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Abstract

A-mode ultrasound (US) has recently emerged as a promising modality for low-cost, con-
tinuous wearable monitoring in both clinical and everyday environments. Its applications
span a range of domains, including neural interfaces, musculoskeletal monitoring, cardio-
vascular assessment, and bladder tracking. Despite growing interest in this technology,
current research remains fragmented, with highly specialized models tailored to specific
devices, acquisition protocols, and tasks. This fragmentation limits model generalization
and reusability across domains. Moreover, the development of robust, general-purpose
models is hindered by the limited availability of large-scale, A-mode US datasets. This
scarcity is primarily due to the modality’s minimal role in conventional clinical practice,
where imaging-based ultrasound remains dominant. In this work, we present the first
application of the foundation model framework to raw A-mode ultrasound data. Draw-
ing inspiration from recent advances in other biosignal domains, we adopt a two-stage
approach: pretraining large transformer-based models on a diverse corpus of acoustic
data, including natural audio and synthetically generated ultrasound, and subsequently
fine-tuning these models on smaller, labeled datasets across various downstream tasks.
Our findings indicate that transformer models with increased capacity can achieve or
exceed state-of-the-art performance in certain applications, such as hand movement re-
gression. However, the overall benefit of pretraining remains inconclusive, with mixed
results across different tasks and evaluation settings. These outcomes highlight both
the promise and the challenges of applying foundation models to raw ultrasound data.
Ultimately, this project serves as a proof of concept, laying the groundwork for future
research on generalizable, large-scale modeling of raw ultrasound signals and their ap-
plication in wearable health monitoring systems.
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Chapter 1
Introduction

1.1. Motivation

Ultrasound is a cornerstone of modern medical imaging, celebrated for its real-time
capabilities, safety profile, and portability. Unlike X-ray based modalities such as CT,
ultrasound does not rely on ionizing radiation and, in contrast to most MRI systems,
it can be deployed at the bedside, making it indispensable in point-of-care scenarios
ranging from emergency diagnostics to obstetrics. Its affordability and accessibility
further solidify its role in global health, particularly in resource-limited settings.

Conventional ultrasound imaging, however, represents only the final processed visual
output. During acquisition ultrasound devices scan the patient with acoustic waves and
record raw radiofrequency (RF) data which will later be processed to reconstruct an
image. This raw data contains richer acoustic and temporal information, with great
potential for advanced signal analysis and data-driven learning. In contrast to the 2D or
3D grayscale images clinicians usually interpret, RF data preserves the full fidelity of the
acoustic interaction with tissue, allowing for potentially superior diagnostic inference if
harnessed correctly.

Recent innovations in hardware [1] have led to the emergence of wearable and miniatur-
ized ultrasound systems capable of capturing A-mode signals in real-time. These systems
open new frontiers in continuous, unobtrusive health monitoring [2, 3], but also shift the
landscape toward raw data-centric applications. Processing of data in wearable and/or
embedded scenarios introduces computational and memory constraints that discourage
image-based approaches due to the expensive nature of image reconstruction.

In parallel, there has been an explosion in the field of foundation models. These are large-
scale models pretrained on extensive unlabeled datasets and later fine-tuned on task-
specific data which demonstrate remarkable cross-domain generalization. They leverage

1



1. Introduction

scale to develop flexible, reusable representations and have shown promise in medical
imaging domains [4]. Applying the foundation model paradigm to raw ultrasound data
could unlock new levels of performance and generalization.

Yet, a significant obstacle persists: the lack of publicly available, large-scale datasets of
raw ultrasound signals. Unlike medical images or EEG and ECG, raw ultrasound data
is rarely used in clinical environments which makes the collection of standardized, high
quality and large enough datasets very difficult. This bottleneck has spurred our interest
in using alternative data sources such synthetic raw ultrasound data and audio wave-
forms. These approaches may serve as scalable proxies, enabling pretraining on abundant
unlabeled data while preserving relevance to the acoustic nature of ultrasound.

This thesis explores how foundation models can be adapted and applied to raw ultra-
sound data, with a focus on wearable and A-mode devices. It seeks to be a first proof of
concept adapting the foundation model framework to a new modality, raw ultrasound
data.

1.2. Objective

Building on the promise of foundation models and the unique characteristics of raw ul-
trasound data, this thesis aims to explore how large-scale, self-supervised learning tech-
niques can be adapted to this emerging domain. The overarching goal is to advance the
understanding of how foundational learning approaches can enable robust, scalable, and
data-efficient analysis of raw ultrasound signals, particularly in the context of wearable
and A-mode systems.

The specific objectives of the thesis are as follows:

• Adaptation of Foundation Models to Raw Ultrasound Data. The first ob-
jective is to investigate how the foundation model framework, typically employed
in image, audio, and text modalities, can be extended and tailored to raw ultra-
sound signals. This involves rethinking model architecture, input representation,
and pretraining tasks to suit the temporal and acoustic nature of RF data.

• Self-Supervised Pretraining Using Proxy Domains. Given the current
scarcity of large-scale raw ultrasound datasets, this thesis explores the feasibil-
ity of pretraining on alternative sources such as natural audio or synthetically
generated ultrasound signals. The hypothesis is that self-supervised pretraining
on these structurally analogous domains can lead to improved generalization and
downstream performance when fine-tuned on smaller, labeled ultrasound datasets.

• Evaluation of Pretraining Strategies. A core component of this research is the
systematic evaluation of different self-supervised learning strategies. In particular,
we investigate the impact of incorporating domain-specific signal features, such as

2



1. Introduction

the signal envelope, into the pretraining task. These strategies are designed to en-
hance the model’s ability to capture physiologically relevant information embedded
in the raw signal.

• Downstream Task Validation. Finally, the pretrained foundation models will
be fine-tuned and evaluated on a diverse set of downstream tasks involving raw
ultrasound data. These tasks will serve to benchmark the utility, adaptability, and
performance of the models across clinically and technically relevant applications.

Through these objectives, the thesis seeks to contribute a framework for foundational
learning in raw ultrasound, offering insights into scalable methods that leverage self-
supervision and proxy modalities for the next generation of A-mode ultrasound systems
across a number of applications.

1.3. Ultrasound physics

The term Ultrasound (US) refers to acoustic waves with a frequency beyond the upper
limit of the human audible spectrum which has been measured at 20 kHz [5]. These waves
propagate through a physical medium which, in the case of medical or human-centered
applications, is usually biological tissue or liquid. Ultrasound waves are longitudinal
waves which means they cause the particles in the medium to oscillate along their di-
rection of travel. This causes regions of high pressure (compression) and low pressure
(rarefaction) as you can see in Figure 1.1. As in any other type of wave, only energy is
propagated while the particles remain in place after the wave has passed.

Figure 1.1.: Illustration of US wave propagation through a tissue, causing compression
and rarefaction. Extracted from [6]

.

The medium through which a wave travels plays a key role in how it propagates. The
transducer excites the medium at a given frequency f , which is usually in the range of
2-15 MHz. This frequency is independent of the medium and is preserved when changing
from one medium to another. By contrast, the speed of the wave c or speed of sound
(SoS) changes depending on the propagation medium and is fully determined by it.

3



1. Introduction

Specifically, there are two properties of the medium that determine the acoustic speed
of sound: the mass density ρ, which relates mass and volume of a substance, and the
stiffness k, which is a measure of the material’s resistance to deformation under pressure.
Their relationship to the SoS is capture by the following equation:

c =
√

k

ρ
(1.1)

Another key parameter of a US wave is the wavelength, as it has a direct impact on
the axial resolution of a US system. As such, it controls the ability of a US system to
capture information about fine anatomical structures. Both the frequency f and the SoS
c determine the wavelength λ of an acoustic wave through the equation:

λ = c

f
(1.2)

1.3.1. Ultrasound interactions

US sensing functions by the pulse-echo principle. This means that a transducer is trig-
gered to send a pulsed acoustic wave through the medium, and, subsequently, this same
transducer or others sense the echoes emanating from the interactions of the pulsed wave
with the propagation medium. Three interactions of interest are illustrated in Figure
1.2.

Figure 1.2.: Diagrams of the three main US interactions: a) total reflection, b) reflection
and refraction, and c) scattering. Extracted from [7].

Both reflection and refraction are a product of US waves crossing the boundary be-
tween different media with different acoustic impedance. The acoustic impedance Z of

4



1. Introduction

a medium is a physical parameter that describes how resistant that medium is to the
propagation of acoustic waves. Mathematically, it is defined as:

Z = ρ · c (1.3)

with ρ once again being the medium density, and c being the speed of sound in that
medium. As stated before, reflection and refraction happen when a US wave travel-
ing through a medium encounters an interface with a different medium. The reflected
pressure amplitude at an interface between medium 1 and medium 2 can be calculated
by,

pr

pi
= Z2 − Z1

Z2 + Z1
(1.4)

where pr and pi are the reflected and incident pressure amplitudes respectively, while Z1
and Z2 are the acoustic impedance of each medium. Assuming conservation of energy in
the wave, the refracted pressure amplitude will be the difference between pr and pi. Thus,
the larger the impedance difference between the two media, the lower the transmission
of the wave through the interface. That is why US struggles to sense through dense
materials such as bone and it is mostly used to image soft tissue.

It must be noted that Equation 1.4 assumes that the incident wave is perpendicular
to the interface between the two media. If the acoustic wave has an incidence angle
α as in Figure 1.2 B, then the wave will reflect with an equal angle, in the case of a
smooth interface. Similarly, the angle of the transmitted/refracted wave will also change
according to Snell’s law:

sin(αi)
sin(αt)

= c1
c2

(1.5)

All the above interactions however, rely on the interfaces between media, being large
enough. When the interfaces are quite small, caused by inclusions of a different material
in a larger medium for example, scattering happens and these inclusions are usually
termed scatterers. The boundary separating interfaces that cause reflection/refraction
from those that cause scattering is the wavelength. In mathematical terms, for objects
whose size d is much smaller than the wavelength λ the scattered power is proportional
to the frequency like,

Ws ∝ d6

λ4 ∝ d6f4 (1.6)

This specific type of scattering is called Rayleigh scattering, and it makes up most of
the echoes that are received by the transducer during US sensing. In many instances, it
is a source of contrast that allows us to distinguish between different tissues [8].

As acoustic waves propagate through a medium they suffer attenuation which leads
to their amplitude decreasing. This is caused by both scattering and absorption, two
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1. Introduction

phenomena which are frequency dependent. As a consequence, we can describe attenu-
ation using the attenuation coefficient α which has units of dB

cm·Hz . Thus, for a signal of
frequency f we can estimate its attenuation at a depth z through,

Attenuation [dB] = α

[
dB

cm · MHz

]
· f [MHz] · z[cm] (1.7)

1.3.2. Ultrasound acquisition

Ultrasound sensing relies on a transducer which emits pulsed acoustic waves and then
records the echoes that they generate. To do so, they take advantage of the piezoelectric
effect, a physical phenomena by which certain materials generate an electrical potential
when they are subjected to a mechanical deformation, and alternatively, deform when
an electric potential is applied to them. US transducers are generally composed of
several tens to hundreds of piezoelectric crystals, each corresponding to a channel in
the RF signal. When these crystals are excited with an oscillating voltage they deform
periodically and emit acoustic waves at the input frequency. Once the voltage is turned
off, they can sense the echoes returning to the transducer by converting their deformation
into electric potential variations. If the ultrasound is stimulated with electrical pulses s
of the form,

s(t) = p(t) · cos(2πf0t) (1.8)

where f0 is the center frequency of the pulses, t is the time, and p(t) is the envelope of
the pulses, then the interfaces of the media can be expressed as,

r(t, n) =
∑
i=1

Ai · p

(
t − 2di

c
− 2νTsn

c

)
· cos

(
2πf0

(
t − 2di

c
− 2νTsn

c

))
(1.9)

where n is the transmit pulse number, A is the scattering amplitude of the ith interface,
di is the depth of the ith interface, c is the SoS, T is the time interval between two
continuous transmit pulses (T = 1

Fs
, Fs is the pulse repetition frequency), and νi is the

moving speed of the ith interface. If we neglect the effects of attenuation, this can be
regarded as a convolution between the transmitted pulse and the impulse function of
the interface. Thus, we can visualize the position and/or velocity of the tissue interfaces
through time-of-flight and Doppler methods.

There are three main types of US sensing modalities as illustrated in Figure 1.3: A-mode,
B-mode, and M-mode. A-mode is the simplest one, and it stands for Amplitude mode.
In A-mode ultrasound, a single focused beam is emitted and its echoes are received by
the transducer with a single channel. The recorded data corresponds to the reflected
amplitudes along the signal line over time. For a known medium, there is a direct
mapping between the time at which an echo was recorded and the depth within the
medium from which it emanated. A-mode is the simplest form of ultrasound sensing,
which allows it to be performed with small size, light mass and low-power consumption
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transducers, ideal for wearable applications [9]. However, the most commonly used US
modality in medical practice is B-mode imaging, where the B stands for brightness.
In this variant, an image is formed from the data recorded by the transducer, which
uses focused US beams to scan the tissue line by line. By recording data across many
channels, a 2D US image can be formed that allows clinicians to visualize soft tissues
within a patient’s body [10]. Finally, there is M-mode imaging, where M stands for
motion. It is a US mode that records a single scan line over time, thus allowing the
operator to monitor the movement of internal structures. It is widely used in cardiac
imaging to assess heart valve movements or fetal heart activity [11].

Figure 1.3.: Schematics of A-mode, B-mode, and M-mode US sensing modalities. Ex-
tracted from [9].
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Chapter 2
Related work

This section provides an overview of prior research relevant to the present study. The dis-
cussion is organized into three key areas: (1) recent advancements in A-mode ultrasound
(US) research hardware, with an emphasis on wearable technologies; (2) established and
emerging applications of A-mode US, particularly in limb movement estimation and
biomedical monitoring; and (3) the development and utilization of foundation models
for biosignal processing tasks, encompassing modalities such as EEG, ECG, PPG, and
other wearable sensor data.

2.1. A-mode Hardware

As interest grows in wearable sensing technologies, researchers have increasingly ex-
plored A-mode ultrasound (US), a modality based on single-element transducers and
one-dimensional signal acquisition. While largely replaced in clinical practice by B-
mode and other imaging techniques, A-mode US remains attractive for its simplicity,
compact form factor, and potential for low-power operation, making it well-suited to
wearable applications.

2.1.1. A-mode US Systems

A number of wearable A-mode US systems have emerged, each tailored for specific
biomedical monitoring use cases. Protopappas et al. [12] introduced one of the earliest
wearable A-mode systems for remote monitoring of long bone fracture healing. Similarly,
Lanata et al. [13] proposed a compact system for cardiac monitoring. In a different
domain, Piech et al. [14] designed a wireless A-mode system for neural recording in
rodents. In pursuit of low-power operation, Tarbox et al. [15] introduced a system
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based on time-delay spectrometry that operates using low-voltage (5 Vpp) excitation
pulses, marking a shift toward energy-efficient ultrasound electronics.

More recently, attention has turned toward muscle activity monitoring. Yang et al. [16]
developed a multichannel wearable system optimized for detecting muscle contractions
in real time, while Yin et al. [17] further simplified the design, integrating it into a
prosthetic socket to enable intuitive control of assistive devices. Brausch et al. [18]
and Sgambato et al. [19] have also contributed to this space, proposing systems that
emphasize form factor and usability in daily wear scenarios.

A significant milestone in this line of research is the ultra-low-power wearable platform by
Frey et al. [1], known as WULPUS. This system weighs only 13 grams, consumes under
25 mW, and supports eight A-mode channels, making it one of the most integrated and
versatile solutions to date for applications such as carotid artery monitoring and muscle
activity detection.

2.1.2. A-mode US Transducers

Progress in A-mode ultrasound hardware has been complemented by innovations in
transducer design. Most commercial A-mode transducers, originally intended for indus-
trial or ophthalmic use, do not fully meet the ergonomic and mechanical requirements
of wearable applications. To bridge this gap, several efforts have aimed at developing
lightweight and flexible transducers.

Sun et al. [20] investigated both single and dual-frequency transducer designs for mus-
cle activity sensing, combining simulation and experimental validation. Yan et al. [21]
proposed a soft, wearable transducer made from polyvinylidene difluoride (PVDF), suit-
able for integration into human-machine interfaces. AlMohimeed et al. [22, 23] pre-
sented additional iterations of flexible transducers for continuous ultrasound sensing,
while Steinberg et al. [24] demonstrated transducers capable of long-term skin contact
with minimal discomfort.

Most recently, Keller et al. [25] and Giordano et al. [26] introduced fully printed, highly
flexible A-mode transducers with a bending radius of 3.5 mm. These designs represent a
significant advancement in conformability and are poised to facilitate broader adoption
of ultrasound sensing in wearable formats.

Collectively, these developments highlight the growing maturity of A-mode US hardware
and transducer technologies, establishing a solid foundation for their integration into
next-generation wearable systems.
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2.2. A-mode US applications

Although A-mode ultrasound has largely been replaced by B-mode imaging in clinical
settings, it has recently attracted significant interest for continuous human monitoring
due to its simplicity, low power requirements, and compatibility with wearable systems.

2.2.1. Discrete Hand Gesture Recognition

One particularly active area of research is discrete gesture recognition, where A-mode
ultrasound has demonstrated notable potential as an alternative or complement to sur-
face electromyography (sEMG). Several studies have compared A-mode ultrasound with
sEMG in gesture classification tasks. Huang et al.[27] analyzed sparse features from
a limited number of ultrasound image columns, mimicking A-mode signals, and found
that ultrasound provided competitive performance to sEMG for gesture classification
with similar conclusions being reached by Akhlaghi et al. [28] and Fernandes et al[29].

Other works have developed real-time classification systems using multi-channel A-mode
setups. Yang et al. [30] implemented a four-channel system that achieved high classifi-
cation accuracy for 11 finger gestures in both offline and online scenarios. Comparative
analyses by He et al. [31] and Yang et al. [32] showed that A-mode ultrasound generally
outperforms sEMG for gesture classification and is more robust to nonstationary muscle
activity. Xia et al. [33] extended these findings by demonstrating improved performance
through sensor fusion of A-mode ultrasound and sEMG for 20 gestures.

Beyond basic classification, Yang et al. [34] proposed a method for simultaneous pre-
diction of finger gestures and wrist rotation, achieving high accuracy with a subclass
discriminant analysis approach. Guo et al. [35] and Cai et al. [36] introduced methods
for recognizing both predefined and novel gestures, with the latter applying dynamic
time warping to support dynamic gesture recognition. Zeng et al. [37] further evalu-
ated the fatigue sensitivity of A-mode versus sEMG-based systems, showing promising
robustness of ultrasound in prolonged use.

For amputee applications, Yang et al. [38] applied wearable A-mode sensing and a multi-
output Gaussian process model to achieve simultaneous classification of discrete finger
gestures and continuous wrist motions in transradial amputees.

In terms of algorithmic advancements, deep learning has begun to play a major role. Zeng
et al. [39] showed the superiority of Convolutional Neural Networks (CNNs) for gesture
recognition. More recently, Vostrikov et al. [2] developed a lightweight, low-power
wearable ultrasound armband integrated with an XGBoost classifier, achieving high
classification accuracy with minimal session-to-session variability. They later introduced
an end-to-end framework for feature extraction from raw ultrasound signals optimized
for edge computing applications [40].
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Together, these studies underscore the growing role of A-mode ultrasound in wearable
gesture recognition systems, offering a compelling alternative to traditional biosignals.

2.2.2. Continuous Hand Movement Estimation

A related area of interest for A-mode US is continuous hand movement estimation.
Early work by Guo et al. [41, 42, 43] leveraged 1-D A-mode ultrasound to monitor
dynamic changes in skeletal muscle thickness during contraction. Their studies found
that A-mode US outperformed sEMG in tasks involving wrist extension, highlighting its
sensitivity to subtle muscle deformations.

Yang et al. [34] expanded this line of work by estimating isometric grasp forces across
eight distinct hand gestures using wearable A-mode ultrasound sensors. Although they
found that ultrasound-based force estimation was less accurate than sEMG [32], their re-
sults underscored the modality’s viability for wearable applications. Building upon this,
Zou et al. [44] introduced a multimodal approach, employing a multikernel convolutional
neural network to enhance grasp force estimation from A-mode signals.

Significant progress has also been made toward decoding more complex, multi-degree-
of-freedom (DoF) movements. In 2020, Yang et al. [16] demonstrated for the first
time the simultaneous decoding of wrist rotation and hand grasp using wearable A-
mode ultrasound outperforming sEMG. More recently, they proposed a semi-supervised
learning framework to decode proportional and simultaneous wrist and hand movements
[45].

Further advancing the field, Spacone et al. [3] demonstrated the regression of three
hand-wrist DoFs using a lightweight, fully wearable A-mode ultrasound armband. Their
method achieved state-of-the-art results, and, notably, they also addressed the critical
issue of robustness to transducer repositioning across sessions, a first in A-mode ultra-
sound research for hand movement estimation.

Despite these advancements, current work remains largely constrained to a maximum
of three DoFs, with few studies exploring robustness across subjects, devices, or varying
sensor placements. These challenges highlight the need for further investigation into
scalable and generalizable A-mode ultrasound solutions for continuous, multi-DoF hand
movement estimation.

2.2.3. Lower Limb Movement Estimation

Recent studies have begun exploring the use of A-mode ultrasound for the control and
monitoring of lower-limb prostheses. Murray et al. [46] investigated ambulation mode
classification using wearable A-mode ultrasound on seven transfemoral amputees. Their
system achieved a classification accuracy of 91.8% using ultrasound alone and 95.8%
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when combined with kinematic data, suggesting that ultrasound can provide comple-
mentary information for prosthetic control.

Further work by Mendez et al. [47] demonstrated the feasibility of predicting knee
kinematics using wearable A-mode ultrasound in transfemoral amputees, reinforcing its
potential in voluntary control of lower-limb prostheses.

2.2.4. Biomedical Monitoring

Beyond neural interfaces, A-mode ultrasound has been applied in a variety of biomedical
contexts. For musculoskeletal analysis, Hafthorsdottir et al. [48] demonstrated that
muscle pennation angles in the gastrocnemius can be extracted from raw ultrasound
data, a method later adapted for embedded devices by Vostrikov et al. [49].

In cardiovascular monitoring, Giordano et al. [50] developed a wrist-worn IoT device
capable of accurate heart rate extraction using a single A-mode channel. Lin et al.
[51] introduced a fully integrated ultrasonic system-on-patch, which enables continuous
tracking of deep physiological signals, such as central blood pressure and cardiac output,
for up to 12 hours.

Frey et al. have contributed significantly to wearable A-mode ultrasound applications:
they developed a low-power, sEMG-triggered ultrasound system for long-term muscular
activity monitoring [52], and a compact device for in-vivo A-mode measurement of the
common carotid artery [1]. Building on this, Vostrikov et al. [53] extended the use of A-
mode data for full cardiorespiratory monitoring, achieving reliable heart and respiratory
rate estimates with low error margins.

In contrast, Kenny et al. [54] presented a hands-free, continuous-wave Doppler ultrasound
patch that adheres to the neck and tracks blood flow velocity in the common carotid
artery. Unlike A-mode systems, their work focuses on Doppler signal processing to
capture hemodynamic changes using an automated algorithm.

Additionally, Leuteren et al. [55] evaluated the SENS-U, a small wireless ultrasonic
sensor for continuous bladder monitoring. The device notifies users when bladder filling
reaches a threshold, and was validated for everyday use in children.

2.3. Biosignal Foundation Models

Foundation models have achieved remarkable success in domains such as natural lan-
guage processing and computer vision. Motivated by these developments, researchers
have increasingly investigated their application to biosignals, with electroencephalogra-
phy (EEG) emerging as a particularly promising area. To date, we are unaware of any
works applying this approach to A-mode US making this the first project of its kind.
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2.3.1. Foundation Models for EEG

Early efforts in EEG foundation modeling were led by Mohsenvand et al. [56], who
adapted the SimCLR framework [57] for time-series data to enable channel-wise con-
trastive learning. This demonstrated the viability of self-supervised learning in the EEG
domain. Building on this momentum, Kostas et al. [58] introduced BENDR, an adap-
tation of wav2vec 2.0 [59], which tokenized EEG signals through convolutional layers
before processing them with a Transformer encoder. This approach offered sequence-
length independence, but lacked modelling of spatial dependencies across EEG channels.
To address this, BIOT [60] extended the architecture by incorporating frequency em-
beddings via FFT and learned positional encodings. With contrastive pretraining on
corrupted segment pairs and linear attention modules, BIOT marked a notable improve-
ment in both temporal and spatial understanding.

A shift toward time-frequency representations was seen in BrainBERT [61], which uti-
lized spectrograms generated from STFT or Superlet transforms as model inputs. De-
spite achieving effective spectrogram reconstruction using masked autoencoding, the
model was limited by its single-channel focus and reliance on private iEEG datasets.
A follow-up work by Zhang et al. [62] proposed Brant, a dual-Transformer architec-
ture that explicitly modeled inter-channel relationships through separate temporal and
spatial encoders. Frequency information was encoded using spectral power features, al-
lowing for improved spatial awareness. However, its considerable model size and use of
private data introduced challenges for fair comparison. Brant2 [63] further scaled this
design, introducing CNN-based tokenization and data augmentation prior to pretraining
with a hybrid masked autoencoding and forecasting objective. Despite its impressive 1B
parameter scale, the lack of peer-reviewed publication limits its current impact.

Parallel to these advances, EEGFormer [64] brought vector quantization to the field
by discretizing Fourier-transformed EEG patches and reconstructing them via a Trans-
former decoder. Yet, its omission of explicit channel embeddings and limited evaluation
of the quantization step raise concerns. Expanding on EEGFormer, LaBraM [65] intro-
duced a learned VQ-VAE [66] tokenizer and trained a Transformer encoder to predict
masked tokens. While this approach was trained on a broad and diverse EEG corpus,
its lack of ablation studies and comparisons to existing models like BrainBERT or Brant
leaves open questions about its relative effectiveness.

Beyond masked autoencoding, NeuroGPT [67] employed an autoregressive GPT-style
decoder with a novel causal masking scheme. Multiple masked copies of the same input
were processed per forward pass, progressively revealing more context. However, the
paper omits details on how positional or channel information is encoded, potentially
limiting reproducibility and interpretability.

Moving away from Transformer-based models, Mentality [68] introduced the use of
Mamba [69], a selective state-space model offering linear complexity in sequence length.
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It combined convolutional and linear channel mixing with a U-Net [70] and Mamba-
based encoder-decoder structure. Although innovative, the lack of rigorous comparative
analysis with earlier models makes it difficult to assess its relative strengths.

An alternative architecture was proposed by MultiViT [71], which trained a separate
Vision Transformer for each EEG channel and aggregated [CLS] tokens across chan-
nels. While this approach captured intra-channel dynamics well, it did not enable cross-
channel attention and required significant computational resources.

More recently, EEG2Rep [72] introduced a novel objective in which models predict
abstract representations of unmasked data using masked inputs. This context-driven
learning strategy aims to filter out irrelevant raw-level features, though its reliance on
channel-mixed tokenization may obscure spatial interpretability.

Finally, CEReBrO [73] offered a more compact and interpretable alternative. It in-
troduced a split attention mechanism to disentangle inter and intra-channel modeling,
supporting both temporal and spectral inputs. This work is also the blueprint for the
current project.

In summary, EEG foundation models have rapidly evolved from early contrastive learn-
ers to sophisticated architectures leveraging frequency-domain representations, attention
mechanisms, and large-scale pretraining. Despite these advances, the field continues
to grapple with challenges in cross-dataset generalization, consistent evaluation bench-
marks, and the effective encoding of spatial and temporal EEG characteristics.

2.3.2. Foundation Models for ECG and PPG

In recent years, foundation models for biosignals such as electrocardiography (ECG)
and photoplethysmography (PPG) have gained increasing attention. One of the earli-
est examples of self-supervised-learning (SSL) applied to ECG was presented by Cheng
et al. [74], who developed a subject-aware contrastive learning framework incorporat-
ing both a subject-specific contrastive loss and an adversarial training objective. This
design encourages subject-invariant representations while still capturing discriminative
information relevant for downstream tasks. Their model, based on a ResNet encoder,
was evaluated on both EEG decoding and ECG anomaly detection, demonstrating its
flexibility across modalities. Building on the concept of physiology-informed learning,
Gopal et al. [75] introduced 3KG, a contrastive learning approach tailored to 12-lead
ECG signals. Their method applies 3D augmentations to generate multiple views of
each sample and processes each lead independently through a 1D convolutional neu-
ral network. Pretrained on the PhysioNet 2020 challenge dataset, 3KG showed strong
performance on downstream classification tasks.

In a related vein, Kiyasseh et al. [76] proposed CLOCS, a suite of contrastive objectives
that align ECG representations across space, time, and patient identities. Using four
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datasets with varying lead configurations, CLOCS achieved consistently better perfor-
mance than existing contrastive baselines such as BYOL and SimCLR, particularly when
fine-tuned for clinical outcome prediction.

Extending the utility of SSL to emotion recognition, Sarkar et al. [77] developed a multi-
task SSL framework wherein six distinct signal transformations serve as pretext tasks.
A convolutional encoder followed by a fully connected classifier forms the architecture,
and the model, pretrained and evaluated on the same datasets but with distinct tasks,
achieved superior results to existing emotion recognition baselines.

Complementing these efforts, Mehari et al. [78] explored a wide range of SSL paradigms
in the ECG domain, including instance discrimination and latent forecasting. Their
analysis revealed that contrastively pre-trained models not only outperformed super-
vised baselines by approximately 1% but also exhibited enhanced label efficiency and
robustness to noise, especially in clinical ECG classification tasks.

Addressing stress detection from ECG signals, Rabbani et al. [79] adapted the SimCLR
framework to propose a contrastive SSL model for stress assessment. Their approach
was validated on two publicly available stress-related ECG datasets, highlighting SSL’s
applicability to affective computing.

For ECG analysis in wearable contexts, Lai et al. [80] designed a momentum contrastive
learning framework using a ResNet18 encoder and a Siamese network structure. By
employing four carefully designed data augmentations, their system was able to classify
60 diagnostic categories, reflecting the potential of SSL to scale across large diagnostic
vocabularies in real-world data.

In a more specific application, Kumar et al. [81] proposed a two-phase SSL method
for hypopnea detection from single-channel ECG. In the first phase, an encoder learns
generalized signal representations from unlabeled data, while the second phase fine-tunes
both the encoder and a classifier for the target task, enabling effective detection with
limited annotations.

Finally, Abbaspourazad et al. [82] presented a large-scale SSL framework for both ECG
and PPG modalities using data from the Apple Heart and Movement Study (AHMS).
Their model, built around an EfficientNet-style 1D CNN encoder, combines participant-
aware positive pair selection with a regularized contrastive loss. This approach not only
supports training on large-scale consumer-grade sensor data but also generalizes well
across both ECG and PPG signals.

Together, these studies underscore the growing maturity of SSL for ECG analysis. Most
of the works presented focus on contrastive learning and employ convolutional encoders.
However, there is a lack of general foundation models that can generalize across tasks,
and most efforts are still focused on a single application domain.
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2.3.3. Foundation Models for Wearable Data

With the proliferation of consumer-grade sensors, wearable devices now generate vast
amounts of longitudinal physiological data. However, the limited availability of labeled
annotations and the variable quality of signals present significant challenges for model
training. Recent advances in self-supervised learning (SSL) have shown great promise
in leveraging unlabeled wearable data to learn generalizable and personalized represen-
tations.

An early step in this direction was taken by Hallgrimsson et al. [83], who employed
a supervised attentional convolutional network to extract individualized cardiovascular
response signatures from minute-level wearable data, including heart rate (HR) and step
count.

Expanding beyond supervised learning, Wu et al. [84] proposed HeartSpace, which com-
bines a time series encoding module with a pattern aggregation network. Using a Convo-
lutional Autoencoder backbone and contrastive pretraining, HeartSpace captures both
intra- and inter-series correlations, enabling robust representation learning for down-
stream tasks like personality prediction and user identification.

Spathis et al. [85], developed a self-supervised model that predicts heart rate responses
from physical activity signals using a deep neural network and a custom quantile loss
function. Trained on over 280,000 hours of combined wrist accelerometer and wearable
ECG data, their embeddings generalized effectively across a range of downstream health
and demographic prediction tasks.

In parallel, Tang et al. [86] adapted the SimCLR contrastive learning framework to the
domain of human activity recognition (HAR). By systematically evaluating 81 combi-
nations of signal transformations, they identified effective augmentation strategies and
demonstrated performance gains over traditional supervised and unsupervised meth-
ods.

Finally, Yuan et al. [87] developed a large-scale self-supervised model for sleep stage clas-
sification using accelerometry and laboratory-based polysomnography. Their framework
was trained and validated across diverse cohorts in three countries and demonstrated
strong generalization when applied to 100,000 UK Biobank participants, showcasing the
scalability of SSL for population-level inference in sleep health.

Together, these studies highlight the evolving landscape of foundation models for wear-
able data, driven by innovations in self-supervised learning, physiological modeling, and
large-scale deployment.
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Chapter 3
Methods

3.1. Data sets

Many different datasets were used in the current work. They can be broadly subdivided
into two categories: pre-training datasets and finetuning datasets. Pre-training datasets
are large sets of unlabeled data that are used to pre-train the foundation models in a
self-supervised way while finetuning datasets are much smaller corpuses of high-quality
labeled data that are used to train the model to perform relevant tasks.

3.1.1. Pre-training

Foundation model pre-training requires datasets that fulfill a set of criteria. Firstly,
the data set must be large enough, given that the models to be trained usually contain
millions to billions of parameters. It should also be highly-varied since the goal of pre-
training is that the model learns a challenging task on a highly varied data set so that it
can later generalize to a wide array of downstream tasks. These assertions are supported
by previous work on large language models showing that there exist scaling laws relating
model size, data set size, and compute amount [88]. These scaling laws can be used to
estimate the optimal size of the pre-training data set given the size of the model, or
alternatively, optimize the size of the model for the available datasets. However, there is
no evidence that scaling laws derived from the field of natural language processing are
directly applicable to the field of foundation models for biosignal processing, much less
the specific case of raw ultrasound. There is a need for more research in this field. Ideally,
the pre-training data must be of high quality and closely related to the downstream tasks
we are targeting. However, in the domain of raw ultrasound, there is a distinct lack of
large datasets. This is due to the fact that most medical ultrasound applications rely on
US images and most commercial systems do not let the user access the raw ultrasound
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data that they acquire. To get around this issue the current project has focused its
efforts on exploring two alternative directions:

• The use of other acoustic datasets such as audio data, which stem from similar
physical processes as ultrasound though they are distinct from it both in their
physical characteristics (bandwidth, frequency composition, medium) and their
acquisition (mostly single-channel, smaller sampling frequency).

• The use of synthetic ultrasound data simulated from parametric maps estimated
from ultrasound images.

Table 3.1 provides an overview of the pre-training datasets that have been selected for
this project.

Dataset Modality # channels # samples Memory size
Freesound Audio 1 10k - 100M 49 Mb - 430 Gb
MMCSG Audio 7 4M 107 Gb
USDataRecycler Ultrasound 192 (subsampled to 32) 10k - 12M 500 Mb - 511 Gb

Table 3.1.: Overview of pre-training datasets

Freesound

Freesound [89] is a large collaborative database of audio recordings released under Cre-
ative Commons licenses. The audio clips are crowd-sourced from users across the globe
and the database is curated and maintained by the Music Technology Group at Uni-
versitat Pompeu Fabra. Given its crowd-sourced nature, the database contains a huge
diversity of recordings both in terms of their content and acquisition. LAION, a non-
profit organization dedicated to open-source AI research, compiled the majority of the
Freesound database (515581 samples totaling 3033.38 hours) and made them available
through the HuggingFace repository. To compose this data set they kept only samples
shorter than 3 minutes, discarded samples with a sampling rate lower than 16 kHz, and
resampled all samples to 48 kHz.

In order to adapt the Freesound data set for our application, we developed a script that
prepared the data for pre-training. We used the streaming feature of the HuggingFace
data set to load samples on demand rather than downloading the entire data set to disk.
Each sample is then split into segments of length 1000. This length was chosen as it
is similar to the sample length of the downstream tasks. The data set was split into
training and validation splits with an 80/20 ratio, ensuring that segments from the same
sample belonged to the same set, so as to avoid data leakage. Each set is saved to its
own hdf5 file in groups to make sample access and loading easier during pre-training.
We composed 5 different datasets from the Freesound data with increasing number of
samples: 10k, 100k, 1M, 10M and 100M. The smaller datasets are useful for debugging
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and testing in modest hardware while the larger ones are to be used to pretrain the
models. The most commonly used data set size was 10M as it provided a good tradeoff
between its size and the time it took for models to converge when pre-trained on it.

MMCSG

The multi-modal conversations in smart glasses data set [90] comprises two-sided con-
versations recorded using Aria glasses, an AR research device produced by Meta. It
contains multi-channel audio, video, accelerometer, and gyroscope data. The data set
was released by Meta to advance research in areas such as automatic speech recognition,
activity detection, and speaker diarization. Each recording features a conversation of
two participants with optional background noise and is recorded with a 7-channel mi-
crophone array. In total, there are 530 recordings totaling 26 hours of audio sampled at
48 kHz.

Similarly to the Freesound data set, we had to adapt the MMCSG recordings for our
task. Each clip was divided into segments of 1000 time steps. The data set was divided
into training and validation sets with a split of 80/20, ensuring that segments from a
specific recording belonged only to one of the sets, so as to avoid data leakage. Each set
was saved to its own hdf5 file. Given its comparatively smaller size, the MMCSG data
set was used in its entirety for pre-training. Only a single reduced version was composed
for debugging and visualization purposes.

USDataRecycler

The Ultrasound Data Recycler data set is a synthetic ultrasound data set simulated from
estimated maps of acoustic properties. The parametric maps are estimated from US im-
ages through a deep learning algorithm and then used to perform numerical simulations
of wave propagation using the k-Wave MATLAB toolbox [91]. It consists of 499,950
samples simulated with 192 channels each and a duration of 1712 time steps. The total
disk space of the data set is 625 Gb. For further information on how this data set was
generated refer to [92].

As with the audio datasets above, the USDataRecycler data set had to be adapted for
foundation model pre-training. Unlike Freesound and MMCSG, its sample length did
not need to be adjusted as it was similar to the sample length for downstream tasks.
However, the number of channels per sample was very large when compared with what is
typically present in a wearable ultrasound scenario. Thus, each sample of 192 channels
was split into 24 samples of 8 channels through randomized, non-overlapping, channel
selection. This made the samples more similar to those in the downstream datasets and
avoided overly large memory consumption when pre-training the models.
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3.1.2. Finetuning

The finetuning datasets in this project concern a variety of tasks in the domain of
ultrasound. They are small high-quality datasets acquired with a variety of hardware
configurations and often times optimized for the specific task.

data set Task Origin # subj.
# sessions
per subj. # ch. # samples

HWT Regression Internal 5 9 4 439867
HWC Classification Internal 1 15 4 73607
MCC Classification External 8 1-7 1 212872

Table 3.2.: Overview of finetuning datasets

HWT

The hand and wrist tracking data set [3] comprises US data of the forearm acquired
while the subjects performed a set of hand/wrist movements. The study measured
5 subjects for 9 sessions each. Within each session, multiple repetitions of the same
hand/wrist movements were performed. The movements were categorized according to
their complexity into: simple movements (1 DOF change), sequential movements (2 DOF
changes sequentially), and complex movements (2 DOF changes simultaneously).

US data was acquired in the form of A-mode scans with a wearable US bracelet based on
the WULPUS platform [1]. The bracelet contains 4 ultrasound probes that are excited
in a round-robin fashion with a frequency of 50 Hz, resulting in a total of 80 ms per
full scan. Each US probe is excited at a center frequency of 2.25 MHz and sampled at
8 MHz, acquiring a total of 400 time steps per excitation. The total number of samples
across all sessions and participants is 439867.

The data set also contains three labels per sample: wrist flexion-extension (WRF E),
wrist radio-ulnar deviation (WRRUD), and finger flexion-extension (FGF E). These were
acquired through an optical motion capture system comprised of six cameras that track
reflective optical markers placed on the hand at a frequency of 100 Hz. For further
information about the modeling of hand movements and the estimation of the ground
truth labels see the original work by Spacone et al.[3].

HWC

The hand and wrist classification data set comprises US data of the forearm acquired
while the subject performed a set of hand gestures. The study measured a single subject
for 15 sessions. Within each session, multiple repetitions of different hand gestures were
performed. In the first 7 sessions, the subject performed a set of 13 different gestures,
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while for the last 8 sessions, they performed a reduced set of 4 gestures. The acquisition
setup for the US scans is identical to the one described for the HWT data set. Labeling
was done through manual recording of the gestures in a GUI during the experiment. In
total, the data set comprises 73607 samples, each with 4 channels and 400 time steps
per channel.

MCC

The muscle contraction data set is a multi-subject multi-session data set of single-channel
A-mode scans acquired during exercise [93]. Eight subjects were measured while they
performed squats by placing a commercial ultrasound probe on their calf muscle. The
center frequency of the acquisition was 3.5 MHz. The labels registered were binary,
distinguishing contracted from uncontracted states, and they were registered through
the press of a button while the participants performed the action. Each subject was
measured for a different number of sessions ranging from 1 to 7 and each session had a
different duration.

3.2. US signal representation

In the current work we have focused on the time representation of raw US signals as
waveforms. This is the most common representation as it directly reflects the way in
which the US data was acquired by the transducer. Alternative representations such
as frequency (Fourier or Wavelet transform) or time-frequency (spectrograms) represen-
tations exist but given the pioneering nature of this work, we decided to restrict our
analysis to waveforms. The main trade-off between these two signal representations is
the time versus frequency resolution. As formalized in the Heisenberg-Gabor uncertainty
principle,

σE,t ∗ σE,f ≥ 1
4π

the standard deviations of the time σE,t, and frequency σE,f cannot be both arbitrarily
reduced. The time representation of US signals maximizes the temporal resolution at
the cost of reduced frequency resolution. Additionally, the use of the waveforms is
more computationally efficient as it does not require additional transformations, and it
prevents any information loss during those transformations.

For an acquisition system with C channels the waveforms W can be expressed as

W ∈ RC×T

where T is the number of time steps acquired per channel per pulse and it can be
expressed as

T = t/fs
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where t is the duration of the acquisition and fs is the sampling frequency of the sys-
tem.

A derivative of the waveform that is very widely used when analysing US data and other
RF signals is the envelope which is a smooth curve outlining the extremes of a signal.
In digital signal processing, it is most often estimated with the Hilbert transform,

H(u)(t) = 1
π

p.v.

∫ +∞

−∞

u(τ)
t − τ

dτ

which can be interpreted as the convolution of u(t) by the function h(t) = 1
πt . The

envelope of US RF signals is commonly used as input for wearable ultrasound tasks
such as hand gesture regressions [2, 93, 49, 9] or as a target for representational learning
[3, 40].

3.3. Tokenization

Transformers are sequence-to-sequence models and thus, require their input signals to
be converted into sequences of feature vectors of a given length. These feature vectors
are commonly called tokens, and the process of converting the input signal into them
is called tokenization. The first step is to divide the input signal W ∈ Rc×t into non-
overlapping patches of size p. This results in a patched input Wp ∈ Rc×Np×p with
Np = t/p. Using patches rather than individual time steps reduces the memory and
runtime of the attention map computation by a factor proportional to the patch size
squared. The next step is to project each patch Pc,i ∈ Rp onto a given embedding
dimension de through a learnable linear projection Wproj ∈ Rde×Np such that,

Ec,i = WprojP ⊤
c,i (3.1)

Thus, the tokenized input becomes Wtok ∈ Rc×Np×de . The embedding dimension of the
tokens will be preserved throughout the model, and it has a significant impact on the
model size as it increases the width of the MLP layers in each Transformer block. In
this work, we have experimented significantly with the embedding dimension as it has
a big effect on the model’s power and its tendency to underfit/overfit. In practice, both
patching and projection are performed in a single step through a learnable convolutional
layer with a stride equal to the patch size and the number of kernels equal to the
embedding dimension. Patching and projection are performed per channel so that each
token only contains information from a single channel. This is unlike what is usually
done for RGB images where the three channels are mixed together. The rationale behind
this design choice is that we want our models to generalize to datasets with different
channel configurations and to preserve the information from each individual transducer
as it may refer to different parts of the body. To ensure that the channel and temporal
information of each token is preserved once passed to the model, we add learnable

22



3. Methods

channel and temporal encodings Wchan ∈ RNp×de and Wtemp ∈ Rc×de . Thus, the final
input embeddings can be expressed as,

Ein
c,i = Ec,i + Wchan,c + Wtemp,i (3.2)

where, Wchan,c is the positional encoding for channel c and Wtemp,i is the positional
encoder for token i.

3.4. Model Architecture

The architecture of the encoder used in this project is the Transformer, a model ar-
chitecture that has revolutionized sequence-to-sequence tasks such as NLP and EEG
modelling. Transformers are based on a combination of attention layers and multi-layer
perceptions that operate on the input tokens at a given embedding dimension de. As
can be see in Figure 3.1, each transformer block is composed of two sub-layers: an at-
tention layer and a multi-layer perceptron. Additionally, each sub-layer is followed by
layer normalization which leverages skip connections to normalize the sublayer output
by its input. Thus, their output is

LayerNorm(x + Sublayer(x)) (3.3)

The classic attention layer introduced in [94] is a function of three vectors: the query
(Q) key (K) and value (V ) vectors. These are obtained through linear projection of the
input tokens X like,

Q, K, V = XW Q, XW K , XW V

They are then combined to obtain the attention values through,

Attention(Q, K, V ) = softmax
(

QKT

√
de

)
V (3.4)

yielding an attention map A ∈ Rl2 where l is the length of the input sequence. Multi-
head attention was introduced in [95] and it splits Q, K, V projection into h attention
heads each with a dimensionality of de/h. The attention map is then computed by,

MultiHead(Q, K, V ) = Concat(head1, ..., headh)W O (3.5)

where,
Headi = Attention(XW Q

i , XW K
i , XW V

i ) (3.6)

thus concatenating the individual attention computations and projecting them back to
the embedding dimension de. The strength of Transformers lies in the attention layer
which allows it to attend to relevant long-range dependencies while ignoring irrelevant
ones. Simultaneously, given their lack of context compression, Transformer’s memory
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and time complexity scales quadratically with the length of the input sequence. To get
around this constraint several modifications have been proposed [73] but in the current
work we will focus on the original attention mechanism.

Figure 3.1.: Diagram of the a) scaled-dot product attention mechanism, b) multi-head
self attention mechanism, and c) transformer block. Images a) and b) are
excerpts of [95].

Our models do not use [CLS] tokens. Instead, during finetuning, we mean pool the
encoder output tokens and use this as the input for the model head. We have employed
fully-connected model heads in this work with 2 layers: a first layer of 50 neurons and a
second layer with as many neurons as needed for the output label. After the first layer we
apply a Leaky-ReLU activation. The choice of this model head architecture is motivated
to make comparison with encoderless baselines easier. Given the fully-connected nature
of our model, the embedding dimension de of the encoder (or lack thereof) will influence
the number of parameters in the model head.

3.5. Pre-training strategy

We pretrained our encoders using the Masked Autoencoding (MAE) task. This is a very
common pretraining task used by several high performing vision [96], timeseries [97] and
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biosignals foundation models [73]. Alternatively, we could use contrastive learning, an
invariance-based method that works by training the model to generate similar embed-
dings for different augmentations of the same sample, and it can be supplemented by
enforcing different embeddings for different samples (these are known as positive and
negative pairs, respectively) [98]. This paradigm is very popular in NLP and computer
vision [99, 100] because these modalities benefit greatly from augmentations while still
keeping most of their semantic information intact. In US, although there exist aug-
mentation strategies, it is unclear what effect they have on the underlying semantic
information present in the signal, given that biosignals such as US are very hard to
interpret by humans when compared to images or text.

MAE works by randomly masking a proportion of the input tokens and substituting
them by a learnable [MASK] token. The data is then fed to the encoder that generates
one embedding of dimension de per token. Each of these embeddings is then passed
to a common linear layer that projects them back to the original patch size, and the
reconstruction is compared with the input. The model learns by computing the L2 loss
and optimizing its parameters according to it. This specific MAE strategy is inspired
by SimMiM [96], and has been successfully applied both to images and EEG data [73].
Figure 3.2a presents a visual representation of this approach. In this work, we utilized
a masking ratio of 50 % as that is consistent with the current literature.

3.5.1. Pre-training style

As mentioned in section 3.2, the envelope is a relevant characteristic of the US signal
that is often employed to extract features for prediction tasks. That is why we decided
to incorporate it into the model pre-training, yielding three different variations of pre-
training:

• Wave2Wave: This is the standard MAE task in which the model receives the
masked waveform as input and is asked to reconstruct it.

• Wave2Env: In this case, the model receives the masked waveform as input and is
asked to predict the envelope of the input as its output.

• Env2Env: In this case, the model receives the masked envelope as input and is
asked to reconstruct it.

3.5.2. Loss function

The model is trained to reconstruct the masked and unmasked patches by minimizing
the following loss function:

Lglobal = Lmasked + α · Lvisible
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(a) Pretraining (b) Finetuning

Figure 3.2.: Diagrams of the model pipeline for both pretraining and finetuning.

The hyperparameter α balances the contributions from the masked and visible terms of
the loss. This provides stability during training and helps the model learn at the start
of training. We chose the L2 loss as our loss function, as it has been found to be the
best performing in previous works dealing with masked EEG waveform reconstruction
[73].

3.6. Finetuning strategy

During pre-training each model is trained for a fixed number of epochs and it is evaluated
on a disjoint validation set after each epoch. At the end of training the best performing
model on the validation set is selected. There is no perfect linear correlation between
validation loss and performance in downstream tasks but this is the more principled
approach to take and commonly used in other works. The pretrained encoder is then
taken and a decoder is trained on its outputs to accomplish a task of interest. Finetuning
can be performed in two different ways: full finetuning where the encoder and model
head are optimized jointly or linear probing, where the encoder is frozen and only the
model head is fine-tuned. The latter option is useful in assessing how informative the
pre-trained embeddings are for downstream tasks, but full finetuning generally yields
better results. In addition, to test the effectiveness of pre-training we also train a model
from scratch. During fine-tuning we train a model until the loss ceases to improve for
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more than 3 epochs or training reaches 100 epochs. A visual diagram of fine-tuning can
be seen in Figure 3.2b.
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Chapter 4
The TimeFM repository

The work carried out in this project has been performed within the framework of
TimeFM. TimeFM is a code repository hosted on Github that focuses on pre-training
and finetuning of time-series foundation models in a research setting. It is the product of
a collaboration between the Computer Vision and the Integrated Systems laboratories at
ETH Zürich and it is actively being developed. Most of the previous work on TimeFM
revolves around foundation models for EEG. To our knowledge, ultrasound is the first
modality different from EEG that is incorporated into TimeFM.

TimeFM relies on PyTorch Lightning [101] for model training. Pytorch Lightning is
an open-source Python library that provides a high-level interface for Pytorch code.
Firstly, it organizes and separates the code relating to the model, the data handling and
the training. It also automates the training process through its Trainer module which
automatically performs forward and backward passes and optimizes the model parame-
ters. This reduces boilerplate code and makes the codebase more compact, readable and
maintainable. Finally, it enables models to run at scale by automating the detection and
handling of accelerators both locally and in distributed settings.

Training of foundation models involves the careful selection of many hyperparameters
controlling everything from data loading and preprocessing to model architecture and
optimization. To keep track of them and enable reproducible research it is essential
to employ a flexible and effective configuration management framework. Hydra [102]
is an open-source Python library that provides a hierarchical configuration framework
allowing dynamic composition and overriding of configurations. This allows us to test
different experimental conditions and evaluate their effect on the models. Each module
in TimeFM has its dedicated yaml file that defines its default condition and allows for
experiment-specific modifications where needed.
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4. The TimeFM repository

4.1. Original State of TimeFM

I got access to TimeFM on October 11th 2024. I was instructed to take the work by
Dimofte and Bucagu as the foundation for this project. This section details the state of
the codebase at that point, which can be consulted in the "cvpr_split_attn" branch of
TimeFM: https://github.com/ofsoundof/TimeFM/tree/cvpr_split_attn_fm. The
following description has been extracted from their master’s thesis report [103].

4.1.1. Datasets

Dataset classes in PyTorch handle how the data is loaded from disk and prepared before
being input to the model. There are different dataset classes for each downstream task,
as well as a specific class for HDF5 files. Each dataset has an attribute defining the
path to the data file as well as several others defining which transformations should be
applied to the data, whether the data will be used for pre-training or finetuning, and
how to cache the dataset during training. The datasets must have a __len__ method
that outputs the number of samples in the dataset and a __getitem__ method that
returns one sample.

4.1.2. Data Modules

The data modules in this work are all subclasses of LightningDataModule. This is an
object in PyTorch Lightning that aims to encapsulate all of the code relating to data
management. They must have a setup method that performs any steps needed prior
to training and then several dataloader methods for each split: train_dataloader,
val_dataloader, test_dataloader, and predict_dataloader. Each of these meth-
ods returns a PyTorch dataloader object, which wraps the dataset objects presented
in section 4.1.1 and allows them to be iterated in batches during training or inference.
Originally, there were two data modules:

• EEGDataModule takes in three datasets for training, validation and testing and
wraps them in a standard PyTorch DataLoader. Despite its name it is not at all
specific to EEG.

• ConcatenatedEEGDataModule takes in a list of datasets and parameters defining
the ratio of data to use for validation or testing. The input datasets are concate-
nated and then split randomly. Once again, despite its name its implementation
is not specific to EEG.
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4.1.3. Models

In TimeFM, the term "model" refers specifically to an "encoder", i.e. a module that
generates embeddings that can later be used by a model head for either reconstruction of
the original data or as input to accomplish a relevant downstream task like regression or
classification. The only encoder available in TimeFM when I started to work with it was
the so-called CEReBrO encoder. It is an encoder based on the Transformer architecture,
and it can be instantiated with a varying number of blocks, attention heads, and many
other parameters.

4.1.4. Model Heads

The term "model head" is often used interchangeably with the term "decoder" in the
foundation model literature. It refers to a prediction/reconstruction head that can be
attached to an encoder and used during pre-training or finetuning. There are several
model heads available in TimeFM:

• PatchReconstructionHead is a linear model used during pretraining that maps
the output tokens of an encoder to their original dimension.

• MAEDecoder is a Transformer decoder used during pretraining that maps the output
tokens of an encoder to their original dimension.

• MLPClassificationHead is a fully connected model for classification tasks. Each
layer is composed of dropout, a linear mapping, and optionally a user-defined
activation. The last layer maps the hidden dimension to the number of output
classes in the task.

• MultistepRegression is a linear model that takes in the mean of the output
tokens of an encoder and maps them to a number of regression targets.

In this case, the corresponding Hydra configuration controls hyperparameters such as
the input and output dimensionality of the model head as well as the width and depth
of hidden layers.

4.1.5. Tasks

The main element of a PyTorch Lightning pipeline is the LightningModule which con-
trols what happens in each training, validation, test or prediction step, as well as the
optimization and logging. In TimeFM these modules are called "tasks" and they encap-
sulate the forward and backward pass for each specific problem. They also implement
data augmentations, learning rate decays and encoder freezing/finetuning. They can be
divided into:

• Pre-training tasks:
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– SimmimMAETask implements a self-supervised masked auto-encoding regres-
sion task where the encoder takes in the masked and unmasked tokens, and
the decoder is a linear layer.

– VITMAETask implements a self-supervised masked autoencoding regression
task where the encoder only takes in the visible tokens while the decoder,
which is Transformer-based, takes in the encoder outputs and the [MASK]
tokens at relevant positions.

• Finetuning tasks:

– RegressionTask implements a supervised regression task with user-defined
encoder and decoder.

– ClassificationTask implements a supervised classification task with a user-
defined encoder and decoder.

4.1.6. Criteria

The criteria define which loss function to optimize for a given model and task. During
pre-training, in addition to the specific loss function, we must also define the relative
contributions of the masked and unmasked terms, as well as the modality of the input and
output (waveforms vs spectrogram). For finetuning, we must also select the appropriate
measure (L1 or L2 loss vs cross entropy), whether the output is binary or multi-class,
the number of targets, the weighing of different classes and how much label smoothing
to apply.

4.1.7. Schedulers

Learning rate schedulers control the value of the learning rate over the entire training
period. In addition to the type of scheduler used, we must also specify the base learning
rate and the duration of the warm-up period.

4.2. Modifications to TimeFM

In order to adapt the previous pipeline of TimeFM we have had to make several modifi-
cations to the existing pipeline. Below are the most significant. For an updated view of
the TimeFM repository including our updates you can consult the "us_trf_fm" branch
at https://github.com/ofsoundof/TimeFM/tree/us_trf_fm.
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4.2.1. Transforms

Transforms as we have defined them in this project are any sort of modifications to
the input data and/or labels that are performed before each sample is input to the
model. Additionally, they should only depend on the input itself and user-defined pa-
rameters. Originally, each dataset had a predetermined set of transforms that could be
applied or not depending on the user. This made the code inflexible and difficult to
reuse for new modalities or datasets. On the other hand, there was also a preproces-
sor module that transformed the data in the LightningModule, rather than within the
LightningDataModule, something that goes against the spirit of PyTorch Lightning.

To improve this, we leveraged the ability of Hydra to recursively instantiate objects,
together with the transform framework of the TorchVision library [104]. Now, each
dataset has two optional transform parameters in its constructor, sample_transform
and label_transform, which expect a PyTorch module with a forward method. Thus,
a single transform can be provided, or multiple independent transforms can be stacked
together using TorchVision’s Compose transform. In this way, an arbitrary transform
can be configured solely by modifying some lines in a configuration file. Additionally, it
removes unnecessary code within the dataset for every transform, as well as the control
arguments for each of the predefined transforms.

4.2.2. Data Modules

Since all the downstream tasks in this project are evaluated through Leave-One-Out
Cross-Validation, a new data module had to be created for it. This data module,
named CrossValidationDataModule has two file path (or list of file paths) arguments,
train_files and val_files, which defines which files will be part of each split. It
also has a dataset_target argument that controls which Dataset class will be used to
load and preprocess all the files and a dataset_params argument which defines all the
relevant arguments for the Dataset class beyond the file path.

4.2.3. Metrics

Originally each task in TimeFM had a set of hardcoded metrics that would be computed
and logged during training. This made the code hard to repurpose for new tasks where
the user might be interested in a different set of metrics to compare to the state of the
art. To enable more flexibility, we took advantage of the TorchMetrics library [105],
a collection of over 100 metric implementations in PyTorch that are rigorously tested,
standardized and compatible with distributed training. Their MetricCollection class
allows the user to define a list of metrics that they want to track and reduces the amount
of boilerplate code significantly. Once again, Hydra’s recursive instantiation of objects
allows maximum flexibility without having to modify the codebase, while TorchMetrics
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deals with all of the accumulation over batches, synchronization across devices and
logging.
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Chapter 5
Results

5.1. Pretraining

In this section, the analysis of results will be mostly quantitative, looking at the influence
of different model parameters on pretraining performance in different contexts, thus
informing the choices for the models that will be applied downstream. Most of the
experiments have been performed on pretraining with audio datasets (Freesound and
MMCSG), due to their availability from the beginning of the project, and the findings
have been used to inform pretraining with synthetic US data (USDataRecycler).

5.1.1. Normalization strategies

Normalization of input data is a common tool used in machine learning to standardize
inputs and aid model convergence. In this project we explored two different normaliza-
tion strategies: min-max normalization and z-score normalization. Figure 5.1 shows the
results of this analysis. For direct comparison, the loss values for each normalization
approach are divided by the square of the signal’s dynamic range, since the loss function
used is based on the L2 loss. This is done to allow fair comparison between runs with
different scales for the ground truth. It can clearly be seen that not normalizing the
data leads to loss instability and slower learning than normalization in both cases. In
the Freesound case, min-max normalization is slightly better than Z-score normaliza-
tion. In the MMCSG case, both min-max and Z-score normalization show very similar
performance. Thus, we have chosen min-max normalization as the default normalization
strategy during pretraining.
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(a) Freesound (b) MMCSG

Figure 5.1.: Loss evolution during pretraining according to normalization strategy.

5.1.2. Depth

Another key parameter in Transformer models is the number of blocks comprising the
model, which is usually termed the depth of the model. In Figure 5.2 we present the
performance of pretraining models with increasing depth.

(a) Freesound (b) MMCSG

Figure 5.2.: Loss evolution during pretraining according to the number of transformer
blocks (i.e. depth) of the encoder.

As expected, the deeper the model, the better performance is, though we see diminishing
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returns as we add more blocks. That is why for this work, we have mostly focused on
models with 8 blocks, as this seems to be a good tradeoff between model performance
and size.

5.1.3. Alpha

As explained in section 3.5.2 the parameter α balances the loss contributions of the
masked and unmasked tokens in the reconstruction task. As such it should play a key
role in ensuring proper learning during pretraining. Figure 5.3 shows however, that the
effect of varying alpha on the loss value during pretraining is minimal.

(a) Freesound (b) MMCSG

Figure 5.3.: Loss evolution during pretraining according to the α parameter in the loss
function.

A more thorough investigation of the models response to α is presented in Figure 5.4.
We can see that the effect of alpha on the masked term is minimal to non-existent. Its
only effect is on the unmasked term whose reconstruction Mean Absolute Error decreases
for increasing α something to be expected. Thus, in this project, we have opted to keep
α at 1, since it simplifies the loss to a conventional L2 loss and gives equal weight to
both terms of the loss function.

5.1.4. Masking ratio

Figure 5.5 shows the influence of the masking ratio parameter on model performance
during pretraining. This parameter controls what percentage of tokens is masked before
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Figure 5.4.: Effect of the α parameter on each of the pretraining loss terms in the MM-
CSG dataset.

being input to the encoder. The results follow intuition, as the larger the masked per-
centage is the worse it performs. Nevertheless, the aim of pretraining is to challenge the
model so it learns meaningful representations of the data. Thus, we opted for a masking
ratio of 0.5 as it has been shown to be optimal for masked waveform paradigms in other
works [73].

5.1.5. Tokenization parameters

A key duo of parameters that are relevant for Transformer-based models of biosignals
is the patch size and the embedding dimension as explained in Section 3.3. Patch size
controls how granular the tokens are and has a significant impact on memory consump-
tion. Embedding dimension determines the power of the model by controlling the space
it operates in and the number of parameters it has. Figure 5.6 displays the validation
loss as a function of these two parameters.

We can see two clear trends: the smaller the patch size the lower the loss is, while the
opposite is true of the embedding dimension. In the case of the patch size, though the
model does not significantly increase its number of parameters with decreasing patch
size, it does incur a penalty in terms of memory consumption which should be kept in
mind, specially for compute constrained settings. For the embedding dimension, we see
diminishing returns for larger embedding dimensions since the number of parameters
grows linearly with embedding dimension (which in this experiment is growing expo-
nentially). Thus, for this work we have opted for a patch size of 16 and an embedding
dimension of 192.
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(a) Freesound (b) MMCSG

Figure 5.5.: Loss evolution during pretraining according to the masking ratio.

(a) Freesound (b) MMCSG

Figure 5.6.: Validation loss according to tokenization parameters.
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5.1.6. Attention type

In Dimofte et al. [73], the authors introduced two new attention computation strategies
to minimize the memory overhead which becomes a problem in settings such as EEG or
US that benefit from small patch sizes and often have inputs with hundreds of channels.
These two strategies are termed alternating and two-axis attention. Their aim is to split
the attention computation into intra-channel and inter-channel attention. Figure 5.7
shows the pretraining loss for each of these attention types as well as the conventional
attention computation. We can see that performance is very similar, with alternating
attention being slightly worse than default and two-axis attention. Thus, in compute
constrained settings any of two-axis and alternating attention could be chosen to min-
imize memory consumption. However, since this project did not face such constraints,
we opted for the default attention mechanism as a first proof of concept, so as to reduce
complexity.

(a) Freesound (b) MMCSG

Figure 5.7.: Loss evolution in pretraining by attention type.

5.1.7. MAE strategies

As presented in section 3.5.1 this project explores three different Masked Auto Encod-
ing approaches: Wave2Wave, Wave2Env, and Env2Env. Figure 5.8 shows pretraining
performance for each paradigm and each dataset. In both Freesound and MMCSG, the
Wave2Wave strategy has the lowest loss, followed by Wave2Env and Env2Env. By con-
trast in USDataRecycler, Wave2Env and Env2Env show very similar performance while
Wave2Wave is much worse.

Figures 5.9, 5.10, and 5.11 shows some sample reconstructions for each of the pretraining
strategies and datasets. It is clear that reconstructions of masked patches is harder than
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(a) Freesound (b) MMCSG (c) USDataRecycler

Figure 5.8.: Loss evolution in pretraining for different MAE strategies.

that of unmasked patches for all models. In the case of the models pretrained on audio
datasets (Freesound and MMCSG) the reconstruction of masked tokens is still relatively
good.

By contrast, in Figure 5.11 we can see that the models pretrained on USDataRecy-
cler struggle significantly with the reconstruction of masked tokens. USDataRecycler
Wave2Wave specially displays very poor reconstruction of masked tokens which is usu-
ally a flat line. We have tried to improve this through several modifications such as
increasing model and dataset size, reducing α or patch size but results have not varied
significantly. A possible reason for this is the comparatively higher frequency of US
features compared to audio ones, which might be harder for the model to learn and
reconstruct appropriately.

5.2. Finetuning

In this section, we present the results of the best performing pretrained models in com-
parison to previous state of the art when available. We also show some relevant tests
for specific aspects of the models or the finetuning process.

5.2.1. HWT

Effect of pretraining

Tables 5.1 5.2 5.3 show the performance of pretrained models on the HWT dataset.
Model performance has been evaluated with three distinct splits of increasing complex-
ity:
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(a) Wave2Wave

(b) Wave2Env

(c) Env2Env

Figure 5.9.: Sample reconstructions of pretrained models with Freesound dataset for each
MAE strategy.
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(a) Wave2Wave

(b) Wave2Env

(c) Env2Env

Figure 5.10.: Sample reconstructions of pretrained models with MMCSG dataset for each
MAE strategy.

42



5. Results

(a) Wave2Wave

(b) Wave2Env

(c) Env2Env

Figure 5.11.: Sample reconstructions of pretrained models with USDataRecycler dataset
for each MAE strategy.
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• Aggregated split where samples are randomly assigned to 1 of 5 folds without any
constraints.

• Inter-session split where each fold contains samples from one session of each subject.

• Inter-subject split where each fold contains all the samples from one subject.

In the aggregated case (Table 5.1), all models achieve very good performance on this
task with Mean Absolute Errors around or below 2◦ for all three regression targets.
However, there are some interesting differences across datasets. For the audio datasets
(Freesound and MMCSG), Wave2Wave is the optimal pretraining strategy. In contrast,
the Wave2Env model pretrained on the USDataRecycler dataset outperforms the other
two pretraining strategies. This might indicate that the Wave2Env strategy is only useful
when the pretraining data comes from a modality that is similar to the downstream one.
Nevertheless, all pretrained models are worse than the model fine-tuned directly on HWT
without pretraining. This means that the current pretraining is not providing a benefit
for this task and might actually be detrimental.

Table 5.1.: Mean absolute error values (mean ± std) resulting from evaluating the models
with cross-validation on the HWT dataset with an aggregated split. Bold
values show the best performing model for each pretraining dataset, and
underlined values show the best performing model overall.

Model Characteristics MAE
Dataset Strategy WRFE [◦] WRRUD [◦] FGFE [◦]

None None 1.09 ± 0.01 0.97 ± 0.01 1.3 ± 0.02

Freesound
Wave2Wave 1.66 ± 0.04 1.44 ± 0.04 2.15 ± 0.05
Wave2Env 1.79 ± 0.07 1.57 ± 0.05 2.3 ± 0.08
Env2Env 1.77 ± 0.09 1.64 ± 0.06 2.27 ± 0.08

MMCSG
Wave2Wave 1.26 ± 0.06 1.17 ± 0.04 1.56 ± 0.1
Wave2Env 1.61 ± 0.01 1.43 ± 0.01 2.1 ± 0.02
Env2Env 1.65 ± 0.03 1.45 ± 0.03 2.14 ± 0.02

USDataRecycler
Wave2Wave 1.68 ± 0.11 1.46 ± 0.11 2.16 ± 0.13
Wave2Env 1.38 ± 0.06 1.22 ± 0.07 1.85 ± 0.08
Env2Env 1.62 ± 0.07 1.43 ± 0.06 2.11 ± 0.07

In the inter-session case (Table 5.2), the error values increase across the board as does
their standard deviation. However, as in the previous case, there is a difference between
the best performing strategy for models pretrained on audio versus the best performing
strategy for models pretrained on the USDataRecycler dataset. In this case, the Env2Env
strategy yields the best performance when pretraining on Freesound and MMCSG, while
Wave2Env is once again the optimal choice for pretraining on the USDataRecycler.
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Additionally, the best pretrained model in this experiment, USDataRecycler pretraining
with a Wave2Env strategy, outperforms the model trained from scratch on the HWT
data, even if by a small margin. This means that in this case, there might be a benefit
to pretraining.

Table 5.2.: Mean absolute error values (mean ± std) resulting from evaluating the models
with cross-validation on the HWT dataset with an inter-session split. Bold
values show the best performing model for each pretraining dataset, and
underlined values show the best performing model overall.

Model Characteristics MAE
Dataset Strategy WRFE [◦] WRRUD [◦] FGFE [◦]

None None 7.16 ± 1.38 6.65 ± 1.04 9.15 ± 2.74

Freesound
Wave2Wave 7.7 ± 1.17 6.59 ± 0.97 10.48 ± 2.7
Wave2Env 7.72 ± 1.14 6.42 ± 0.78 10.38 ± 2.19
Env2Env 7.52 ± 1.46 6.35 ± 0.69 9.61 ± 1.98

MMCSG
Wave2Wave 7.26 ± 1.28 6.74 ± 0.82 9.05 ± 2.05
Wave2Env 7.44 ± 1.34 6.3 ± 0.66 9.72 ± 2.4
Env2Env 7.24 ± 1.19 6.36 ± 0.7 9.82 ± 2.28

USDataRecycler
Wave2Wave 7.17 ± 1.2 6.29 ± 1.12 9.53 ± 2.7
Wave2Env 6.75 ± 1.22 5.73 ± 0.96 9.07 ± 2.66
Env2Env 7.25 ± 1.15 6.28 ± 0.84 9.43 ± 2.01

In the inter-subject experiment (Table 5.3), the performance of all models drops signifi-
cantly and oftentimes there is no model that performs better across all three regression
targets. In the case of pretraining on Freesound, the Env2Env model outperforms the
others on WRF E and WRRUD estimation while it is actually 9◦ worse at estimating
FGF E . For MMCSG pretraining, each task is better than the others at one of the re-
gression targets. Finally, for USDataRecycler, the Wave2Wave method performs best
for WRRUD and FGF E while Wave2Env is better at estimating WRF E . This stands in
contrast to the previous experiments where Wave2Env was the best performer. In com-
parison to the model fine-tuned directly on HWT, the best models from each pretraining
dataset perform better at estimating WRF E and FGF E while they perform worse at
estimating WRRUD. Overall, the large errors and the variability in performance across
models makes it very hard to extract any conclusions and probably means this task at
present is too difficult for these models to tackle successfully.
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Table 5.3.: Mean absolute error values (mean ± std) resulting from evaluating the models
with cross-validation on the HWT dataset with an inter-session split. Bold
values show the best performing model for each pretraining dataset, and
underlined values show the best performing model overall.

Model Characteristics MAE
Dataset Strategy WRFE [◦] WRRUD [◦] FGFE [◦]

None None 14.25 ± 2.65 15.16 ± 1.36 39.1 ± 11.96

Freesound
Wave2Wave 17.16 ± 3.89 16.21 ± 2.07 34.18 ± 9.78
Wave2Env 13.74 ± 1.95 15.98 ± 1.65 31.57 ± 9.42
Env2Env 12.68 ± 2.28 15.80 ± 2.55 40.35 ± 18.17

MMCSG
Wave2Wave 13.54 ± 2.19 17.81 ± 5.34 38.54 ± 16.27
Wave2Env 13.76 ± 2.91 17.96 ± 6.11 35.86 ± 10.77
Env2Env 14.71 ± 1.61 17.58 ± 6.71 37.41 ± 14.2

USDataRecycler
Wave2Wave 14.16 ± 2.85 17.56 ± 3.24 33.32 ± 11.96
Wave2Env 13.48 ± 1.98 17.61 ± 4.81 37.92 ± 14.86
Env2Env 13.71 ± 1.92 17.77 ± 6.36 36.89 ± 14.6

Effect of model power

A key parameter to consider when looking at improvements in performance on the HWT
task is the power of the model. Models with more parameters can improve performance
in supervised tasks with small datasets by overfitting. This will lead to a lack of gen-
eralization when applying the model to unseen data. To explore the interplay between
model power and performance, we have tested the performance of models with increasing
number of parameters on the aggregated and inter-session tasks in the HWT dataset.
The results can be seen in Figure 5.12. We have performed a logarithmic sweep of
the embedding dimension parameter which is linearly correlated with the number of
parameters in the model.

In the aggregated case (Figure 5.12a), we can see that the model’s performance, gets
better with increasing number of parameters and there is no limit to their improvement.
This could be explained by the model memorizing the training set, which contains sam-
ples from all sessions and subjects. Then, during validation, the model could be inter-
polating by finding the most similar sample in the training set to each validation sample
and assigning a similar label. This would allow it to transfer this performance to the
validation set, but would fail with the addition of new data from other sessions and/or
subjects.

By contrast, in the inter-session setting we introduce a domain shift between training
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and validation set. In Figure 5.12b we can observe that the fine-tuned models display an
initial improvement in performance as embedding dimension grows, but it soon stops.
Models with a number of parameters between 105 and 107 perform very similarly. This
means that the increased model power in this case does not translate to better perfor-
mance, likely because of the models inability to bridge the domain shift between training
and validation sets.

(a) Aggregated split (b) Inter-session split

Figure 5.12.: Effect of embedding dimension on cross-validation performance in HWT

Table 5.4 shows the Mean Absolute Error for each target of pretrained and non-pretrained
models with embedding dimension 48 and 192, respectively. For the aggregated set-
ting there is a significant difference between the performance of the smaller and larger
model. However, in the inter-session case, this difference is much smaller and in the
inter-subject case it is negligible with both models performing very similarly and often-
times the smaller model outperforming the larger one. This supports the hypothesis that
larger models benefit from overfitting in the simpler setting but are unable to translate
their performance gains to the more complex tasks.

Effect of fine-tuning strategy

Following on the analysis of HWT, Table 5.5 compares the performance of pretrained
models according to the finetuning strategy used. Linear probing keeps the encoder
frozen and only finetunes the model head, while full finetuning trains both together. We
can see that full finetuning produces a large performance improvement on both of the
tasks. This finding suggests that pretraining with MMCSG does not directly translate
into improved downstream performance, as the encodings learned during pretraining
produce very poor performance without additional finetuning. In the inter-subject case,
the performance of linear probing slightly edges out that of full-finetuning. This supports
the idea that more powerful models overfit on the training set and as a result are biased
in cross-validation. Linear probing, by freezing the encoder, reduces the model power
and its capacity to memorize the training set.
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Table 5.4.: Mean absolute error values (mean ± std) resulting from cross-validation on
the HWT dataset. Models with two different embedding dimensions and
number of parameters where evaluated on each of the HWT regimes. We also
compare models with MMCSG pretraining versus models with no pretraining
at all. Bold values show the best performing model for each pretraining
dataset.

Model Characteristics MAE
Task Pretraining ED WRRUD [◦] WRFE [◦] FGFE [◦]

Aggregated None 48 3.85 ± 0.13 3.97 ± 0.03 4.77 ± 0.05
192 0.97 ± 0.01 1.09 ± 0.01 1.30 ± 0.02

MMCSG 48 3.71 ± 0.13 3.86 ± 0.15 4.68 ± 0.20
192 1.17 ± 0.04 1.26 ± 0.06 1.56 ± 0.10

Inter-session None 48 7.66 ± 1.94 8.14 ± 1.60 11.13 ± 3.90
192 6.65 ± 1.04 7.16 ± 1.38 9.15 ± 2.74

MMCSG 48 7.23 ± 0.83 7.61 ± 0.96 10.43 ± 2.84
192 6.74 ± 0.82 7.26 ± 1.28 9.05 ± 2.05

Inter-subject None 48 15.77 ± 2.17 13.23 ± 0.52 34.22 ± 10.72
192 15.16 ± 1.36 14.25 ± 2.65 39.10 ± 11.96

MMCSG 48 17.03 ± 3.16 13.63 ± 1.19 32.93 ± 11.28
192 17.81 ± 5.34 13.54 ± 2.19 38.54 ± 16.27

Comparison to State of the Art

Finally, it is useful to compare the best performing models on each task to the previously
reported state of the art (SOTA). Table 5.6 shows the best pretrained model in each
task alongside the SOTA and the performance of a model fine-tuned from scratch.

In the aggregated task both foundation models perform significantly better than the
SOTA, with the model without pretraining being the best. For the inter-session case the
foundation models once again beat the SOTA but the pretrained model is better than the
model tuned from scratch and it is significantly better than the SOTA. It must be noted
that the results reported in Spacone et al. [3] were obtained by training a single model
per subject whereas in this project we have trained the models on the combined data of
all subjects. This provides more data for training but also increases the variability in the
data that is not associated with the target of interest. In the inter-subject case, there is
no reported SOTA so we compare to a model trained to predict the regression targets
directly from the signal envelope. In this case, the foundation models also perform better
than the encoder-less baseline.
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Table 5.5.: Mean absolute error values (mean ± std) resulting from cross-validation on
the HWT dataset. Full fine-tuning and linear probing were evaluated on each
of the HWT experiments. Bold values show the best performing model on
each task.

Model Characteristics MAE
Pretraining Task Finetuning WRFE [◦] WRRUD [◦] FGFE [◦]

MMCSG

Aggregated Linear probing 7.56 ± 0.13 7.94 ± 0.09 8.78 ± 0.12
Full finetuning 1.26 ± 0.06 1.17 ± 0.04 1.56 ± 0.1

Inter-session Linear probing 10.16 ± 1.08 10.3 ± 0.7 13.35 ± 1.63
Full finetuning 7.26 ± 1.28 6.74 ± 0.82 9.05 ± 2.05

Inter-subject Linear probing 13.46 ± 2.97 13.74 ± 1.81 35.96 ± 10.2
Full fine-tuning 13.54 ± 2.19 17.81 ± 5.34 38.54 ± 16.27

Table 5.6.: Mean absolute error values (mean ± std) resulting from cross-validation on
the HWT dataset. For each task three models are shown: best pretrained
model, no pretraining baseline, and SOTA (or encoder-less baseline). Bold
values show the best performing model on each task.

Model Characteristics MAE
Task Study Dataset Strategy Parameters WRFE [◦] WRRUD [◦] FGFE [◦]

Aggregated This work None None 3.6 M 1.09 ± 0.01 0.97 ± 0.01 1.3 ± 0.02
MMCSG Wave2Wave 3.6 M 1.26 ± 0.06 1.17 ± 0.04 1.56 ± 0.1

Spacone et al. [3] GRAWUS Env Reconstruction 5 K 4.59 ± 0.69 4.8 ± 1.11 6.54 ± 1.47

Inter-session This work None None 3.6 M 7.16 ± 1.38 6.65 ± 1.04 9.15 ± 2.74
USDataRecycler Wave2Env 3.6 M 6.75 ± 1.22 5.73 ± 0.96 9.07 ± 2.66

Spacone et al. [3] GRAWUS Env Reconstruction 5 K 7.56 ± 2.0 7.46 ± 2.0 10.36 ± 5.0

Inter-subject This work
None None 3.6 M 14.25 ± 2.65 15.16 ± 1.36 39.1 ± 11.96
Freesound Wave2Env 3.6 M 13.74 ± 1.95 15.98 ± 1.65 31.57 ± 9.42
None Decoder(Envelope) 80K 16.78 ± 3.31 16.96 ± 2.45 35.37 ± 11.01

5.2.2. HWC

Table 5.7 shows the performance of models pretrained on audio and synthetic ultrasound
on each of the HWC tasks. As in HWT we evaluate the performance on an aggregated
and inter-session split. However, since the dataset contains data coming from a single
subject we do not evaluate an inter-subject split. Given the lack of a published SOTA,
we have added the results of a model with no encoder for comparison.

In the aggregated task, both the pretrained and non-pretrained foundation models out-
perform the encoderless model, with the non-pretrained being slightly better. However,
in the inter-session case, the performance of all models is significantly worsened and now
the pretrained model substantially outperforms the non-pretrained one and slightly edges
out the encoderless model. This can be taken as support of the theory that pretraining
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Table 5.7.: Classification metric values (mean ± std) resulting from cross-validation on
the HWC dataset for each task. Results for models pretrained on each dataset
as well as a non-pretrained and encoderless baseline are shown. Bold values
show the best performing model on each task.

Task Model Pretraining Accuracy AUROC AUPR

Aggregated Encoder + Decoder

None 0.94 ± 0.0 0.99 ± 0.0 0.94 ± 0.0
Freesound 0.84 ± 0.0 0.94 ± 0.0 0.89 ± 0.0
MMCSG 0.92 ± 0.0 0.99 ± 0.0 0.93 ± 0.01
USDataRecycler 0.8 ± 0.01 0.93 ± 0.0 0.87 ± 0.0

Only decoder None 0.86 ± 0.0 0.97 ± 0.0 0.87 ± 0.0

Inter-session Encoder + Decoder

None 0.25 ± 0.15 0.49 ± 0.24 0.43 ± 0.23
Freesound 0.12 ± 0.09 0.12 ± 0.01 0.73 ± 0.08
MMCSG 0.37 ± 0.15 0.56 ± 0.25 0.6 ± 0.2
USDataRecycler 0.06 ± 0.04 0.1 ± 0.02 0.65 ± 0.08

Only decoder None 0.36 ± 0.14 0.54 ± 0.25 0.55 ± 0.21

is helpful to overcome session domain shift as seen in the HWT dataset.

Table 5.8 shows the difference between linear probing and full fine-tuning in the HWC
case. As in the case of HWT, full fine-tuning shows better performance when compared
with linear probing both in the aggregated and inter-session, lending further support
to the idea that pretrained embeddings learned on MMCSG do not translate well to
downstream tasks.

Table 5.8.: Classification metric values (mean ± std) resulting from cross-validation on
the HWC dataset for each task. Results from linear probing and full fine-
tuning are shown. Bold values show the best performing model on each task.

Task Pretraining Finetuning Accuracy AUROC AUPR

Aggregated
MMCSG Linear probing 0.75 ± 0.01 0.95 ± 0.0 0.73 ± 0.01
MMCSG Full finetuning 0.92 ± 0.0 0.99 ± 0.0 0.93 ± 0.01

Inter-session
MMCSG Linear probing 0.19 ± 0.15 0.48 ± 0.27 0.36 ± 0.14
MMCSG Full finetuning 0.37 ± 0.15 0.56 ± 0.25 0.6 ± 0.2

5.2.3. MCC

Table 5.9 shows the result of fine-tuning our pretrained models on the MCC dataset
along with non-pretrained and encoderless baselines. In the aggregated setting, both
pretrained and non-pretrained models perform better than the encoderless baseline, with
the model pretrained on USDataRecycler slightly outperforming the rest. By contrast,
in the inter-subject case, the encoderless baseline performs better than both with regard
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to accuracy and precision, while it is worse than the pretrained models in terms of recall
and F1-score. Overall, the inter-subject task seems very difficult for the models as they
all perform very poorly.

Table 5.9.: Classification metric values (mean ± std) resulting from cross-validation on
the MCC dataset for each task. Results for models pretrained on each dataset
as well as a non-pretrained and encoderless baseline are shown. Bold values
show the best performing model on each task.

Task Model Pretraining Accuracy Precision Recall F1-score

Aggregated Encoder + Decoder

None 0.96 ± 0.0 0.71 ± 0.01 0.71 ± 0.01 0.71 ± 0.01
Freesound 0.96 ± 0.0 0.71 ± 0.01 0.71 ± 0.01 0.71 ± 0.01
MMCSG 0.96 ± 0.0 0.71 ± 0.01 0.71 ± 0.01 0.71 ± 0.01
USDataRecycler 0.97 ± 0.0 0.72 ± 0.01 0.72 ± 0.0 0.72 ± 0.0

Only decoder None 0.87 ± 0.0 0.64 ± 0.01 0.6 ± 0.01 0.6 ± 0.01

Inter-subject Encoder + Decoder

None 0.49 ± 0.05 0.36 ± 0.13 0.36 ± 0.2 0.32 ± 0.16
Freesound 0.51 ± 0.06 0.42 ± 0.07 0.4 ± 0.1 0.37 ± 0.08
MMCSG 0.5 ± 0.05 0.41 ± 0.09 0.4 ± 0.18 0.36 ± 0.15
USDataRecycler 0.47 ± 0.04 0.41 ± 0.07 0.41 ± 0.17 0.36 ± 0.12

Only decoder None 0.6 ± 0.09 0.42 ± 0.08 0.37 ± 0.15 0.34 ± 0.1

Table 5.10 shows the comparison between linear probing and full fine-tuning for MCC
tasks.

Table 5.10.: Classification metric values (mean ± std) resulting from cross-validation
on the MCC dataset for each task. Results for models fine-tuned with
linear probing and full fine-tuning are shown. Bold values show the best
performing model on each task.

Task Pretraining Finetuning Accuracy Precision Recall F1-score

Aggregated
MMCSG Linear probing 0.45 ± 0.0 0.84 ± 0.0 0.6 ± 0.01 0.61 ± 0.0
MMCSG Full finetuning 0.96 ± 0.0 0.71 ± 0.01 0.71 ± 0.01 0.71 ± 0.01

Inter-subject
MMCSG Linear probing 0.51 ± 0.06 0.4 ± 0.07 0.34 ± 0.15 0.32 ± 0.12
MMCSG Full finetuning 0.5 ± 0.05 0.41 ± 0.09 0.4 ± 0.18 0.36 ± 0.15

While in the aggregated case full fine-tuning performs significantly better than linear
probing for all metrics, except for precision, in the inter-subject case both approaches
perform very similarly, with linear probing slightly edging out on accuracy while being
worse for Recall and F1-score. Overall, this supports the findings that more powerful
models struggle to overcome domain shifts between training and validation.
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Chapter 6
Discussion

This work has investigated the application of foundation models to the domain of raw
ultrasound (US) data, with a particular focus on their utility as a general framework
for modeling and analysis across a variety of tasks and datasets. Notably, we have
demonstrated that transformer-based models can match or even exceed state-of-the-art
performance in hand movement regression tasks. Furthermore, we have shown that
such models have the potential to unify processing pipelines across different acquisition
protocols, devices, and datasets, thereby offering a standardized approach to working
with raw US data.

Our exploration of pretraining strategies yielded several key insights. We found that
foundation models benefit from small patch sizes and large embedding dimensions during
pretraining. Given the inherently multi-channel nature of US data, this results in a
substantial number of input tokens per sample. Combined with the high parameter
count of transformer architectures, this leads to significant memory and computational
demands. These findings underscore the need for more efficient attention mechanisms
to reduce memory overhead during training. Approaches such as alternating attention
[73] are promising candidates in this regard.

However, the utility of pretraining on downstream tasks remains inconclusive. While
some tasks, such as inter-session hand movement tracking (HWT), showed modest ben-
efits from pretraining, others exhibited neutral or even negative effects. Importantly, we
observed no consistent advantage between audio-based and synthetic ultrasound-based
pretraining modalities. Among the pretraining strategies evaluated, models trained with
USDataRecycler and the Wave2Env objective performed best within the synthetic US
domain, whereas Wave2Wave yielded superior results in the audio domain.

A critical observation pertains to the interaction between model capacity and the nature
of the data split. As shown in Figure 5.12, for aggregated splits, performance gener-
ally improves with increasing model size. However, this trend does not hold for more
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challenging splits such as inter-session or inter-subject evaluation. In these cases, model
performance plateaus, or even declines, as model size increases. For instance, Table 5.5
illustrates that linear probing outperforms full fine-tuning in the inter-subject setting,
suggesting that large models may overfit to the training set and fail to generalize when
faced with significant domain shifts. This indicates that model expressiveness alone
is insufficient to overcome the inherent variability in raw US data across sessions and
subjects.

Based on the findings of this study, several promising directions for future research
emerge. A foundational limitation of this work, is the lack of large-scale, diverse raw US
datasets. Future efforts should prioritize the acquisition of extensive unlabeled data from
wearable ultrasound devices, covering a wide range of subjects, activities, and hardware
configurations. Such a dataset would provide a more representative basis for pretraining
and could enhance the generalizability of learned representations.

The mixed results of current pretraining strategies suggest that alternative approaches
warrant exploration. In related domains such as EEG, frequency-domain representations
(e.g., spectrograms) have yielded substantial performance gains [61, 73, 60, 62, 63].
Applying similar representations to US data may enhance model performance, especially
when paired with self-supervised learning strategies. In particular, contrastive learning
methods, successfully used in ECG [74, 76, 77, 78, 84] and wearable sensor data [83, 85,
82], could offer improved robustness and task transferability.

Another challenge identified in this work is the heterogeneous nature of raw US data
collection. In contrast to EEG and other clinical modalities, which benefit from well-
established acquisition standards, US data, especially from experimental wearable de-
vices, varies widely in quality, structure, and preprocessing. Establishing standardized
protocols for acquisition and evaluation would not only enhance reproducibility but also
accelerate progress by facilitating fair comparisons across studies.

All downstream evaluations in this work were performed using cross-validation, which is
standard in prior literature but suboptimal for training large-scale foundation models.
Given the significant computational costs, future studies would benefit from pre-defined
train-test splits that enable efficient and consistent evaluation. This, however, depends
on the availability of larger datasets and broader community consensus.

Finally, one of the most salient findings of this work is the detrimental effect of domain
shifts, particularly those arising from device repositioning or subject variability. Our
results show that pretraining alone is insufficient to address this issue. Consequently,
future research should investigate strategies specifically designed to mitigate domain
shifts, such as domain adaptation, invariant representation learning, or augmentation
techniques tailored to the unique characteristics of US data.

In summary, this work presents a compelling case for the potential of foundation models
in raw ultrasound applications, while also highlighting critical limitations and challenges.
Our findings provide a roadmap for future research, emphasizing the need for better data,
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more effective pretraining strategies, standardized evaluation frameworks, and targeted
approaches to domain generalization. Addressing these challenges will be essential to
advance the use of raw ultrasound as a reliable and scalable technology for human-
centered sensing.
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Chapter 7
Conclusion

This thesis presents a pioneering exploration into the application of foundation model
frameworks to A-mode ultrasound (US) data. Specifically, the study implemented a
self-supervised pretraining approach on a diverse corpus comprising large-scale audio
data and synthetic ultrasound signals, followed by fine-tuning across several downstream
tasks. This framework allowed for an in-depth investigation into the effects of varying
datasets, pretraining strategies, model architectures, and fine-tuning techniques.

The empirical results revealed a nuanced landscape. While the overall benefit of self-
supervised pretraining was limited, certain pretrained models demonstrated performance
gains that surpassed existing state-of-the-art benchmarks. These instances suggest that,
under specific conditions, foundation models can indeed enhance performance in A-mode
ultrasound applications.

Notably, the capacity of the model emerged as a critical factor influencing downstream
performance. The relationship between model scale and generalization across domain
shifts, such as those between training and validation data, proved to be complex and
non-trivial, warranting further investigation. Despite the progress made, several open
questions remain. Chief among them are the identification of the most effective signal
representations for A-mode US and the determination of optimal pretraining method-
ologies.

In summary, this thesis lays the groundwork for a new and underexplored area of re-
search, offering key insights while also highlighting significant opportunities for further
advancement. By extending the paradigm of foundation models into the domain of A-
mode ultrasound, this work contributes both conceptually and empirically to the ongoing
development of A-mode ultrasound for human-centered sensing.
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1. Project Outline

Medical ultrasound (US) imaging is a vital diagnostic tool and has many areas of appli-
cation. The raw data from US imaging, known as radio-frequency (RF) data, contains
more information than US images and has valuable use cases. Although large datasets
of processed US images are widely available, raw RF data remains scarce.

In a Master thesis [1] we explored the first system designed to predict raw RF data
from US images. We have developed a data-driven, physically-informed model that
combines deep learning (DL) techniques with numerical simulations of ultrasound waves.
Specifically, we employed a TransUNet neural network architecture [2] to predict the
acoustic properties of the underlying tissue. The neural network is trained using a custom
synthetic dataset generated by us. To create extensive and meaningful synthetic datasets
of paired RF data and US images, we proposed four different strategies. These include
using geometric features from standard images in the ImageNet dataset and information
from medical CT images [3].
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Predicted Phantom
Simulated US image

Input US image

Figure 1: An example visual result, comparing the prediction of a medial gastrocnemius
muscle ultrasound image before and after fine-tuning our model.

The performance of our model using different synthetic datasets was compared and eval-
uated for real RF data and we found that the model which generalizes best is trained
on the CT phantom dataset. Additionally, we explored fine-tuning the trained models
to predict RF data for medial gastrocnemius muscle images using a dedicated synthetic
muscle phantom dataset created by us. We verifies that fine-tuning our model for prior-
known tissue types significantly improves the predicted RF data. By comparing our
physics-based model to an end-to-end DL model trained for RF data prediction, the
benefit of introducing the numerical simulation into our predictions was highlighted.

In this project we build upon the results achieved by Reitsam 2024 [1] and the experience
of EEG foundation model by Bucagu and Dimofte [4]. We aim to develop the first foun-
dation model for US RF data. Foundation models have been expanding from language
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and vision fields to science fields in particular biomedical signal processing. Yet, most
of the AI based solutions for ultrasound signals are still limited to US images due to
the scarcity of large-scale RF data. We will investigate the benefit of foundation models
for tasks and applications such as gesture recognition with ultrasound arm band, hand
gesture regression, regression of pennation angle using US data.

2. Research Questions

The research questions of this thesis are:

• Whether pre-training can help to improve the performance of deep models on down-
stream ultrasound tasks based raw-frequency data?

2.1. Methodology

• Workpackage I - Project Setup and Initial Research: This phase involves
conducting a comprehensive literature review on ultrasound RF data and founda-
tion models in AI, establishing a clear understanding of existing techniques, and
defining the scope of the project. During this stage, the necessary computational
environment is also set up, ensuring that the team has access to all required software
tools, and a project plan is developed, including a risk assessment.

Deliverables:

– D1: Fine Grained Project Plan and Gantt Chart.

– D2: Documentation of the literature review findings.

– D3: Restructured Code Repository.

• Workpackage II - Data Preparation, Tokenization, and Downstream Task
Definition: In this work package, the focus is on preparing with audio data or
the generated RF data and developing a tokenization strategy, ensuring the data is
suitable for model training. Additionally, the downstream tasks that will be used to
validate the model’s effectiveness, such as gesture recognition using an ultrasound
armband, hand gesture regression, and pennation angle estimation, will be defined
and set up. This phase ensures that both the data and the tasks are ready for the
model’s training and evaluation phases.

Deliverables:

– D4: Preprocessed audio data or ultrasound RF dataset.

– D5: Tokenization method for ultrasound RF signals.

– D6: Defined downstream tasks and datasets for gesture recognition, hand
gesture regression, and pennation angle estimation.
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• Workpackage III - Model Architecture Design: Here, the team will experi-
ment with different deep learning architectures, such as Transformers and Mamba,
adapting them to the specific needs of ultrasound RF data. This phase is iterative,
as different models will be tested and refined to identify the most suitable architec-
ture for processing RF data. The selected architecture will serve as the foundation
for the rest of the project.

Deliverables:

– D7: Proposed model architecture for ultrasound RF data processing.

• Workpackage IV - Self-Supervised Pretraining: In the fourth work package,
the emphasis is on self-supervised pretraining of the foundation model. The team
will implement and apply self-supervised learning techniques to train the model on
large-scale RF data. Pretraining is critical for capturing the underlying patterns in
the data, and its success will be measured by the model’s performance on various
ultrasound signal tasks.

Deliverables:

– D8: Pretrained foundation model.

– D9: Self-supervised learning implementation.

• Workpackage V - Finetuning for Downstream Tasks: The focus here is on
applying the foundation model to tasks such as gesture recognition, finger and hand
gesture regression or vital sign monitoring. Through fine-tuning, the model will be
optimized for each of these tasks, and performance evaluations will be conducted
to assess its effectiveness.

– D10: Fine-tuned models for each downstream task.

– D11: Evaluation report of model performance on downstream tasks.

• Workpackage VI - Report and Presentation: Work on the final report and
thesis presentation.

Deliverables:

– D11: Final report summarizing the entire project and clean and documented
code repository.

– D12: Prepared materials and presentation for the thesis run-through and
defense.
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3. Project Realization

3.1. Project Plan

Within the first week of the project you will be asked to prepare a project plan. This
plan should identify the tasks to be performed during the project and sets deadlines for
those tasks. The prepared plan will be a topic of discussion of the first week’s meeting
between you and your advisers. Note that the project plan should be updated constantly
depending on the project’s status.

3.2. Meetings

Weekly meetings and reports must be held. The exact time and location of these meetings
will be determined within the first week of the project in order to fit the student’s and
the assistant’s schedule. These meetings will be used to evaluate the status and progress
of the project. Besides these regular meetings, additional meetings can be organized to
address urgent issues as well.

3.3. Report

Documentation is an important and often overlooked aspect of engineering. One final
report has to be completed within this project. The common language of engineering
is de facto English. Therefore, the final report of the work is preferred to be written
in English. Any form of word processing software is allowed for writing the reports,
nevertheless, the use of LATEX with Tgif1 or any other vector drawing software (for block
diagrams) is strongly encouraged by the IIS staff.

Code Repository As many of our projects are heavily code-based, the documentation
of the code and its repository is also considered important in the grading of your thesis.
We suggest to follow coding standards and style guides when writing code, e.g. C [5],
Python [6],...

Final Report The final report has to be presented at the end of the project and a digital
copy need to be handed in. Note that this task description is part of your report and has
to be attached to your final report. Our LATEX template can be found here for download:
https://iis-projects.ee.ethz.ch/index.php?title=Final_Report)

1See: http://bourbon.usc.edu:8001/tgif/index.html and http://www.dz.ee.ethz.ch/en/
information/how-to/drawing-schematics.html.
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3.4. Presentation

There will be a presentation (15 min for the semester thesis, and 20 min for the MS
thesis presentation followed by 5 min Q&A) at the end of this project in order to present
your results to a wider audience. The exact date will be determined towards the end
of the work. Additional tipps for preparing the presentation can be found here: https:
//iis-projects.ee.ethz.ch/index.php?title=Final_Presentation

Place and Date Zurich 08/10/24 Signature Student
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Appendix C
Dataset statistics

C.0.1. Hand and wrist tracking dataset (HWT)

Figures C.1 and C.2 illustrate the distribution of samples on the HWT dataset.

(a) (b) (c)

Figure C.1.: Distribution of regression targets a) WRF E , b) WRRUD, and c) FGF E of
the HWT dataset.

67



C. Dataset statistics

(a) (b)

Figure C.2.: Distribution of metadata values a) session and b) subject of the HWT
dataset.

C.0.2. Hand and wrist classification dataset (HWC)

Figures C.3 and C.4 illustrate the distribution of samples on the HWC dataset.

Figure C.3.: Sample distribution of gesture labels on the HWC dataset.

68



C. Dataset statistics

Figure C.4.: Sample distribution of sessions on the HWC dataset.

C.0.3. Muscle contraction classification dataset (MCC)

Figures C.5, C.6, and C.7 illustrate the distribution of samples on the MCC dataset.

Figure C.5.: Sample distribution of contraction labels on the MCC dataset.
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C. Dataset statistics

Figure C.6.: Sample distribution of datasets (recording sessions) on the MCC dataset.

Figure C.7.: Sample distribution of subjects on the MCC dataset.
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Appendix D
Preprocessing details

D.1. Pretraining datasets

D.1.1. Freesound

The Freesound dataset is first prepared for pretraining by splitting each audio clip into
samples of fixed length 1000.

During data loading, each sample is Min-Max normalized by,

Xnorm =
(

X − min(X)
max(X) − min(X) − 0.5

)
∗ 2

such that all values are between -1 and 1.

When the signal envelope is required for pretraining each sample is,

• Min-max normalized as before.

• Filtered with a 4th order Butterworth filter with fc = [0.1, 2000] Hz.

• Hilbert transformed with the scipy implementation.

D.1.2. Multi-modal conversations in smart glasses (MMCSG)

The MMCSG dataset is first prepared for pretraining by splitting each audio clip into
samples of fixed length 1024.
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D. Preprocessing details

During data loading, each sample is Min-Max normalized by,

Xnorm =
(

X − min(X)
max(X) − min(X) − 0.5

)
∗ 2

such that all values are between -1 and 1. The normalization is global across channels.

When the signal envelope is required for pretraining each sample is,

• Min-max normalized as before.

• Filtered with a 4th order Butterworth filter with fc = [0.1, 2000] Hz.

• Hilbert transformed with the scipy implementation.

D.1.3. USDataRecycler

The USDataRecycler dataset is prepared for pretraining by subsampling the number of
channels in each sample from 192 to 8. This is done in a randomized non-overlapping
manner.

During data loading, each sample is Min-Max normalized by,

Xnorm =
(

X − min(X)
max(X) − min(X) − 0.5

)
∗ 2

such that all values are between -1 and 1. The normalization is global across channels.

When the signal envelope is required for pretraining each sample is,

• Min-max normalized as before.

• Filtered with a 4th order Butterworth filter with fc = [1, 15] MHz.

• Hilbert transformed with the Scipy implementation.

D.2. Finetuning datasets

D.2.1. Hand and wrist tracking (HWT)

During fine-tuning the HWT samples are,

• Min-max normalized as explained in the previous sections.

• If needed their envelope is computed as explained in previous sections by filtering
the data with a 4th order Butterworth filter with fc = [1, 3.5] MHz and then
computing the envelope with Scipy’s Hilbert function.
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D. Preprocessing details

D.2.2. Hand and wrist classification (HWC)

During fine-tuning the HWC samples are,

• Min-max normalized as explained in the previous sections.

• If needed their envelope is computed as explained in previous sections by filtering
the data with a 4th order Butterworth filter with fc = [1, 3.5] MHz and then
computing the envelope with Scipy’s Hilbert function.

D.2.3. Muscle contraction classification (MCC)

During fine-tuning the HWC samples are,

• Min-max normalized as explained in the previous sections.

• If needed their envelope is computed as explained in previous sections by filtering
the data with a 4th order Butterworth filter with fc = [0.5, 6.5] MHz and then
computing the envelope with Scipy’s Hilbert function.
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Appendix E
Training recipes

Table E.1.: Pretraining hyperparameters.
Parameter Name Parameter Value

Batch size 512
Scheduler Cosine + Linear Warmup
Optimizer AdamW
Betas [0.9, 0.98]
Weight decay 0.05
Peak learning rate 1.25e − 3
Minimum learning rate 2.5e − 7
Total epochs 100
Warmup epochs 5
Layer-wise learning rate decay factor 0.75
Drop path 0.2
Loss L2
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E. Training recipes

Table E.2.: Finetuning hyperparameters.
Parameter Name Parameter Value

Batch size 1024
Scheduler Cosine + Linear Warmup
Optimizer AdamW
Betas [0.9, 0.999]
Weight decay 0.05
Peak learning rate 5e − 4
Minimum learning rate 5e − 7
Total epochs 100
Warmup epochs 3
Masking ratio 0.5
Encoder layers 8
Number of attention heads 12
Embedding dimension 192
Patch size 16
Loss L2
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Appendix F
What did not work

This appendix outlines several experimental directions and implementation efforts that
were ultimately unsuccessful or not pursued further due to limited relevance to the core
objectives of the project.

• An attempt was made to pretrain the encoder proposed by Vostrikov et al. [40] on
the HWT dataset, with the goal of establishing a baseline for comparison with our
models. However, the model exhibited extremely poor convergence, and further
optimization was deemed out of scope for the primary focus of this work.

• A transformer-based architecture was initially implemented from scratch for self-
supervised pretraining. However, empirical performance was inferior to that of the
existing TimeFM implementation, which was subsequently adopted and adapted
for our experiments.

• Difficulties arose with checkpoint loading due to modifications in the load_from_checkpoint
method within the PyTorch Lightning tasks. Specifically, the method had been al-
tered to load only the model weights, excluding the model head. This was resolved
by updating the method to support optional loading of the head via a configurable
flag.

• During hyperparameter sweeps involving the embedding dimension and patch size,
a large number of SLURM jobs were inadvertently launched due to misuse of batch
arrays. This was later mitigated through GPU oversubscription strategies to more
efficiently utilize the computational resources on each HPC node.

• A pretraining strategy using filtered audio data was explored, with the intent of
matching its relative frequency content more closely to that of ultrasound signals.
However, aggressive filtering eliminated much of the informative signal content,
resulting in poor pretraining performance and ineffective representations.
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F. What did not work

• Fine-tuning was attempted on the GRAWUS dataset, but the performance was
found to be inferior to a baseline fully connected network trained directly on the
signal envelope. As a result, this direction was not pursued further.

• Fine-tuning was also attempted on the MPAE dataset. However, the regression
outputs collapsed to a single constant value across all samples. This behavior is
suspected to have resulted from issues such as ReLU activation death or other
training instabilities. Due to time constraints, a detailed investigation could not
be conducted.
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