trained directly on
the embeddings from the pretrained encoder consistently outperformed their finetuned
counterparts across the MEST and FEMBA architectures, for MEST on all three metrics,
and for FEMBA on Accuracy and AUROC. This unexpected result suggests that the
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finetuning process may have been suboptimal for this particular dataset, potentially
due to the limited sample size and class imbalance. Given these circumstances, the
embedding analysis provides more reliable insights into the representational quality of
different pretraining strategies.

AUPRC metrics are particularly informative for the TUSL dataset given its severe
class imbalance. The embeddings pretrained with Random Masked Reconstruction exhibit
the poorest (MEST) or second-poorest (FEMBA) performance. For FEMBA, Contrastive
Learning with Mask Augmentation delivered the best performance. Meanwhile, MEST
showed strong results with Clustered Masked Reconstruction, followed closely by Lowpass
Target Reconstruction and Contrastive Learning with Mask Augmentation. For the LaBraM
model, the linear regression results reflect the finetuning performance relatively well,
with finetuning achieving the higher scores. In the linear regression evaluation, LaBraM
with Clustered Masked Reconstruction scored best on both AUROC and AUPRC.

The qualitative differences in embedding quality are visually apparent in Figure
5.1, which compares t-SNE projections of FEMBA embeddings pretrained with Ran-
dom Masked Reconstruction and Contrastive Learning with Mask Augmentation. The latter
demonstrates a more coherent clustering pattern, indicating better class separation.

In summary, the results suggest that contrastive learning methods are particularly
effective for the TUSL dataset, outperforming reconstruction-based methods when
finetuning. The findings of the embeddings analysis also shows that the baseline of
Random Masked Reconstruction can be consistently outperformed by other pretraining
methods.

42



5. Results

(a) FEMBA TUSL embeddings with Random Masking Reconstruction

(b) FEMBA TUSL embeddings with Contrastive with Mask Augmentation

Figure 5.1.: Comparison of t-SNE embeddings of FEMBA on TUSL. Contrastive with Mask
Augmentation shows a more coherent clustering with better class separation,
while Random Masking Reconstruction shows a lot of overlap between the
classes.
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5.2.3. TUAR Results

Table 5.7.: Finetuning results of MEST on TUAR dataset

SSL Task Accuracy AUROC AUPRC

Reconstruction - Random 0.566 ± 0.002 0.924 ± 0.003 0.567 ± 0.026
Reconstruction - Clustered Random 0.543 ± 0.025 0.929 ± 0.003 0.583 ± 0.011
Reconstruction - Random with Lowpass 0.567 ± 0.006 0.923 ± 0.003 0.572 ± 0.009
Reconstruction - Random with JEPA 0.561 ± 0.020 0.924 ± 0.005 0.564 ± 0.017
Contrastive - Frequency 0.577 ± 0.013 0.937 ± 0.001 0.629 ± 0.012
Contrastive - Channel-mixed 0.566 ± 0.053 0.939 ± 0.002 0.611 ± 0.038
Contrastive - Masking 0.595 ± 0.007 0.937 ± 0.001 0.637 ± 0.019

Table 5.8.: Linear Regression results on MEST embeddings of TUAR dataset

SSL Task Accuracy AUROC AUPRC

Reconstruction - Random 0.7042 0.8973 0.5923
Reconstruction - Clustered Random 0.7164 0.9085 0.5861
Reconstruction - Random with Lowpass 0.6966 0.8985 0.5395
Reconstruction - Random with JEPA 0.7107 0.9007 0.5901
Contrastive - Frequency 0.6988 0.8719 0.4363
Contrastive - Channel-mixed 0.6816 0.8514 0.4792
Contrastive - Masking 0.6416 0.8221 0.4133

Table 5.9.: Finetuning results of FEMBA on TUAR dataset

SSL Task Accuracy AUROC AUPRC

No Pretraining 0.470 ± 0.020 0.878 ± 0.025 0.505 ± 0.024
Reconstruction - Random 0.512 ± 0.019 0.917 ± 0.002 0.535 ± 0.014
Reconstruction - Clustered Random 0.478 ± 0.025 0.917 ± 0.004 0.547 ± 0.027
Reconstruction - Random with Lowpass 0.470 ± 0.042 0.912 ± 0.008 0.523 ± 0.026
Reconstruction - Random with JEPA 0.470 ± 0.033 0.919 ± 0.006 0.533 ± 0.013
Contrastive - Frequency 0.458 ± 0.015 0.921 ± 0.007 0.534 ± 0.023
Contrastive - Channel-mixed 0.493 ± 0.053 0.906 ± 0.024 0.567 ± 0.041
Contrastive - Masking 0.514 ± 0.030 0.915 ± 0.012 0.533 ± 0.014
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Table 5.10.: Linear Regression results on FEMBA embeddings of TUAR dataset

SSL Task Accuracy AUROC AUPRC

Reconstruction - Random 0.696 0.8701 0.5258
Reconstruction - Clustered Random 0.727 0.8928 0.585
Reconstruction - Random with Lowpass 0.721 0.898 0.602
Reconstruction - Random with JEPA 0.716 0.8885 0.5729
Contrastive - Frequency 0.675 0.8618 0.4683
Contrastive - Channel-mixed 0.665 0.8442 0.4089
Contrastive - Masking 0.678 0.8577 0.4462

Table 5.11.: Finetuning results of LaBraM on TUAR dataset

SSL Task Accuracy AUROC AUPRC

Reconstruction - Public Weights 0.563 ± 0.026 0.918 ± 0.008 0.527 ± 0.027
Reconstruction - Random 0.474 ± 0.036 0.923 ± 0.005 0.532 ± 0.011
Reconstruction - Clustered Random 0.511 ± 0.044 0.926 ± 0.003 0.546 ± 0.028
Contrastive - Masking 0.667 ± 0.037 0.940 ± 0.003 0.646 ± 0.041

Table 5.12.: Linear Regression results on LaBraM embeddings of TUAR dataset

SSL Task Accuracy AUROC AUPRC

Reconstruction - Public Weights 0.7283 0.903 0.638
Reconstruction - Random 0.6897 0.8666 0.5395
Reconstruction - Clustered Random 0.6824 0.8374 0.5295
Reconstruction - Random with JEPA 0.6963 0.8619 0.5451
Contrastive - Masking 0.6582 0.8187 0.4772

5.2.4. TUAR Results interpretation

Unlike TUSL, the TUAR dataset presents a somewhat more balanced classification
task with a larger sample size (49k), though it still contains class imbalance with two
seizure-related classes (chew and shiv) each representing less than 1% of the dataset.

The finetuning results on TUAR demonstrate substantially lower variance across
random seeds compared to TUSL, indicating more reliable performance measurements.
This stability allows for more confident conclusions about the relative effectiveness of
different pretraining strategies. For all three model architectures, at least one contrastive
learning method consistently performed best. Specifically, FEMBA achieved its best re-
sults with Contrastive Learning with Frequency Augmentation, while MEST performed best
with Contrastive Learning with Channel-Mix Augmentation and the other two Contrastive
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methods close behind. For LaBraM, the only evaluated contrastive method Contrastive
with Masking achieved best performance scores, while the public weights scored lowest.
However, overall the performance differences between the pretraining methods were
notably smaller than those observed in the TUSL dataset.

A stark contrast to the TUSL findings is that finetuned models significantly outper-
formed linear regression classifiers trained on frozen embeddings. This reversal suggests
that for larger datasets like TUAR, the additional capacity provided by a trainable classi-
fication head becomes valuable, while the risk of overfitting is reduced by the increased
data availability.

The t-SNE visualizations in Figure 5.2 shows a comparison of the worst and best
performing pretraining methods for LaBraM on TUAR.

In summary, while the TUAR results show smaller differences between pretraining
strategies compared to TUSL, contrastive learning methods still consistently outperform
reconstruction approaches.

(a) LaBraM TUAR embeddings with Random
Masked Reconstruction

(b) LaBraM TUAR embeddings with Con-
trastive with Masking Augmentation

Figure 5.2.: Comparison of t-SNE embeddings of LaBraM on TUAR. The contrastive
method shows better separation between classes elec, chew and the other
classes.
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5.2.5. TUAB Results

Table 5.13.: Finetuning results of MEST on TUAB dataset

SSL Task Accuracy AUROC AUPRC

Reconstruction - Random 0.8086 0.8730 0.8759
Reconstruction - Clustered Random 0.8053 0.8723 0.8724
Reconstruction - Random with Lowpass 0.8114 0.8778 0.8834
Reconstruction - Random with JEPA 0.8017 0.8724 0.8744
Contrastive - Frequency 0.8050 0.8718 0.8715
Contrastive - Channel-mixed 0.8045 0.8840 0.8809
Contrastive - Masking 0.8089 0.8862 0.8827

Table 5.14.: Linear Regression results on MEST embeddings of TUAB dataset

SSL Task Accuracy AUROC AUPRC

Reconstruction - Random 0.6826 0.7436 0.7592
Reconstruction - Clustered Random 0.6978 0.7666 0.7756
Reconstruction - Random with Lowpass 0.6944 0.7664 0.7783
Reconstruction - Random with JEPA 0.6475 0.6947 0.7113
Contrastive - Frequency 0.5921 0.6152 0.6025
Contrastive - Channel-mixed 0.6878 0.7544 0.7493
Contrastive - Masking 0.7535 0.8271 0.8379

Table 5.15.: Finetuning results of FEMBA on TUAB dataset

SSL Task Accuracy AUROC AUPRC

Reconstruction - Random 0.8171 0.8915 0.8854
Reconstruction - Clustered Random 0.8149 0.8685 0.8664
Reconstruction - Random with Lowpass 0.8205 0.8930 0.8976
Reconstruction - Random with JEPA 0.8178 0.8855 0.8902
Contrastive - Frequency 0.7868 0.8640 0.8620
Contrastive - Channel-mixed 0.8050 0.8679 0.8687
Contrastive - Masking 0.8077 0.8738 0.8698
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Table 5.16.: Linear Regression results on FEMBA embeddings of TUAB dataset

SSL Task Accuracy AUROC AUPRC

Reconstruction - Random 0.6754 0.7312 0.7279
Reconstruction - Clustered Random 0.6894 0.7504 0.7581
Reconstruction - Random with Lowpass 0.6861 0.7426 0.7468
Reconstruction - Random with JEPA 0.6277 0.6776 0.6853
Contrastive - Frequency 0.6967 0.7601 0.7410
Contrastive - Channel-mixed 0.7230 0.7953 0.8066
Contrastive - Masking 0.7223 0.7906 0.7912

Table 5.17.: Finetuning results of LaBraM on TUAB dataset

SSL Task Accuracy AUROC AUPRC

Reconstruction - Public Weights 0.8030 0.8883 0.8878
Reconstruction - Random 0.7943 0.8646 0.8654
Reconstruction - Clustered Random 0.7962 0.8699 0.8702
Contrastive - Masking 0.7928 0.8699 0.8770

Table 5.18.: Linear Regression results on LaBraM embeddings of TUAB dataset

SSL Task Accuracy AUROC AUPRC

Reconstruction - Public Weights 0.7454 0.8227 0.8353
Reconstruction - Random 0.7063 0.7697 0.7861
Reconstruction - Clustered Random 0.6973 0.7630 0.7795
Reconstruction - Random with JEPA 0.7027 0.7683 0.7775
Contrastive - Masking 0.7085 0.7880 0.7995

5.2.6. TUAB Results interpretation

The TUAB dataset is again substantially larger than TUSL and TUAR at almost 600k
samples, and can be considered perfectly balanced with two classes (normal vs. ab-
normal EEG). For this balanced binary classification task the most relevant metric is
AUROC, which best captures discriminative performance in balanced datasets. Due to
computational constraints and the dataset’s size, finetuning was performed with a single
run rather than multiple seeds, thus no statistical significance can be reported. However,
the large and balanced dataset suggests that finetuning results can be expected to be
relatively stable, making individual runs more reliable indicators of performance.

For the MEST architecture, Contrastive Learning with Mask Augmentation achieved the
highest AUROC, with Contrastive Learning using Channel-Mix Augmentation following
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closely. The Masked Reconstruction with Lowpass Target method, ranking third in AUROC,
achieves the highest AUPRC. The FEMBA model pretrained with Masked Reconstruction
with Lowpass Target achieved the highest AUROC, while the Random Masked Reconstruc-
tion surprisingly achieved second best AUROC. The LaBraM model using the public
weights outperformed all other methods, including the Contrastive Learning with Mask
Augementation method, which ranked best among the novel methods, similar to the
MEST results.

Considering the results of the linear regression classifiers, the Contrastive Learning with
Mask Augmentation again ranked best for MEST and LaBraM among the novel methods,
with LaBraM public weights again being best overall. For the FEMBA model, the Con-
trastive Learning with Channel-Mix Augmentation method achieved the best performance,
with Contrastive Learning with Mask Augmentation following closely behind. Overall, the
results on TUAB favor contrastive learning methods, especially Contrastive Learning with
Mask Augmentation, but Masked Reconstruction with Lowpass Target also shows strong
performance.

5.3. Discussion of pretraining methods

FEMBA without pretraining To establish a baseline for evaluating the value of pre-
training in general, the FEMBA model was also finetuned directly on the TUAR and
TUSL datasets without any pretraining. Across both datasets, this non-pretrained variant
consistently and quite significantly underperformed compared to all pretrained counter-
parts, regardless of the pretraining approach employed. This considerable performance
disparity underscores the critical importance of pretraining in the model’s learning
process, demonstrating that even basic pretraining provides substantial benefits over
direct finetuning.

Figure 5.3.: Performance of pretraining methods on TUSL and TUAR, using FEMBA
model. Pretrained methods consistently better than non-pretrained.
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Random Masked Reconstruction As the current standard in most EEG foundation
model pretraining, Random Masked Reconstruction serves as a baseline for comparison.
In the experiments conducted, this approach relatively consistently ranked among
the worst performing methods, and rarely was it among the upper half in terms of
performance.

Clustered Random Masked Reconstruction Clustered Random Masking showed only
marginal improvements over the standard random masking approach. While its theo-
retical foundation - preventing trivial signal interpolation by masking longer temporal
segments - is sound, the three models employed here appear to lack sufficient capacity
to extract the necessary contextual information to reconstruct in the large masked areas.
This is evident when examining the reconstructions (see figure 5.4), where the model still
mostly predicts an interpolation. Nevertheless, this remains a cheap method in terms
of computational and implementation cost, that promises significant improvements if
the model is capable of extracting the necessary contextual information, which is easily
observable through inspection of the reconstructions.

(a) MEST signal reconstruction (b) FEMBA signal reconstruction

Figure 5.4.: Signal reconstructions of MEST and FEMBA using Clustered Random Masking,
masked regions in red. In the large masked areas the reconstruction is mostly
an interpolation of the surrounding signal.

Random Masked Reconstruction with Lowpass-filtered Target The Lowpass Target Re-
construction often demonstrated superior performance compared to the standard random
masking approach. By requiring only reconstruction of EEG-relevant frequencies, this
method effectively encourages the model to learn better noise rejection. Implementation-
wise, it is a simple addition to the standard random masking approach, with some
caveats: First, the lowpass filtering requires either additional computation during train-
ing if performed online, or offline pre-computation at the cost of additional storage
and data-loading. Second, it requires specific domain knowledge regarding the cutoff

50



5. Results

frequency up to which relevant information can be expected, although in the case of
EEG this frequency range is mostly clear.

Figure 5.5.: Signal reconstruction of FEMBA using Random Masked Reconstruction with
Lowpass-filtered Target, masked regions in red.

Random Masked Reconstruction with JEPA The JEPA method showed inconsistent
benefits that failed to justify its additional complexity. Requiring an additional EMA
student-teacher model setup, this model increases memory requirements and constrains
the decoder architecture to one that can reconstruct the signal, while also being able to
be interfaced at an intermediate layer for reconstruction loss at the latent dimension. A
possible reason for the lack of performance has been observed during training, from log-
ging the cosine similarity of the loss gradients of both the reconstruction and JEPA losses.
The analysis revealed that the losses can at times oppose each other, demonstrating that
ensemble-losses with different targets can actually oppose each other and in turn hurt
performance. While this method may have some potential, it has not yet sufficiently
demonstrated its benefits in the current setup of combining JEPA with conventional
reconstruction.

Contrastive Learning Methods Contrastive approaches using augmentations consis-
tently emerged as top performers across all datasets, though with some variation on
which specific augmentation-type is best among the different downstream tasks. Over-
all, the Channel-Mixing and Masking Augmentation performed better than the Frequency
Augmentation. Each approach offers distinct trade-off’s:

• Mask Augmentation often provides strong performance with minimal computa-
tional overhead. Both the theoretical motivation and implementation are similar
to masked reconstruction, with the benefits that contrastive methods provide.

• Channel-Mix Augmentation leverages spatial relationships between electrodes,
but requires knowledge of the electrode layout. This methods performs especially
well on the TUAR and TUSL classification tasks.
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• Frequency-based Augmentation proved to be a relatively solid choice, though
rarely the absolute best, and comes with the additional computational costs of
Fourier transforms. This method depends on many different hyperparameters,
further improvements can be expected with more thorough tuning.

The consistent strength of contrastive methods suggests they may better capture
discriminative features in EEG signals compared to reconstruction-based approaches,
particularly for classification tasks. Variations among the best suited augmentation type
over different downstream tasks aligns with similar observations made by Rommel et al.
[41] in their evaluation of different augmentation types. As the contrastive methods do
not require any additional model components and work solely based on augmentations
of the input signal, such methods may offer further potential if unified in a single SSL
training strategy.

5.3.1. Discussion of Methods

From the results across different datasets using different models, a direct comparison of
the different method’s average performance can be drawn. To this end, a standardized
analysis approach was used. Since the raw performance metrics cannot be directly
averaged across different dataset and model settings, due to their different scales and
performance baselines, a z-score standardization was applied. For each model-dataset
combination, the performance metrics (Accuracy, AUROC and AUPRC) were converted
to z-scores by standardizing them against all methods evaluated on that specific com-
bination. This normalization per finetuning setting allows for meaningful aggregation
across the different settings.

The resulting standardized metrics are then averaged per pretraining method, to
calculate the mean z-score for the three performance indicators. This approach provides
a comprehensive view of each method’s relative effectiveness, accounting for varying
dataset characteristics and model architectures, and are presented in Figure 5.6.

Several key findings emerge from this comparison. First, all proposed methods on
average demonstrated superior performance in terms of AUROC and AUPRC compared
to the baseline of conventional Random Masked Reconstruction.

Among the reconstruction-based methods, the Lowpass Target Reconstruction generally
achieved the best results, suggesting that focusing the reconstruction on the relevant
frequency bands improves representation learning. This method was least performant
on the TUAR artifact classification task. A reason for this shortcoming may be found in
the assumption underlying the lowpass-filtering, which only expects clinically relevant
information in the frequencies up to 50Hz. The TUAR classification task however,
focusses not on the underlying EEG signals, but on the artifacts that are corrupting them.
These artifacts may contain information also in the higher frequencies, thus ignoring
them might be suboptimal for this specific task.

The JEPA approach, despite its theoretical appeal, did not demonstrate competitive
performance relative to its implementation complexity. The implementation used in
this work differs from the original JEPA paradigm, which was used as a stand-alone
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training method, by combining the JEPA loss with a conventional reconstruction loss.
Such ensemble losses that are pursuing different objectives simultaneously may lead
to a suboptimal model that accomplishes neither task very well. An indication that the
two losses were not pursuing similar objectives was seen during observation of the loss-
gradients during training. Analysing the cosine-similarity of the gradients of the two
losses revealed that they were at times opposing each other, thus potentially preventing
the training process from finding an optimal loss minimum for both objectives.

Most notably, the contrastive methods with Channel-Mixing Augmentation and Mask
Augmentation emerged as the strongest performers overall. Both methods yield pre-
trained encoders producing embeddings that qualitatively demonstrate good class
separation. Contrastive methods not only encourage good feature extraction but mainly
emphasize a well-separated latent space, which is conducive to downstream classifica-
tion. The Mask Augmentation method specifically builds on the same assumptions as
conventional Masked Reconstruction, which has proven a solid pretraining strategy over
a variety of domains, without requiring the explicit reconstruction of noise in the input
signal, thus potentially leading to a model that is more noise robust as well as mapping
to a better separated latent space. These observations confirm the patterns identified
observed in the individual dataset analyses and suggest that contrastive approaches
may be particularly well-suited for capturing the discriminative features needed for
EEG classification tasks.
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Figure 5.6.: Averaged z-score-standardized metrics of all method’s finetuning perfor-
mance compared. Standardized across all methods per model-dataset com-
bination.

5.4. Current limitations

While this work provides insights into self-supervised learning strategies for EEG
representation learning, several limitations must be acknowledged:

Experimental Robustness The TUSL finetuning results demonstrate substantial vari-
ability across the random seed finetuning experiments with respect to the performance
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metrics. This inconsistency limits the confidence with which conclusions can be drawn
on downstream performance of the methods on this particular dataset.

For the TUAB dataset, computational constraints necessitated single finetuning runs.
Although the large, balanced nature of TUAB mitigates some concern about run-to-
run variability, the absence of multiple runs prevents proper assessment of statistical
significance when comparing methods on this downstream task.

All pretraining runs were also conducted with single seeds, rather than multiple
initializations. In this case however, this limitation is mitigated by several factors: the
large pretraining data volume (15M+ signal samples), substantial effective batch sizes
(2400 using gradient accumulation), and the consistent convergence patters observed
across many runs. These factors tend to reduce the impact of random initialization on
the final model performance.

LaBraM Method Coverage The LaBraM model architecture was evaluated on only
a subset of the pretraining methods. Specifically, methods Random Reconstruction with
Lowpass-filtered Target, Contrastive with Frequency Augmentation and Contrastive with
Channel-Mix Augmentation were not evaluated. This limited coverage may affect the
generalizability of the findings, as these methods have shown strong performance in
other architectures.

Additionally, preliminary comparisons suggest that the publicly available weights of
the LaBraM model can outperform the pretrained models from this work. Specifically,
the Public Weights model performs significantly better than the Random Masking model,
with which it shares the masked reconstruction pretraining strategy. The results further
show that while the Public Weights are not generally the best after finetuning, they do
clearly score highest using linear regression classification, indicating superior linear
separability. Two different factors may contribute to this divergence in performance.
The model-specific pretraining using vector-quantization in the original LaBraM work
may be contributing to the higher downstream performance, independent of the masked
reconstruction pretraining strategy. Furthermore, these publicly available LaBraM
weights were also pretrained on a different, diverse dataset, which included the TUAR
and TUSL datasets used here for the evaluation, thus possibly distorting the comparison.

Depth of Hyperparameter Explorations While reasonable hyperparameter configu-
rations were selected for all models, they were mostly based on values established in
literature and experimental observations of the reconstructions and limited finetuning
performances. Due to the high number of methods evaluated, as well as multiple model
architectures and downstream tasks, exhaustive hyperparameter searches were not
feasible. The choices made for such values are thus not necessarily optimal, and the
relative ranking of methods might shift with more thorough optimization.

These limitations suggest several avenues for future work, including more robust
statistical evaluation, expanded architectural comparisons, and deeper hyperparame-
ter optimization, particularly for the most promising contrastive learning approaches
identified in this study.
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Chapter 6
Conclusion and Future Work

This thesis has investigated self-supervised learning approaches for EEG representation
learning, evaluating various pretraining strategies across multiple model architectures
and downstream clinical tasks. The systematic comparison provides valuable insights
into which methods produce high-quality representations for EEG data analysis.

Implementation of several EEG specific SSL strategies and evaluation on three relevant
downstream tasks revealed that the performance of conventional Random Masked Recon-
struction can be surpassed. Specifically, contrastive learning methods yielded superior
performance on the downstream classification task, presumably by producing a well-
separated latent space with better noise rejection than reconstructive methods. Absolute
best performances were achieved with contrastive methods Channel-Mix Augmentation
and Masking Augmentation, although with varying rankings across tasks and models.
Reconstruction-based approaches demonstrated more consistent performance, with Low-
pass Target Reconstruction showing particular promise. The main challenges of this work
included designing appropriate domain-specific masking-strategies and augmentations,
as well as addressing EEG’s unique temporal and spatial characteristics. The methods
have been evaluated on SoA model architectures FEMBA and LaBraM, and demon-
strated that further improvements over their reported performance are possible using
an optimized pretraining strategy (FEMBA with Contrastive Channel-Mixing: +4.9%
AUROC on TUSL), though vector-quantization (as used in public LaBraM weights)
provides additional benefits. Finetuning FEMBA from scratch highlighted the critical
importance of pretraining in general for maximizing performance. Dataset-specific
challenges, including outliers in pretraining data and class imbalances in downstream
tasks, were effectively addressed through robust normalization strategies and the im-
plementation of focal loss for finetuning, as well as a secondary evaluation using linear
regression on frozen encoder embeddings.

Future work should explore several promising directions: combinations of the most
effective methods identified (Lowpass Target Reconstruction lends itself well); contrastive
learning with multiple simultaneous augmentations; incorporation of vector quantiza-
tion similar to that used in the original LaBraM work; and more extensive hyperparam-
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eter optimization for the most promising approaches. Utilizing sparse attention with
an optimized spatio-temporal attention mask was briefly investigated, following up on
this paradigm might yield a more capable yet memory-efficient model architecture for
EEG processing. Additionally, the limitations acknowledged regarding experimental
robustness and coverage suggest the need for broader evaluations with multiple initial-
ization seeds and expanded architectural comparisons to further validate and extend
these findings.
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Electroencephalography (EEG) is a non-invasive method used to record electrical activ-
ity in the brain, playing a critical role in both neurological research and clinical diagnos-
tics [1]. By offering a window into the brain’s activity, EEG helps diagnose and treat
various neurological disorders. However, the analysis of EEG signals presents substan-
tial challenges due to the complexity of these signals and the fine distinctions required
between normal and abnormal brain activity [2].

In recent years, AI and deep learning have opened up new possibilities for analyzing EEG
data. Foundation models—large, pre-trained neural networks that can be fine-tuned for
specific tasks—have reshaped fields such as natural language processing and computer
vision [3]. Their potential to improve EEG analysis is promising but still in its early
stages.

Progress has been made in this area with models such as LaBraM, which segments EEG
signals into channel patches to enable cross-dataset learning and fine-tuning [4]. Addi-
tionally, Brant-X offers a unified physiological signal alignment framework by leveraging
EEG alongside other physiological signals, improving performance in EEG classification
tasks like sleep stage and emotion recognition [5]. Another model, EEGFormer, takes
a self-supervised learning approach with vector quantization to pre-train on large-scale
EEG datasets, producing state-of-the-art results in tasks like seizure detection [6].

Recent advancements in self-supervised learning have opened up significant possibilities
for pre-training foundation models in EEG analysis. One such model, FoME (Foundation
Model for EEG), introduces adaptive temporal-lateral attention scaling and is pre-trained
on a large-scale EEG dataset using a combination of time-frequency fusion and attention
mechanisms, achieving state-of-the-art results in multiple downstream tasks [7].

The use of masked autoencoders, as seen in recent studies, has proven to be an effective
self-supervised approach for EEG representation learning. This involves masking portions
of the input signal and training the model to reconstruct the missing parts, enabling it
to learn richer representations of EEG data [8]. Techniques like MAEEG (Masked Auto-
Encoder for EEG) have further demonstrated how masked autoencoding can enhance
representation learning for EEG data, showing potential advantages over fully supervised
learning [8].

Additionally, contrastive learning has emerged as another powerful self-supervised method.
For instance, BENDR (Bidirectional Encoder Representations from Transformers for
EEG) utilizes contrastive learning to train on massive EEG datasets, offering effective
feature extraction and transfer learning capabilities for downstream tasks [8].

These self-supervised methods offer different ways of training foundation models, but the
trade-offs between them remain an active area of research, particularly when it comes to
deciding between approaches like masking raw signals versus spectrograms, or learning
from contrastive tasks. This project will explore these aspects in depth, aiming to identify
the most effective pre-training strategy for developing robust foundation models for EEG
analysis.
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1 Project Description

The objective of this project is to develop and pre-train a foundational model for EEG
analysis, with a particular emphasis on exploring self-supervised learning tasks. This
involves investigating and comparing various self-supervised training techniques, such as
masked autoencoding, contrastive learning, and other potential methods, to identify the
most effective strategy for extracting robust and transferable EEG representations. The
main tasks of this project are outlined as follows:

• Task I: Literature Review and Methodology Exploration Conduct a com-
prehensive review of self-supervised learning techniques used in foundation models,
with a focus on their application to EEG analysis. Study existing models like
FoME, MAEEG, and BENDR, paying close attention to how they implement self-
supervised tasks such as masking, contrastive learning, and temporal-spatial rep-
resentation learning. Identify the strengths and weaknesses of different approaches
in handling EEG data.

• Task II: Data Preparation and Preprocessing
Select and preprocess a large-scale EEG dataset for pre-training. This involves
handling variations in EEG signals, filtering noise, segmenting the signals into
appropriate windows, and possibly converting them into different formats (e.g.,
raw signals, spectrograms, or other time-frequency representations) to assess which
format is best suited for the self-supervised tasks.

• Task III: Experimenting with Self-Supervised Pre-Training Tasks
Implement various self-supervised training tasks, starting with masked autoen-
coders. Experiment with masking different portions of the EEG signals (e.g., raw
signal segments, frequency bands) and explore the trade-offs between masking fu-
ture versus past signals. Investigate how these choices impact the model’s ability
to learn meaningful EEG representations. Additionally, test contrastive learning
tasks, comparing positive and negative pairs of EEG segments, to evaluate their
effectiveness in representation learning.

• Task IV: Investigating Multi-Modal Data Integration Explore incorporat-
ing additional physiological data modalities alongside EEG to enhance the founda-
tion model’s representation learning capabilities. Identify and procure datasets that
include complementary signals such as Electrocardiography (ECG), Electromyog-
raphy (EMG), Photoplethysmogram (PPG), or other relevant modalities. Prepro-
cess these additional data sources to ensure synchronization and alignment with
the EEG signals, addressing challenges like differing sampling rates and signal
characteristics. Experiment with various multi-modal fusion strategies at differ-
ent levels—such as early fusion at the input stage, mid-level fusion during feature
extraction, or late fusion at the decision-making stage. Evaluate the impact of inte-
grating multiple modalities on the performance of self-supervised learning tasks, as-
sessing improvements in representation quality and downstream task performance.
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Analyze the trade-offs involved, including computational complexity and the po-
tential for overfitting, to determine the most effective approach for multi-modal
integration in EEG foundation models.

• Task V: Developing a Self-Supervised Foundation Model
Design and implement a foundation model that integrates the most promising self-
supervised learning techniques identified in Task III. This model should be capable
of learning from the pre-training data and be adaptable to various downstream
tasks. Incorporate elements like adaptive attention mechanisms or time-frequency
fusion if relevant, inspired by models such as FoME or BENDR.

• Task VI: Pre-Training the Foundation Model
Train the foundation model on the pre-processed EEG dataset using the selected
self-supervised tasks. Monitor the training progress, evaluate the quality of the
learned representations, and make adjustments to the training procedure or archi-
tecture as necessary. Experiment with combining multiple self-supervised tasks to
enhance the model’s ability to capture the complexity of EEG signals.

• Task VII: Fine-Tuning and Evaluation on Downstream Tasks
Fine-tune the pre-trained foundation model on several downstream EEG tasks such
as emotion recognition, seizure detection, or sleep stage classification. Compare the
performance against existing models, analyzing how well the self-supervised pre-
training contributes to task-specific performance.

• Task VIII: Comparative Analysis and Reporting
Compare the results of the pre-trained foundation model with other state-of-the-art
EEG models. Assess the effectiveness of different self-supervised learning strategies
and their impact on the foundation model’s performance across multiple tasks.
Summarize the findings, including the strengths and limitations of each approach,
and suggest potential improvements.

• Task IX: Final Presentation and Documentation
Prepare a comprehensive report detailing the methodology, experiments, and re-
sults. Present the findings, focusing on how self-supervised learning can be lever-
aged to create a strong foundation model for EEG analysis. Highlight key insights,
challenges, and future directions for self-supervised pre-training in EEG research.

2 Project Realization

2.1 Meetings

Weekly meetings and reports must be held. The exact time and location of these meetings
will be determined within the first week of the project in order to fit the student’s and
the assistant’s schedule. These meetings will be used to evaluate the status and progress
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of the project. Besides these regular meetings, additional meetings can be organized to
address urgent issues as well.

2.2 Report

Documentation is an important and often overlooked aspect of engineering. One final
report has to be completed within this project. The common language of engineering
is de facto English. Therefore, the final report of the work is preferred to be written
in English. Any form of word processing software is allowed for writing the reports,
nevertheless, the use of LATEX with Tgif1 or any other vector drawing software (for block
diagrams) is strongly encouraged by the IIS staff.

Final Report The final report has to be presented at the end of the project and a digital
copy need to be handed in. Note that this task description is part of your report and
has to be attached to your final report.

2.3 Presentation

There will be a presentation (15 min for the semester thesis, and 20 min for the MS thesis
presentation followed by 5 min Q&A) at the end of this project in order to present your
results to a wider audience. The exact date will be determined towards the end of the
work.

References

[1] S. Weisdorf, S. W. Gangstad, J. Duun-Henriksen, K. S. S. Mosholt, and T. W. Kjær,
“High similarity between eeg from subcutaneous and proximate scalp electrodes in
patients with temporal lobe epilepsy,” Journal of Neurophysiology, vol. 120, no. 3,
pp. 1451–1460, 2018.

[2] T. M. Ingolfsson, S. Benatti, X. Wang, A. Bernini, P. Ducouret, P. Ryvlin,
S. Beniczky, L. Benini, and A. Cossettini, “Minimizing artifact-induced false-alarms
for seizure detection in wearable eeg devices with gradient-boosted tree classifiers,”
Scientific Reports, vol. 14, no. 1, p. 2980, 2024.

[3] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4 technical report,” arXiv
preprint arXiv:2303.08774, 2023.

1See: http://bourbon.usc.edu:8001/tgif/index.html and http://www.dz.ee.ethz.ch/en/
information/how-to/drawing-schematics.html.

5



[4] W.-B. Jiang, L.-M. Zhao, and B.-L. Lu, “Large brain model for learning generic
representations with tremendous eeg data in bci,” arXiv preprint arXiv:2405.18765,
2024.

[5] D. Zhang, Z. Yuan, J. Chen, K. Chen, and Y. Yang, “Brant-x: A unified physiological
signal alignment framework,” in Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 2024, pp. 4155–4166.

[6] Y. Chen, K. Ren, K. Song, Y. Wang, Y. Wang, D. Li, and L. Qiu, “Eegformer: To-
wards transferable and interpretable large-scale eeg foundation model,” arXiv preprint
arXiv:2401.10278, 2024.

[7] E. Shi, K. Zhao, Q. Yuan, J. Wang, H. Hu, S. Yu, and S. Zhang, “Fome: A founda-
tion model for eeg using adaptive temporal-lateral attention scaling,” arXiv preprint
arXiv:2409.12454, 2024.

[8] Y. Zhou and S. Liu, “Enhancing representation learning of eeg data with masked au-
toencoders,” in International Conference on Human-Computer Interaction. Springer,
2024, pp. 88–100.

Zurich, September 26, 2024 Prof. Dr. Luca Benini

6



Appendix B
Training Hyperparameters

B.1. Models

Hyperparameter MEST FEMBA LaBraM

Total Parameters 3.3M 7.8M 5.8M
Patch Size 32 16 200
Embedding Dimension 160 35 200
Num. Attn Heads 10 - 10
Num. Transf. Layers 10 - 12
Num. Mamba Blocks - 2 -

Table B.1.: Model Architecture Hyperparameters for different models.
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B. Training Hyperparameters

B.2. Pretraining

Hyperparameter Value

Reconstruction
λreconstruction 1.0
λunmasked_reconstruction 0.1

JEPA
λJEPA 0.1
EMA decay 0.9

Contrastive
λContrastive 1.0
Max freq. (FT-Surrogate) 100Hz
Max freq. (Freq. Shift) 100Hz
Max freq. shift 3Hz
Noise std 0.1
Random scaling factor (Channel-Mix) [0.5,1.5]
Max random bias mag. 1.0

Table B.2.: SSL method specific hyperparameters

Hyperparameter MEST FEMBA LaBraM

Optimizer AdamW
Batch Size 300 600 600
Gradient Accumulation 8 4 4
Epochs 150
Grad. Clip 1.0
LR Scheduler CosineAnnealingLR
LR max 5e-4
LR min 1e-6
Warmup Epochs 5
Precision bf16-mixed

Table B.3.: Pretraining Hyperparameters for different models.
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B. Training Hyperparameters

Channel Neighbors

Fp1-F7 F7-T3 FP1-F3 F3-C3
F7-T3 FP1-F7 A1-T3 T3-C3
T3-T5 A1-T3 T3-C3 T5-O1
T5-O1 T3-T5 C3-P3 P3-O1
FP2-F8 FP2-F4 F4-C4 F8-T4
F8-T4 T5-O1 C4-T4 T4-A2
T4-T6 C4-T4 T4-A2 T6-O2
T6-O2 T4-T6 C4-P4 P4-O2
A1-T3 FP1-F7 F7-T3 T3-C3
T3-C3 A1-T3 C3-CZ F3-C3
C3-CZ F3-C3 C3-P3 CZ-C4
CZ-C4 C3-CZ F4-C4 C4-P4
C4-T4 CZ-C4 F4-C4 T4-A2
T4-A2 C4-T4 F8-T4 T4-T6
FP1-F3 FP1-F7 F3-C3 FP2-F4
F3-C3 FP1-F3 T3-C3 C3-CZ
C3-P3 T3-C3 C3-CZ P3-O1
P3-O1 T5-O1 C3-P3 P4-O2
FP2-F4 FP1-F3 FP2-F8 F4-C4
F4-C4 FP2-F4 CZ-C4 C4-T4
C4-P4 CZ-C4 C4-T4 P4-O2
P4-O2 T6-O2 C4-P4 P3-O1

Table B.4.: Channel-Mix augmentation neighbor definitions, 10/20 system.
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B.3. Finetuning

Hyperparameter MEST FEMBA LaBraM

Optimizer AdamW
Batch Size 256
Epochs 50
Grad. Clip 1.0
LR 5e-5 5e-4 5e-5
LwLRD 0.7
Weight Decay 0.05
Dropout - 0.0 -
Droppath 0.1 - 0.1
Noise augmentation prob 0.2
Noise augmentation mag 0.1
Label smoothing 0.1

TUAB TUAR TUSL

Loss Cross-Entropy Focal Focal
Class Weights [1.0,1.0] [0.46,0.99,0.92,0.81,0.82,1.0] [0.01,0.9,1.1,0.85]

Table B.5.: Finetuning Hyperparameters for different Models and Datasets.

68



List of Figures

4.1. General Encoder-Decoder architecture. The encoder processes the masked
input EEG data, while the decoder reconstructs the original signal. The
encoder uses alternating attention to capture temporal and spatial rela-
tionships, while the decoder employs a conventional transformer layer to
generate the output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2. FEMBA architecture components. Figures adapted from Tegon et al. [7]. 14
4.3. LaBraM Encoder component, also containing Tokenizer, here called Tem-

poral Encoder. For the full reconstruction model, the Encoder is paired
with a similar Decoder Head as used in MEST and FEMBA. Figure
adapted from Jiang et al. [25]. . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4. Attention mechanisms in MEST transformer models: (a) Alternating
attention separates temporal and spatial dimensions, (b) Sparse attention
allows cross-dimensional interactions within a local neighborhood, and
(c) Visualization of the sparse attention mask on a 3-channel signal over 5
temporal steps, temporal attention window size 3, showing which token
pairs participate in attention computations in white. Larger squares in red
represent temporal patches, subdivisions represent 3 channels per signal. 16

4.5. Comparison of masking strategies: (a) Random masking and (b) Random
Clustered masking, applied to single channel signal. Masked patches in
grey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.6. Lowpass-Filtered Reconstruction Target pretraining scheme. . . . . . . . . . 19
4.7. Joint Embedding Predictive Architecture (JEPA) implementation. The

student network (top) processes masked EEG data, while the EMA teacher
network (bottom) processes unmasked data. The JEPA loss is calculated
between the teacher’s output embedding and an intermediate embedding
from the student’s decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.8. Comparison of masking strategies: (a) Forecasting masking, (b) Forecast-
ing noise masking, applied to single channel signal. Masked patches in
grey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.9. Spectral Loss improves reconstruction of high frequency spike, but not
reconstruction quality in masked region . . . . . . . . . . . . . . . . . . . 24

69



List of Figures

4.10. Development of mask ratio, ratio approaches rmax = 0.5 as validation loss
nears LT = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.11. Scheme of Contrastive learning approach for EEG signals. The Encoder
processes two distinct views of each sample. Green lines indicate positive
pairings (embeddings from the same original sample) that should be
pulled together in the embedding space. Red lines indicate negative
pairings (embeddings from different samples) that should be pushed
apart. In practice, the model is trained on a batch of N samples, with each
sample paired with one positive and 2N − 2 negative samples. . . . . . . 27

4.12. Original signals (top), phase shifted using FTSurrogate (bottom). . . . . 28
4.13. Electrode layout in bipolar 10-20 system. Neighborhood example: channel

F4-C4 marked in blue, with its neighbor channels in green. Image Source
[44]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.14. Positive (visible) masks M1 and M2 in yellow and green, revealing sepa-
rate signal portions used for Masking Augmenation pair formation. . . . . 31

4.15. Model architecture showing adaptation for finetuning with classification
head. The pretrained encoder processes EEG data while the lightweight
classification head replaces the reconstruction decoder. . . . . . . . . . . 32

4.16. Distribution histogram of mean signal values across the TUEG dataset, y
log axis showing number of occurences. The 2nd and 98th percentiles, as
used by robust normalization, are marked. . . . . . . . . . . . . . . . . . 34

4.17. Relative distributions of classes in TUAB, TUAR, TUSL. . . . . . . . . . . 36

5.1. Comparison of t-SNE embeddings of FEMBA on TUSL. Contrastive with
Mask Augmentation shows a more coherent clustering with better class
separation, while Random Masking Reconstruction shows a lot of overlap
between the classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2. Comparison of t-SNE embeddings of LaBraM on TUAR. The contrastive
method shows better separation between classes elec, chew and the other
classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3. Performance of pretraining methods on TUSL and TUAR, using FEMBA
model. Pretrained methods consistently better than non-pretrained. . . . 49

5.4. Signal reconstructions of MEST and FEMBA using Clustered Random Mask-
ing, masked regions in red. In the large masked areas the reconstruction
is mostly an interpolation of the surrounding signal. . . . . . . . . . . . . 50

5.5. Signal reconstruction of FEMBA using Random Masked Reconstruction with
Lowpass-filtered Target, masked regions in red. . . . . . . . . . . . . . . . . 51

5.6. Averaged z-score-standardized metrics of all method’s finetuning per-
formance compared. Standardized across all methods per model-dataset
combination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

70



List of Tables

5.1. Finetuning results of MEST on TUSL dataset . . . . . . . . . . . . . . . . 39
5.2. Linear Regression results on MEST embeddings of TUSL dataset . . . . 40
5.3. Finetuning results of FEMBA on TUSL dataset . . . . . . . . . . . . . . . 40
5.4. Linear Regression results on FEMBA embeddings of TUSL dataset . . . 40
5.5. Finetuning results of LaBraM on TUSL dataset . . . . . . . . . . . . . . . 41
5.6. Linear Regression results on LaBraM embeddings of TUSL dataset . . . 41
5.7. Finetuning results of MEST on TUAR dataset . . . . . . . . . . . . . . . . 44
5.8. Linear Regression results on MEST embeddings of TUAR dataset . . . . 44
5.9. Finetuning results of FEMBA on TUAR dataset . . . . . . . . . . . . . . . 44
5.10. Linear Regression results on FEMBA embeddings of TUAR dataset . . . 45
5.11. Finetuning results of LaBraM on TUAR dataset . . . . . . . . . . . . . . . 45
5.12. Linear Regression results on LaBraM embeddings of TUAR dataset . . . 45
5.13. Finetuning results of MEST on TUAB dataset . . . . . . . . . . . . . . . . 47
5.14. Linear Regression results on MEST embeddings of TUAB dataset . . . . 47
5.15. Finetuning results of FEMBA on TUAB dataset . . . . . . . . . . . . . . . 47
5.16. Linear Regression results on FEMBA embeddings of TUAB dataset . . . 48
5.17. Finetuning results of LaBraM on TUAB dataset . . . . . . . . . . . . . . . 48
5.18. Linear Regression results on LaBraM embeddings of TUAB dataset . . . 48

B.1. Model Architecture Hyperparameters for different models. . . . . . . . . 65
B.2. SSL method specific hyperparameters . . . . . . . . . . . . . . . . . . . . 66
B.3. Pretraining Hyperparameters for different models. . . . . . . . . . . . . . 66
B.4. Channel-Mix augmentation neighbor definitions, 10/20 system. . . . . . 67
B.5. Finetuning Hyperparameters for different Models and Datasets. . . . . . 68

71



Bibliography

[1] V. Shah, E. Von Weltin, S. Lopez, J. R. McHugh, L. Veloso, M. Golmohammadi,
I. Obeid, and J. Picone, “The temple university hospital seizure detection corpus,”
Frontiers in neuroinformatics, vol. 12, p. 83, 2018.

[2] I. Obeid and J. Picone, “The temple university hospital eeg data corpus,” Frontiers
in Neuroscience, vol. 10, 2016. [Online]. Available: https://www.frontiersin.org/
journals/neuroscience/articles/10.3389/fnins.2016.00196

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
2020. [Online]. Available: https://arxiv.org/abs/2005.14165

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” 2019. [Online]. Available:
https://arxiv.org/abs/1810.04805

[5] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An
image is worth 16x16 words: Transformers for image recognition at scale,” 2021.
[Online]. Available: https://arxiv.org/abs/2010.11929

[6] J. Wang, S. Zhao, Z. Luo, Y. Zhou, H. Jiang, S. Li, T. Li, and G. Pan,
“Cbramod: A criss-cross brain foundation model for eeg decoding,” arXiv preprint
arXiv:2412.07236, 2024.

[7] A. Tegon, T. M. Ingolfsson, X. Wang, L. Benini, and Y. Li, “Femba: Efficient
and scalable eeg analysis with a bidirectional mamba foundation model,” 2025.
[Online]. Available: https://arxiv.org/abs/2502.06438

[8] H. H. Jasper, “Ten-twenty electrode system of the international federation,” Elec-
troencephalogr Clin Neurophysiol, vol. 10, pp. 371–375, 1958.

[9] D. P. Subha, P. K. Joseph, R. Acharya U, and C. M. Lim, “Eeg signal analysis: a
survey,” Journal of medical systems, vol. 34, pp. 195–212, 2010.

72

https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2016.00196
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2016.00196
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2502.06438


Bibliography

[10] K. A. I. Aboalayon, M. Faezipour, W. S. Almuhammadi, and S. Moslehpour, “Sleep
stage classification using eeg signal analysis: a comprehensive survey and new
investigation,” Entropy, vol. 18, no. 9, p. 272, 2016.

[11] D. Wulsin, J. Blanco, R. Mani, and B. Litt, “Semi-supervised anomaly detection
for eeg waveforms using deep belief nets,” in 2010 Ninth international conference on
machine learning and applications. IEEE, 2010, pp. 436–441.

[12] T. M. Ingolfsson, M. Hersche, X. Wang, N. Kobayashi, L. Cavigelli, and L. Benini,
“Eeg-tcnet: An accurate temporal convolutional network for embedded motor-
imagery brain–machine interfaces,” in 2020 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), 2020, pp. 2958–2965.

[13] J. Kaiser, J. Perelmouter, I. H. Iversen, N. Neumann, N. Ghanayim, T. Hinterberger,
A. Kübler, B. Kotchoubey, and N. Birbaumer, “Self-initiation of eeg-based
communication in paralyzed patients,” Clinical Neurophysiology, vol. 112, no. 3,
pp. 551–554, 2001. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1388245701004709

[14] R. Bommasani, D. A. Hudson, E. Adeli, R. B. Altman, S. Arora, S. von Arx, M. S.
Bernstein, J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson, S. Buch, D. Card,
R. Castellon, N. S. Chatterji, A. S. Chen, K. Creel, J. Q. Davis, D. Demszky,
C. Donahue, M. Doumbouya, E. Durmus, S. Ermon, J. Etchemendy, K. Ethayarajh,
L. Fei-Fei, C. Finn, T. Gale, L. E. Gillespie, K. Goel, N. D. Goodman, S. Grossman,
N. Guha, T. Hashimoto, P. Henderson, J. Hewitt, D. E. Ho, J. Hong, K. Hsu,
J. Huang, T. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti, G. Keeling, F. Khani,
O. Khattab, P. W. Koh, M. S. Krass, R. Krishna, R. Kuditipudi, and et al., “On the
opportunities and risks of foundation models,” CoRR, vol. abs/2108.07258, 2021.
[Online]. Available: https://arxiv.org/abs/2108.07258

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in neural information pro-
cessing systems, vol. 30, 2017.

[16] A. Hassani, S. Walton, N. Shah, A. Abuduweili, J. Li, and H. Shi, “Escaping
the big data paradigm with compact transformers,” 2022. [Online]. Available:
https://arxiv.org/abs/2104.05704

[17] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A framework
for self-supervised learning of speech representations,” 2020. [Online]. Available:
https://arxiv.org/abs/2006.11477

[18] D. Kostas, S. Aroca-Ouellette, and F. Rudzicz, “Bendr: using transformers and a
contrastive self-supervised learning task to learn from massive amounts of eeg
data,” 2021. [Online]. Available: https://arxiv.org/abs/2101.12037

73

https://www.sciencedirect.com/science/article/pii/S1388245701004709
https://www.sciencedirect.com/science/article/pii/S1388245701004709
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2104.05704
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2101.12037


Bibliography

[19] A. Dimofte, G. A. Bucagu, T. M. Ingolfsson, X. Wang, A. Cossettini,
L. Benini, and Y. Li, “Cerebro: Compact encoder for representations of brain
oscillations using efficient alternating attention,” 2025. [Online]. Available:
https://arxiv.org/abs/2501.10885

[20] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with selective state
spaces,” 2024. [Online]. Available: https://arxiv.org/abs/2312.00752

[21] N. Stevenson, K. Tapani, L. Lauronen, and S. Vanhatalo, “A dataset of neonatal eeg
recordings with seizure annotations,” Scientific Data, vol. 6, p. 190039, 03 2019.

[22] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked
Autoencoders Are Scalable Vision Learners,” 2022, pp. 16 000–16 009. [Online].
Available: https://openaccess.thecvf.com/content/CVPR2022/html/He_Masked_
Autoencoders_Are_Scalable_Vision_Learners_CVPR_2022_paper

[23] Z. Xie, Z. Zhang, Y. Cao, Y. Lin, J. Bao, Z. Yao, Q. Dai, and H. Hu, “SimMIM: A
Simple Framework for Masked Image Modeling,” Apr. 2022, arXiv:2111.09886.
[Online]. Available: http://arxiv.org/abs/2111.09886

[24] C. Wang, V. Subramaniam, A. U. Yaari, G. Kreiman, B. Katz, I. Cases, and A. Barbu,
“Brainbert: Self-supervised representation learning for intracranial recordings,”
arXiv preprint arXiv:2302.14367, 2023.

[25] W.-B. Jiang, L.-M. Zhao, and B.-L. Lu, “Large brain model for learning generic
representations with tremendous eeg data in bci,” 2024. [Online]. Available:
https://arxiv.org/abs/2405.18765

[26] Y. Chen, K. Ren, K. Song, Y. Wang, Y. Wang, D. Li, and L. Qiu, “Eegformer:
Towards transferable and interpretable large-scale eeg foundation model,” 2024.
[Online]. Available: https://arxiv.org/abs/2401.10278

[27] H.-Y. S. Chien, H. Goh, C. M. Sandino, and J. Y. Cheng, “Maeeg: Masked auto-
encoder for eeg representation learning,” arXiv preprint arXiv:2211.02625, 2022.

[28] Y. Bao, S. Sivanandan, and T. Karaletsos, “Channel vision transformers:
An image is worth 1 x 16 x 16 words,” 2024. [Online]. Available: https:
//arxiv.org/abs/2309.16108

[29] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked
autoencoders are scalable vision learners,” 2021. [Online]. Available: https:
//arxiv.org/abs/2111.06377

[30] Z. Huang, X. Jin, C. Lu, Q. Hou, M.-M. Cheng, D. Fu, X. Shen, and J. Feng, “Con-
trastive masked autoencoders are stronger vision learners,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 46, no. 4, pp. 2506–2517, 2023.

[31] P. Guetschel, T. Moreau, and M. Tangermann, “S-JEPA: Towards seamless cross-
dataset transfer through dynamic spatial attention,” Oct. 2024.

74

https://arxiv.org/abs/2501.10885
https://arxiv.org/abs/2312.00752
https://openaccess.thecvf.com/content/CVPR2022/html/He_Masked_Autoencoders_Are_Scalable_Vision_Learners_CVPR_2022_paper
https://openaccess.thecvf.com/content/CVPR2022/html/He_Masked_Autoencoders_Are_Scalable_Vision_Learners_CVPR_2022_paper
http://arxiv.org/abs/2111.09886
https://arxiv.org/abs/2405.18765
https://arxiv.org/abs/2401.10278
https://arxiv.org/abs/2309.16108
https://arxiv.org/abs/2309.16108
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2111.06377


Bibliography

[32] S. Kim, “Learning General Representation of 12-Lead Electrocardiogram with a
Joint-Embedding Predictive architecture,” Oct. 2024.

[33] R. Girshick, “Fast r-cnn,” 2015. [Online]. Available: https://arxiv.org/abs/1504.
08083

[34] Z. Xie, Z. Zhang, Y. Cao, Y. Lin, J. Bao, Z. Yao, Q. Dai, and H. Hu, “Simmim:
A simple framework for masked image modeling,” 2022. [Online]. Available:
https://arxiv.org/abs/2111.09886

[35] P. Tangkraingkij, “Significant frequency range of brain wave signals for authentica-
tion,” in Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing 2015, R. Lee, Ed. Cham: Springer International Publishing, 2016, pp.
103–113.

[36] G. Buzsáki and A. Draguhn, “Neuronal oscillations in cortical networks,”
Science, vol. 304, no. 5679, pp. 1926–1929, 2004. [Online]. Available: https:
//www.science.org/doi/abs/10.1126/science.1099745

[37] M. Assran, Q. Duval, I. Misra, P. Bojanowski, P. Vincent, M. Rabbat, Y. LeCun,
and N. Ballas, “Self-Supervised Learning from Images with a Joint-Embedding
Predictive Architecture,” Apr. 2023.

[38] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive
predictive coding,” 2019. [Online]. Available: https://arxiv.org/abs/1807.03748

[39] W. Li, H. Li, X. Sun, H. Kang, S. An, G. Wang, and Z. Gao, “Self-supervised con-
trastive learning for EEG-based cross-subject motor imagery recognition,” Journal
of Neural Engineering, vol. 21, no. 2, p. 026038, Apr. 2024.

[40] L. Yang and S. Hong, “Unsupervised Time-Series Representation Learning with
Iterative Bilinear Temporal-Spectral Fusion,” May 2022.

[41] C. Rommel, J. Paillard, T. Moreau, and A. Gramfort, “Data augmentation for
learning predictive models on EEG: A systematic comparison,” Journal of Neural
Engineering, vol. 19, no. 6, p. 066020, Dec. 2022.

[42] J. T. C. Schwabedal, J. C. Snyder, A. Cakmak, S. Nemati, and G. D.
Clifford, “Addressing class imbalance in classification problems of noisy
signals by using fourier transform surrogates,” 2019. [Online]. Available:
https://arxiv.org/abs/1806.08675

[43] C. Rommel, T. Moreau, J. Paillard, and A. Gramfort, “Cadda: Class-wise automatic
differentiable data augmentation for eeg signals,” 2022. [Online]. Available:
https://arxiv.org/abs/2106.13695

[44] Tomaton124, “21 electrodes of international 10-20 system for eeg, modified,” 2025,
accessed: 2025-04-11. [Online]. Available: https://commons.wikimedia.org/wiki/
File:21_electrodes_of_International_10-20_system_for_EEG.svg

75

https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/2111.09886
https://www.science.org/doi/abs/10.1126/science.1099745
https://www.science.org/doi/abs/10.1126/science.1099745
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1806.08675
https://arxiv.org/abs/2106.13695
https://commons.wikimedia.org/wiki/File:21_electrodes_of_International_10-20_system_for_EEG.svg
https://commons.wikimedia.org/wiki/File:21_electrodes_of_International_10-20_system_for_EEG.svg


Bibliography

[45] O. Yonay, T. Hammond, and T. Yang, “Myna: Masking-based contrastive learning
of musical representations,” 2025. [Online]. Available: https://arxiv.org/abs/2502.
12511

[46] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson, “Averaging
weights leads to wider optima and better generalization,” 2019. [Online]. Available:
https://arxiv.org/abs/1803.05407

[47] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object
detection,” 2018. [Online]. Available: https://arxiv.org/abs/1708.02002

[48] F. Dekking, C. Kraaikamp, H. Lopuhaä, and L. Meester, A Modern Introduction to
Probability and Statistics, Understanding Why and How, 01 2005.

76

https://arxiv.org/abs/2502.12511
https://arxiv.org/abs/2502.12511
https://arxiv.org/abs/1803.05407
https://arxiv.org/abs/1708.02002

	Introduction
	Background
	Electroencephalography
	Temple University EEG Corpus
	Datasets for Pretraining
	Datasets for Finetuning

	Foundation Models
	Transformer Models
	MAMBA

	Self-Supervised Learning for Foundation Models
	Masked reconstruction
	Contrastive Learning


	Related Work
	Foundation Models for EEG
	Self-Supervised Learning Strategies
	Research Gap and Contribution

	Implementation
	Models
	MEST with Alternating Attention
	FEMBA
	LaBraM
	MEST with sparse attention

	Masked Reconstruction Pretraining Methods
	Random Patch Masking
	Clustered Random Patch Masking
	Lowpass-filtered Reconstruction Target
	JEPA
	Further MAE Experiments

	Contrastive Learning Pretraining Methods
	Frequency-domain Augmentations
	Topological Channel-mixing Augmentation
	Masking-based Augmentation

	Finetuning
	Training Methodology

	Data Characteristics
	Pretrain Data Characteristics
	Downstream Data Characteristics
	Robust Normalization


	Results
	Evaluation setup
	Finetuning Performance
	Embeddings Evaluation

	Results
	TUSL Results
	TUSL Results interpretation
	TUAR Results
	TUAR Results interpretation
	TUAB Results
	TUAB Results interpretation

	Discussion of pretraining methods
	Discussion of Methods

	Current limitations

	Conclusion and Future Work
	Task Description
	Training Hyperparameters
	Models
	Pretraining
	Finetuning

	List of Figures
	List of Tables
	Bibliography

