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Abstract

The development of generalizable models for Electromyography (EMG) signal analysis is
a significant challenge, limited by high variability across subjects, conditions, and acqui-
sition devices and platforms, alongside a reliance on large, task-specific labeled datasets.
This thesis introduces a new paradigm to address these limitations: a compact, pre-
trained Foundation Model specifically for the EMG domain. We propose an encoder-
only Transformer architecture trained using a self-supervised, masked-signal modeling
objective on large-scale unlabeled data. By adapting vision-style tokenization for multi-
channel EMG and incorporating Rotary Positional Embedding to capture complex tem-
poral dynamics, the model learns robust and transferable representations.

The resulting 3.6 million parameter model demonstrates a remarkable combination of
efficiency and high performance. It sets a new state-of-the-art on the EPN-612 (96.60%
accuracy) and UCI EMG (97.86% accuracy) gesture recognition benchmarks, significantly
outperforming prior models with over ten times the parameters. The model’s versatility
is further proven by achieving a competitive 8.53° Mean Absolute Error in cross-subject
kinematic regression, surpassing LSTM baselines in discrete gesture decoding, and show-
ing remarkable performance in silent speech recognition despite its unimodal, EMG-only
pre-training regime.

This work validates that a single, self-supervised encoder can serve as a powerful founda-
tion for diverse EMG tasks. Its high accuracy, coupled with a modest parameter count,
paves the way for a new generation of robust, data-efficient human-machine interfaces and
opens the door to their deployment on resource-constrained embedded environments.
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Chapter 1
Introduction

Electromyography (EMG) is a biosensing technique that captures the electrical activity
produced by the skeletal muscles. It is widely used in various applications, including
prosthetics, rehabilitation, and Human-Computer Interaction (HCI). EMG methods are
broadly classified into invasive approaches (e.g., needle EMG) and non-invasive tech-
niques, with Surface Electromyography (sEMG) being especially suitable for wearable
neuromuscular interfaces due to ease of use and comfort [2]. This makes sEMG highly
relevant across diverse domains such as clinical diagnostics, rehabilitation, ergonomics,
HCI, and sports science.

However, despite its wide applicability, EMG signal analysis poses several challenges.
Signal characteristics can vary significantly between individuals due to differences in
muscle physiology, electrode placement, and environmental factors. This variability can
lead to difficulties in developing robust models that generalize well across different users
and conditions. Additionally, EMG signals are non-stationary, evolving over time and
affected by various noise sources, including electrical interference, motion artifacts, and
physiological signals [3]. These challenges require advanced signal processing techniques
and machine learning models capable of handling the inherent variability and noise in
the EMG data.

To tackle these complexities, various signal processing techniques have been combined
with machine learning and deep learning strategies [4]. Early methods often relied on
handcrafted features, but the field has steadily shifted toward deep learning paradigms
with automatic representation learning capabilities. This transition has been driven by
the need for more flexible and powerful models that can adapt to the diverse and complex
nature of EMG signals.

Despite these advances, there remains a lack of models that can be effectively generalized
to different users, electrode placements, and other variations. Traditional machine learn-
ing approaches often struggle with this variability, and while deep learning has shown
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1. Introduction

promise, it typically requires large amounts of labeled data for training. This is where
Foundation Model (FM) [5] come into play, offering a potential solution by leveraging
Self-Supervised Learning (SSL) techniques to pre-train on vast amounts of unlabeled
data.

FMs have revolutionized the fields of Natural Language Processing (NLP) and Com-
puter Vision (CV) by enabling models to learn rich representations from large unlabeled
datasets just by rethinking the pre-training process. This shift has opened up new pos-
sibilities for transfer learning, allowing models to be fine-tuned on specific tasks with
relatively small amounts of labeled data.

Beyond vision and language, emerging work explores electrophysiological biosignals (EXG),
ranging from Electrocardiography (ECG), Electroencephalography (EEG), EMG, Pho-
toplethysmography (PPG), and related surface bioelectric recordings, using FMs [6, 7].

Common pretraining paradigms (masked reconstruction, contrastive temporal alignment,
multi-view augmentation, clustering, tokenization, and cross-modal distillation) have be-
gun to produce generalist encoders for EEG and ECG [8, 9], using large public repositories
and relatively standardized channel configurations (e.g., 12-lead ECG, 10–20 EEG mon-
tages). These efforts report transferable gains in the detection of arrhythmias [10], the
staging of sleep [11], the mental workload or affect classification [12], and the potential
decoding related to events, indicating that self-supervised representation training can
reduce the needs of labeled data.

In contrast, no widely adopted FM exists specifically for EMG: progress is limited
by (i) higher inter-subject and session variability [13] (electrode placement shifts, skin
impedance, muscle physiology), (ii) heterogeneous sensor layouts (channel count, spac-
ing, high-density vs. sparse arrays), (iii) task diversity [14] (gestures, force/kinematics
regression, silent speech, continuous neuromotor decoding), and (iv) fewer large, harmo-
nized, openly licensed corpora compared to ECG/EEG datasets. Current EMG models
are predominantly task-specialized, trained with supervised losses from scratch or modest
transfer, limiting generalization between users and tasks.

This gap motivates the construction of an EMG-centric FM: a single pre-trained encoder
producing robust and reusable temporal representations that retain fine-grained motor
intent while being resilient to domain shifts; an objective aligned with the broader FM
paradigm outlined in [5] but still unrealized for EMG.

This work aims to bridge this gap by developing a Foundation Model specifically tailored
for EMG signal analysis. Using self-supervised learning techniques, we aim to create a
model that can effectively learn from large-scale EMG datasets, enabling it to generalize
across different users, acquisition platforms and conditions. The proposed model will
be evaluated on several downstream tasks, namely gesture recognition, regression, and
silent speech recognition, to demonstrate its effectiveness and robustness.

2



1. Introduction

State of the Art on Target Downstream Tasks

Current State-of-the-Art (SoA) systems on the downstream benchmarks that we report
later (Chapter 5) highlight both strong absolute performance and several limitations that
our approach addresses.

Gesture recognition (Ninapro DB5, EPN-612, UCI EMG). This task involves
classifying time-series EMG data, typically from the forearm, into a set of discrete hand or
wrist gestures. Recent Transformer or hybrid sequence encoders (Moment [15], OTiS [16],
PhysioWave [17]) span from compact ∼ 5M to very large ∼ 385M parameters. The
strongest published results in our benchmark set are obtained by the 37M parameter
PhysioWave Large model: 87.53% Top-1 / 75.42 F1 on Ninapro DB5 [18], 94.50% /
94.56 F1 on EPN-612 [19], and 93.19% / 93.59 F1 on UCI EMG [20].

Discrete gesture sequence decoding (generic neuromotor interface). This ad-
vanced task involves decoding continuous sequences of discrete motor actions, such as
individual finger movements for typing, from high-fidelity EMG signals. Recurrent LSTM
models (6.4M parameters) on high-fidelity wrist/forearm interfaces (Meta / CTRL-labs,
[21]) reach a Classification Error Rate (CLER) of 0.1819 on full sequences and 0.1596 on
windowed inference. Windowed inference is needed to be able to make a fair compari-
son with the proposed Transformer architecture, which is not suitable for full sequence
inference.

Kinematic regression (Ninapro DB8).

In contrast to discrete classification, kinematic regression aims to predict continuous,
multi-dimensional joint movements (e.g., finger and wrist angles) from forearm EMG
signals. Lightweight temporal convolutional networks (TEMPONet TCN [22], <500K
params) report per-subject mean absolute error (MAE) 6.89° across 5 DoAs. Event-
driven linear regression [23] attains 8.8°±2.3° (per-subject), while older DeepNet+Kalman
pipelines [24] exceed 13.5° (reported as RMSE, only 3 DoAs). Cross-subject performance
is rarely quantified and typically degrades relative to per-subject training, indicating
limited representation transfer.

Silent speech (facial EMG to audio/text). This task focuses on decoding intended
speech by translating EMG signals captured from facial muscles into either audible
speech (synthesis) or written text (recognition). A 54M parameter Transformer seq2seq
model (Gaddy & Klein [25]) achieves 36% Word Error Rate (WER) (EMG→audio) and
28.8% WER (EMG→text). The Stanford MONA and MONA LISA works [26]) reduce
EMG→text WER to 22.2% and 12.2%, respectively, through greater capacity and con-
trastive alignment with audio, underscoring gains from richer multimodal pretraining but
also additional complexity due to the need of modality-specific encoders.

Across tasks, SoA trends [17, 21, 23, 26] emphasize: (i) increasing reliance on Transformer-
style architectures; (ii) substantial parameter counts or task-specific engineering; (iii)
predominantly supervised training with limited explicit cross-user robustness analysis;
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1. Introduction

and (iv) performance gaps between per-subject and cross-subject settings. These obser-
vations motivate a unified EMG Foundation Model: a single, moderately sized encoder
pre-trained self-supervised on heterogeneous EMG to supply reusable, robust represen-
tations for classification, regression, and sequence decoding with reduced labeled data
dependence.

Contribution summary. We introduce a novel EMG Foundation Model and rigor-
ously benchmark it against state-of-the-art baselines across multiple EMG downstream
tasks, including gesture classification, discrete gesture recognition, kinematic regression,
and silent speech synthesis/recognition. Compared to existing large-scale generic time-
series models (Moment, OTiS, PhysioWave, WaveFormer) and task-specific architec-
tures (e.g., Meta-LSTM, TEMPONet), our model achieves new state-of-the-art results
on EPN-612 (96.60% accuracy, 96.69 F1), UCI EMG (97.86% accuracy), and Ninapro
DB5 (84.53 F1) while using only a fraction of the parameters (3.6M vs. 37–385M). In
discrete gesture recognition, it slightly outperforms prior LSTM-based methods under
comparable windowed inference (CLER 0.1553 vs. 0.1596), and in regression tasks, it
demonstrates strong cross-subject generalization (MAE 8.53°). For silent speech, fine-
tuning reduces EMG-to-audio WER to 31.65% and EMG-to-text WER to 32.75%, high-
lighting the model’s ability to handle both generative and discriminative EMG tasks.
Overall, this work demonstrates that a compact foundation model can significantly ad-
vance EMG modeling, offering superior performance, cross-task versatility, and efficient
deployment potential.
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Chapter 2
Background

Figure 2.1.: Transformer architecture overview as proposed by Vaswani et al [1]. The
model consists of an Encoder and a Decoder, each containing multiple layers
with self-attention and feed-forward networks.
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2. Background

2.1. Transformer Architecture and Attention Mechanisms

The Transformer architecture, introduced by Vaswani et al. [1], revolutionized sequence
modeling by eliminating recurrence and convolution in favor of self-attention mechanisms.
This enabled faster, more parallelizable models that outperform traditional RNNs and
CNNs in many domains, including NLP and time-series analysis.

2.1.1. Encoder and Decoder

The architecture comprises an Encoder and a Decoder, each consisting of multiple iden-
tical layers:

Encoder: Each encoder layer contains:

• Multi-head self-attention sub-layer

• Feed-forward network sub-layer

• Residual connections and Layer Normalization

Skip Connections The input of a transformer block is an embedding for a token, which
has dimension d. This initial embedding gets passed up (by residual connections) and is
progressively added to by the other components of the transformer: the attention layer
and the feedforward layer. Residual or skip connections help the model learn identity
mappings, effectively preventing the vanishing gradient problem and rank collapse [27].

Before the attention and feedforward layer, Layer Normalization is applied to the input
embedding. In this way, the input embedding is normalized before being passed to the
attention layer, and the result is added back to the input embedding via a residual
connection.

Feedforward layer The feedforward layer is a fully-connected 2-layer network with
one hidden layer and two weight matrices. The weights are the same for each token
position i, but are different from layer to layer. It is common to make the dimensionality
dff of the hidden layer of the feedforward network to be larger than the dimensionality
of the model d. (for example, with an expansion factor of 4, i.e. dff = 4d).

FFN(xi) = ReLU(xiW1 + b1)W2 + b2 (2.1)

6



2. Background

Layer Norm At two stages in the transformer block, we normalize the input vector via
a process called Layer Normalization. Layer Normalization is one of the many forms of
normalization that can be used to improve training performance in Deep Neural Network
(DNN) by keeping the values of a hidden layer in a range that facilitates gradient-based
training.

Layer normalization is a particular case of z-score normalization but applied to a single
vector in a hidden layer. Layer normalization is applied to the embedding vector of a
single token, thus the input to the layer norm is a single vector of dimensionality d and
the output is that vector normalized, again of dimensionality d. The first step in layer
normalization computes the mean µ and the standard deviation σ, over the elements of
the vector to be normalized.

Given an embedding vector x of dimensionality d, these values are calculated as follows:

µ =
1

d

d∑
i=1

xi (2.2)

σ =

√√√√1

d

d∑
i=1

(xi − µ)2 (2.3)

The normalized vector is then computed with two additional learnable parameters γ
and β representing the gain and offset values, respectively. The normalized vector is
computed as follows:

LayerNorm(x) = γ
(x− µ)

σ
+ β (2.4)

The original architecture used post layer normalization, where normalization was ap-
plied after residual addition, while more recent implementations often adopted pre layer
normalization for improved training stability [28].

According to post layer normalization, given an input X, the output is computed as:

O = LayerNorm(X+ MultiHeadAttention(X)) (2.5)

H = LayerNorm(O+ FFN(O)) (2.6)

while for pre layer normalization, the output is computed as:

O = X+ MultiHeadAttention(LayerNorm(X)) (2.7)

H = X+ FFN(LayerNorm(O)) (2.8)

Decoder: Each decoder layer includes the following:

7



2. Background

• Masked self-attention

• Cross-attention to encoder outputs

• Feed-forward network

• Residual connections and LayerNorm

The decoder uses masking self-attention to ensure autoregressive generation, attending
only to previously generated tokens instead of future ones. In this way, causality can be
maintained, and the model can generate sequences in a step-by-step manner.

Masked self-attention is computed as

A = Softmax

(
Mask

(
QK⊤
√
dk

))
V (2.9)

where Mask is a function that sets the elements in the upper-triangular portion of the
matrix to −∞, ensuring that the model does not take care of future tokens.

In practice, this is done by adding a mask matrix M in which Mi,j = −∞ ∀j > i (i.e.
for the upper-triangular portion) and Mi,j = 0 otherwise.

2.1.2. Scaled Dot-Product Attention

Given input X ∈ Rn×d, where n is the sequence length and d is the embedding dimension;
queries, keys, and values are obtained by learning linear projections.

Q = XWQ (2.10)

K = XWK (2.11)

V = XWV (2.12)

where WQ,WK ∈ Rd×dk and WV ∈ Rd×dv are weight matrices for queries, keys, and
values, respectively. The attention mechanism computes the attention scores as follows:

The core attention mechanism is as follows:

Attention(Q,K,V) = Softmax

(
QK⊤
√
dk

)
V, (2.13)

which enables the model to compute attention weights over all pairs of input tokens.

8



2. Background

2.1.3. Multi-Head Attention

Multi-Head Attention allows learning multiple attention patterns in parallel:

headi = Attention(Qi,Ki,Vi) = Softmax

(
QiKi⊤
√
dk

)
Vi, (2.14)

MultiHeadAttention(X) = (head1 ⊕ head2 · · · ⊕ headh)W
O, (2.15)

Each head captures distinct relationships; their outputs are concatenated and projected
back to the embedding space. Typically, dv = d/h for h attention heads.

2.1.4. Positional Encoding

Transformers are permutation-invariant on the input token (time) dimension unless ex-
plicit order information is injected. Let xpos ∈ Rd be the embedding of the token at
position pos ∈ {0, . . . , n − 1}. A positional encoding ppos ∈ Rd is added (or sometimes
concatenated) to form

x̃pos = xpos + ppos. (2.16)

Absolute Sinusoidal Encoding (Vaswani et al.). Define inverse frequencies

ωi = 10000−2i/d, i = 0, . . . , d/2− 1. (2.17)

Then for each pair of dimensions (2i, 2i+ 1)

ppos,2i = sin(pos · ωi), (2.18)
ppos,2i+1 = cos(pos · ωi). (2.19)

In matrix form, let Ω = (ω0, . . . , ωd/2−1)
⊤:

ppos =
[
sin(posΩ) ∥ cos(posΩ)

]
∈ Rd. (2.20)

Key properties. 1. Deterministic / parameter-free: no learned parameters; enables
extrapolation beyond training length. 2. Multiscale: frequencies form a geometric pro-
gression that covers short and long range. 3. Linear relative shift signal inside dot
products: Consider (single head) attention logits after projection:

αt,s =
(qt +WQpt) · (ks +WKps)√

dk
. (2.21)

9



2. Background

Cross terms (WQpt) · (WKps) include sin(tω) sin(sω)+ cos(tω) cos(sω) = cos((t− s)ω),
providing an implicit encoding of relative position t−s. Thus, absolute encodings induce
relative phase signals.

Limitations for long sequences. For very long sequences, highest frequencies may
become too dense (i.e. phase wrapping), and absolute addition fixes every position to a
unique pattern, less flexible when only relative timing is important (e.g. EMG muscle
activation pattern shifts). This motivates rotational / relative formulations.

Learned Absolute Positional Embeddings. An alternative is to learn a table P ∈
Rnmax×d with ppos = Ppos. The advantages are that it allows for task adaptation, but
it suffers from poor extrapolation beyond nmax and requires interpolation or resizing for
longer inputs. For biosignals where the acquisition window length can vary, deterministic
or relative encodings are often preferable.

2.1.5. Rotary Positional Embedding

Rotary Position Embedding (RoPE) introduce position by rotating query and key sub-
vectors in 2D planes instead of adding a position vector [29]. This yields attention scores
that depend on relative positions through phase differences, enabling clean extrapolation
and better inductive bias for continuous signals like EMG [30, 31, 32]. Given the fact
that EMG windows can shift in time (latency variation), RoPE makes attention logits
depend primarily on relative offsets, aiding pattern alignment (e.g. onset vs. peak) and
generalizing across window boundaries. Multi-frequency rotations capture both short
bursts (high frequency muscular activity) and longer envelope trends.

Construction. Split a d-dimensional vector into d/2 complex (or real 2D) components.
For inverse frequencies ωi as above, define an angle

θpos,i = pos · ωi. (2.22)

Define the 2D rotation matrix

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
. (2.23)

Given a (projected) query (or key) vector q ∈ Rd, reshape into pairs q(i) ∈ R2. Apply:

RoPE(q, pos) =

d/2−1⊕
i=0

R(θpos,i)q
(i). (2.24)

10



2. Background

Do the same for the keys to obtain q̂pos, k̂pos.

Complex notation. Map each pair (q2i, q2i+1) to zi = q2i + jq2i+1. Then

RoPE(zi, pos) = zi · ejθpos,i . (2.25)

Relative position emerges in dot product. Consider a single frequency component
with complex numbers for brevity. The contribution to the attention logit between
positions t and s:

ℜ
{
zqe

jθt · zkejθs
}
= ℜ

{
zqzke

j(θt−θs)
}
, (2.26)

which depends only on the difference θt−θs = (t−s)ω. Summing over frequencies yields
multiscale relative encoding without explicit relative position matrices.

Attention formula with RoPE. Let Q,K ∈ Rn×dk after linear projections. De-
fine rotary versions Q̂, K̂ by rotating each row according to its position index. Scaled
dot-product attention becomes

Attention = Softmax

(
Q̂K̂⊤
√
dk

)
V. (2.27)

Comparison to additive sinusoidal. For additive sinusoidal embeddings, the encod-
ing is absolute + implicit relative (via trigonometric identities). In RoPE, it is directly
relative in logit space (phase differences), eliminating absolute bias with no extra pa-
rameters (same as sinusoidal). Additionally, extrapolation is robust with angles growing
linearly with position, preserving relative differences.

Relation to other methods. Shaw et al. [33] (relative embeddings) add learned at−s

to logits; T5 [34] uses relative bias buckets; ALiBi [35] applies linear distance-dependent
biases. RoPE attains continuous multi-frequency relative modeling without tables or
extra parameters.
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Chapter 3
Related Work

3.1. Classical Machine Learning Approaches

Early EMG research relied heavily on handcrafted features extracted from the time-
domain, the frequency-domain or time–frequency representations. These features were
typically fed into Support Vector Machine (SVM), Latent Discriminant Analysis (LDA),
or k-Nearest Neighbors (k-NN). Although such pipelines achieved respectable accuracy
in controlled settings, they suffered from the following.

• Limited generalizability: Feature sets tuned for one gesture set or electrode
montage often failed when electrodes were repositioned or subjects changed [36].

• Extensive manual effort: Designing and validating robust feature extractors
requires deep domain expertise and iterative experimentation [37].

• Sensitivity to noise: Motion artifacts, cross-talk, and electrode impedance vari-
ations could drastically degrade classification performance without careful prepro-
cessing [38].

3.2. Deep Learning for EMG

3.2.1. Convolutional and Recurrent Models

The advent of deep learning enabled automatic feature extraction directly from raw or
minimally preprocessed EMG waveforms. Convolutional Neural Network (CNN) treat
the EMG as a 1D time-series or a 2D time-frequency "image," capturing local tempo-
ral patterns and inter-channel correlations [39, 40]. Recurrent Neural Network (RNN),
especially Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), have
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been applied to model temporal dependencies and the dynamics of muscle activation, e.g.
across amputees, force levels, and non-stationary muscle activations [41, 42, 43]. Hybrid
CNN–RNN models combined both strengths, but still encountered:

• Limited receptive field: Vanilla CNNs capture only local context unless made
very deep or widened, increasing the parameter count [40].

• Sequential bottlenecks: RNNs process timesteps one at a time, constraining
parallelism, and slowing training [42]

3.2.2. Transformer-Based Models

Early adaptations of the vanilla Transformer to generic time-series tokenize each timestep
independently (sequence length n equals raw sample count or frame count). Self-attention
then offers a global receptive field since any timestep can be accommodated by any
other in one layer, capturing long-range muscle co-activation or temporal context (e.g.
preparation–execution phases). The inherent parallelism removes the typical sequential
dependency of RNNs.

However, naive per-timestep tokenization exhibits several drawbacks: (i) the quadratic
cost of memory and FLOPs with respect to the sequence length n, which for high-density
EMG can quickly become prohibitive [44, 45]; (ii) the low signal-to-token ratio, where
each sample carries little semantic information, leading to noisy attention weights [46];
(iii) the inductive bias of treating each timestep as an independent token, which is not
well suited for continuous signals like EMG [44, 45]; and (iv) the over-sensitivity to mis-
alignment, where minor latency jitters can shift many tokens, reducing robustness [46].

Time-Series Transformers. Time Series Transformers [47] mitigate sequence length
or emphasize temporal priors via: (i) sparse or probabilistic attention variants with
reduced pairwise interactions [48]; (ii) low-rank approximations like linearized atten-
tion [49]; (iii) hierarchical pooling or pyramidal structures that progressively shorten the
sequence length [50]. These reduce cost but still treat the elementary token as (near) a
raw timestep.

Patch (ViT-Like) Embedding for Time-Series. Inspired by Vision Transformers
(ViT) [51], a 1D patch embedder slices the signal into non-overlapping (or mildly over-
lapping) windows of length L; each patch is linearly projected onto a d-dimensional
token:

zi = Proj
(
XiL:(i+1)L,:

)
, i = 0, . . . ,

n

L
− 1. (3.1)

with several benefits, namely the reduction in the length of the sequence from n to n
L , the

higher semantic density given that each token aggregates local temporal patterns, and
implicit local smoothing/denoising, thus reducing high-frequency noise before attention.
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This approach is particularly effective for EMG, where muscle activation patterns often
span several samples and the signal can be noisy due to motion artifacts or variations in
the impedance of the electrode. The drawbacks of patch-based tokenization lie in the loss
of fine-grained temporal resolution, as the model can only attend to patterns on the scale
of L samples, hence the need to pick a L aligned with the temporal task granularity.

Channel Awareness and ChannelViT Motivation. The surface EMG (and the
wider EXG) recordings are multichannel; each electrode captures spatially localized phys-
iology (muscle belly, proximity to the innervation zone, crosstalk). Simple patching that
first concatenates channels along time and collapses them into a single vector could
inadvertently blur inter-channel spatial structure by underrepresenting weaker but dis-
criminative channels and losing electrode identity [52]. This is especially problematic
for EMG, where electrode placement can vary significantly between subjects and tasks,
leading to different spatial patterns of muscle activation.

ChannelViT [53] addresses this by constructing patch tokens independently from each
input channel. This simple modification to the original ViT architecture enables the
model to reason across both locations and channels. However, while ChannelViT can
leverage existing efficient implementations of ViT with minimal modifications, increasing
the sequence length introduces additional computational requirements, thus the choice
of L becomes even more critical than before.

When each patch token is derived from a single channel, the sequence length becomes
n
L · C, where C is the number of channels. This means that the overall computational
cost scales with the number of channels, making it essential to balance the patch size L
with the number of channels C to maintain efficiency.

Applications to Biosignals (EXG). Recent work has explored Transformer-based
architectures for various biosignals, including but not limited to EEG, ECG, and PPG.

FM for wearable biosignals [54] proposes a foundation model approach to leverage large-
scale pre-training for wearable biosignal data (PPG and ECG).

BrainBERT [55] uses an Intracranial Electroencephalograph (iEEG) spectrogram as to-
kens to a Transformer encoder, pre-trained via Masked Autoencoding (MAE) [56].

LaBraM [57] introduces a learnable neural tokenizer that maps EEG waveform patches
to embeddings and then processes them via the MAE framework.

Neuro-GPT [58] adopts causal auto-regressive MAE for EEG waveform modeling similar
to Large Language Model (LLM) pre-training, but with a focus on EEG data.

CEReBrO [8] draws inspiration from ChannelViT, proposing a compact encoder for EEG
using a ViTMAE [56] pre-training approach with an encoder-decoder architecture which
processes only visible tokens in the encoder and then reconstructs the full sequence in
the decoder.
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Chapter 4
Implementation

4.1. Methodology

4.1.1. Overview

Figure 4.1.: Overview of the proposed EMG transformer-pretraining framework.

The model adapts vision-style tokenization and masked image modeling to multi-channel
EMG by: (i) converting raw waveforms into a sequence of temporally local, channel-aware
patch tokens; (ii) applying an encoder-only Transformer with RoPE for relative tempo-
ral inductive bias and length extrapolation; (iii) reconstructing masked patches from
a lightweight linear head so that representational burden is almost entirely in the en-
coder.
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4.1.2. Model description

Tokenization

Following current literature [59], EMG waveforms are sliced into equally-sized non-
overlapping patches to: (i) reduce sequence length thus computation and memory usage;
(ii) extract semantic information and improve locality; (iii) attend to long-range depen-
dencies.

Figure 4.2.: Example raw multi-channel EMG (5 channels). Notation used in the text:
X ∈ RT×C , with T timesteps and C channels.

Let the EMG waveform be X ∈ RT×C (timesteps T , channels C). For a patch length of
L and a stride S, the set of results of patches is P ∈ RNp×C×L where:

Np =

⌊
T − L

S

⌋
+ 1. (4.1)

is the number of patches per-channel.

Each patch Pc,i ∈ RL from channel c and patch index i is projected onto an embedding
space of dimension de using a learnable linear projection Wproj ∈ Rde×L. The final
embedding patches are given by Ec,i = WprojP

⊤
c,i. No learnable positional embedding is

added as RoPE already incorporates such information.

This per-channel patch granularity allows the model to capture both temporal dynamics
within each channel and spatial relationships across channels, which is crucial for EMG
data, where different muscles may exhibit distinct activation patterns.
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Encoder architecture

LayerNorm

Multi Head
Attention

+

LayerNorm

MLP

Input

+

Figure 4.3.: Pre-LayerNorm Transformer encoder block (3 heads, d = 192).

The model architecture is based on a pre-LayerNorm Transformer encoder with RoPE
composed by 8 layers, each with 3 attention heads and embedding dimension 192 as
visible in figure 4.3.
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Reconstruction head and forward pass

Reconstruction Loss

Input Data Patching & Masking Encoder Decoder

+

Tokenizer

x8

Transformer

Transformer

Linear Projection

Reconstruction

Figure 4.4.: General Encoder-Decoder architecture. The encoder processes the masked
input EMG data, while the decoder reconstructs the original signal. The
encoder uses multi head attention to capture temporal and spatial relation-
ships, while the decoder employs only a linear projection to generate the
output.
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Table 4.1.: Hyperparameters for masked EMG pre-training with EMG Transformer.
Hyperparameter EMG Transformer

Transformer Encoder
Timesteps 1000
Patch size (H ×W ) {1, 20}
Number of channels 16
Embed dimension 192
Encoder layers 8
Attention heads 3
QKV bias Yes
QK norm No
MLP ratio 4.0
MLP size 768
Attn drop 0.1
Proj drop 0.1
Drop-path 0.1

Decoder
Decoder embed dim 192

Pre-training Setup
Batch size 512
Peak / minimal LR 1× 10−4 / 1× 10−6

Optimizer (β1, β2) AdamW (0.9, 0.98)
LR scheduler Cosine
Weight decay 0.01
Total / warm-up epochs 50 / 10
Accumulated grad batches 8
Gradient clipping 3
Mask ratio 0.5
Max sequence length 1000

The encoder output is then passed to a linear layer that outputs a sequence P̂, which is
a reconstruction of the original patch sequence P.

The choice of avoiding a deep decoder is in contrast to the asymmetric MAE design
but motivated by the fact that, in this way, all the burden of the reconstruction is onto
the encoder, without relying on a complex decoder. This design choice emphasizes the
encoder’s ability to learn rich representations that can generalize across different tasks
and conditions.

The complete pre-training framework is illustrated in Figure 4.4.
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Parameter budget and deployability

The full model has approximately 3.6× 106 parameters. To relate this budget to embed-
ded targets, we convert parameter counts to memory footprints under common numeric
formats. A single parameter requires 4 B in FP32, 1 B in INT8, and 0.5B when packed
in INT4; therefore the model weights occupy approximately:

FP32: 3.6× 106 × 4 B = 14,400,000 B ≈ 13.73 MiB,

INT8: 3.6× 106 × 1 B = 3,600,000 B ≈ 3.43 MiB,

INT4 (packed): 3.6× 106 × 0.5 B = 1,800,000 B ≈ 1.72 MiB.

By comparison, GreenWaves GAP9 devices expose an on-chip L2 SRAM on the order of
∼ 1.5 MiB and cluster L1/TCDM slices of ∼ 128 KiB, with an additional on-package
nonvolatile/eMRAM region (≈ 2 MiB) and the possibility to attach external PSRAM.

4.1.3. Pretraining objective and strategy

Masking strategy

During pre-training a random subset M of tokens is replaced by a learnable [MASK] to-
ken. We sample independently per sample, each iteration without a fixed schedule, pro-
moting reconstruction robustness across diverse occlusion patterns. Masking at the patch
granularity enforces contextual inference over tens of milliseconds (physiologically mean-
ingful burst segments), rather than trivial gap filling. Extremely low ratios (BERT-style
15%) underutilized reconstruction capacity, while very high ratios (>70%) destabilized
early optimization. The adopted mid ratio of 50% balances the removal of information
and the gradient signal and is supported by prior works [8, 60].

Loss and targets

The chosen loss function is the Smooth L1 loss, defined as:

SmoothL1(x, y) =

{
0.5(x− y)2/β if |x− y| < β

|x− y| − 0.5 · β otherwise
(4.2)

where β is a hyperparameter that controls the transition point between the loss L2 when
the absolute difference is small, and the loss L1 when it is large. Generally, it is less
sensitive to outliers than L2 loss and in some cases prevents exploding gradients. This
follows recent work such as PhysioWave [17], which uses Smooth-L1 as the reconstruction
objective between masked and original patches in physiologic signal pretraining.
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We define the following loss components:

Lmasked =
1

|M|
∑

(c,i)∈M

SmoothL1(Pc,i, P̂c,i) (4.3)

Lvisible =
1

|M̄|
∑

(c,i)∈M̄

SmoothL1(Pc,i, P̂c,i) (4.4)

where M and M̄ are the sets of masked and visible patches, respectively.

The total loss function during pre-training is:

L = Lmasked + α · Lvisible (4.5)

Reconstruction target / decoder details

C channel patch embeddings
per p: Channel Fusing

Temporal pooling over p:

Linear Projection

Mean
Concat

Figure 4.5.: Overview of the finetuning pipeline with the proposed concat channel fusing
approach.

The pre-trained encoder outputs C·Np patch tokens. We omit a [CLS] token and instead
fuse channel information per patch, then pool over time.

Channel fusion. For each temporal patch index p we have {zc,p ∈ Rde}Cc=1.

Mean: z̄p =
1

C

C∑
c=1

zc,p ∈ Rde Concat: z̃p = [z1,p∥ · · · ∥zC,p] ∈ RCde . (4.6)

Mean gives channel invariance (robust, lower dimensional) but discards differential acti-
vation patterns given by selective muscle recruitment, which can be important for dis-
tinguishing between different gestures.

Concat preserves per-electrode structure, allowing the linear head to weight the chan-
nels independently (useful under placement shifts or heterogeneous SNR), at the cost of
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higher dimensionality and higher overfitting risk (later mitigated with weight decay and
label smoothing). Empirically concat improved significantly over mean in most tasks.
Figure 4.5 shows the proposed finetuning pipeline with the two aforementioned channel
fusing approaches.

After fusion, we perform temporal average pooling:

h =
1

Np

Np∑
p=1

zp, zp ∈

{
Rde (mean)
RCde (concat)

(4.7)

and apply a linear layer to obtain logits.

This two-stage, channel then temporal pooling, avoids premature mixing that a single
global average over all CNp tokens would induce while retaining discriminative electrode
structure prior to temporal aggregation.

4.1.4. Pretraining setup and reproducibility

Compute, runtime and reproducibility

All experiments were implemented in Python 3.10 using PyTorch Lightning and Hydra
for modularity, configurability, and reproducibility. The proposed foundation model was
trained on the CSCS Alps HPC infrastructure using NVIDIA GH200 GPUs, employing
a single node with 4x NVIDIA GH200 GPUs in Distributed Data Parallel (DDP) mode
for both pre-training and fine-tuning.

Pre-training took approximately 8 hours using around 500 GB of EMG data. In or-
der to keep a modest parameter count, a single parameter configuration of 3.6M has
been adopted. Fine-tuning each downstream task ranged from 30 minutes to 2 hours,
depending on dataset size and DDP configuration.

Silent speech experiments used the original codebase of Gaddy & Klein [25] without
DDP, while the discrete gesture task used the original codebase with PyTorch Lightning
framework [21].

4.2. Experiments

Each recording undergoes a denoising step with a specific band-pass filter followed by a 50
Hz notch. EMG signals with less than 16 channels are zero-padded and then resampled at
2 kHz. MinMax Channel-wise normalization followed by a shifting operation is applied
to keep the signals in the range [−1, 1]. Each recording is then segmented into fixed-
length windows of 1000 samples with 50% overlap, providing sufficient temporal context
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Table 4.2.: Hyperparameters for downstream fine-tuning with EMG Transformer.
Hyperparameter Value
Batch size 32
Peak / minimal learning rate 5× 10−4 / 1× 10−5

Learning rate scheduler Cosine
Optimizer (β1, β2) AdamW (0.9, 0.98)
Weight decay 0.01
Total epochs Early stopping (max 50)
Warm-up epochs 5
Drop-path 0.10
Layer-wise learning rate decay 0.90
Label smoothing (multi-class classification) 0.10

while controlling computational load. Prior work [61, 62] indicates that windows in the
150-500 ms range are a common sweet spot.

4.2.1. Datasets and tasks

Table 4.3.: sEMG corpora used for pretraining

Dataset Subjects Records Dur.(s) fs (Hz) Channels Size

Ninapro DB6 10 ∼ 8.4 k 4 2000 14 20.3 GB
Ninapro DB7 22 ∼ 5.4 k 5 2000 12 30.9 GB
EMG2Pose 192 25253 60 2000 16 431 GB

The previously described architecture is pre-trained for an FM specific for EMG signals
using the most extensive open-access corpora currently available (see table 4.3).
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4.2.2. Evaluation protocols

Table 4.4.: Public datasets used for downstream evaluation.

Dataset Subjects fs (Hz) Channels Task

Ninapro DB5 10 200 16 Hand gestures
EPN-612 612 200 8 Hand gestures
UCI EMG 36 200 8 Hand gestures
Discrete Gestures 100 2000 16 Hand gestures

Ninapro DB8 12 2000 16 Kinematic regression

Silent Speech 1 800 8 Silent speech recognition

The pretrained encoder is evaluated on the datasets listed in Table 4.4. All downstream
experiments are performed with the same hyperparameters, as shown in Table 4.2. Each
benchmark is then split by subject into training, validation, and test sets with a 60/20/20
partition, preventing subject leakage.

Three different settings are used for downstream tasks: (i) Supervised (scratch), where
the model is trained from scratch on the task-specific dataset without relying on pre-
trained weights; (ii) Linear Probing, where the encoder is frozen and only the task-
specific head is trained; (iii) Full Finetuning, where the entire model is fine-tuned using
layer-wise learning rate decay to avoid catastrophic forgetting [63].

A. Classification Classification tasks used CrossEntropy Loss, with Top1 Accuracy
and F1 score as evaluation metrics to assess model performance and compare with state-
of-the-art methods.

B. Discrete Gesture Meta - Discrete Gestures task uses Binary CrossEntropy Loss
with Classification Error Rate (CLER) as evaluation metric. CLER is computed as the
proportion of events detected by the model that were assigned the incorrect gesture, in
a balanced average across all gestures.

C. Regression Regression task on Ninapro DB8 used L1 loss, with Mean Absolute
Error reported in degrees across all Degrees of Articulation (DoAs) as evaluation metric.
Additional regression metrics are available in Table D.1.
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D. Silent Speech Silent speech tasks used Word Error Rate as evaluation metric,
with two distinct tasks: voicing silent speech (audio, referred as D1) and silent speech
recognition (text, referred as D2). The voicing task uses Dynamic Time Warping (DTW)
Loss with weighted phoneme loss for aligning mel spectrograms, HiFi-GAN vocoder, and
Wav2Vec2 ASR for transcription into text. The recognition task uses CTC-loss with
a Language Model Beam Search decoding. The WER metric is used to evaluate the
performance of the model on both tasks.
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Chapter 5
Results

5.1. Pretraining Reconstruction

Figure 5.1.: Reconstruction of a windowed EMG recording by the proposed EMG Foun-
dation Model.

Figure 5.1 illustrates the reconstruction of a single windowed EMG recording produced
by the proposed EMG Foundation Model. The model reliably recovers masked segments
of the signal, although reconstruction quality degrades as the size of contiguous occlu-
sions increases. Given the relatively compact parameter budget of 3.6M, the observed
reconstruction fidelity is notable and supports the model’s capacity to learn useful signal
structure despite its modest size.
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5.2. A. Gesture classification

Table 5.1.: EMG gesture recognition. Accuracy and F1 scores.

Method Params Ninapro DB5 EPN-612 UCI EMG

Acc. F1 Acc. F1 Acc. F1

Moment 385 M 86.41 74.42 90.87 90.16 90.45 91.75
OTiS 45 M 85.31 72.61 87.55 88.03 90.62 89.28
PhysioWave Small 5 M 84.78 72.54 93.12 93.40 90.35 89.51
PhysioWave Base 15 M 86.02 73.78 93.68 93.91 91.92 92.77
PhysioWave Large 37 M 87.53 75.42 94.50 94.56 93.19 93.59
WaveFormer 3.1 M 87.53 74.66 95.21 95.22 93.10 93.20

Supervised 3.6 M 78.59 78.06 95.84 95.85 97.50 97.85
Linear Probing 3.6 M 76.79 75.13 79.94 79.96 97.14 97.14
Finetuning 3.6 M 85.30 84.53 96.60 96.69 97.86 97.50

Table 5.1 summarizes the performance of the proposed model against the publicy avail-
able large-scale generic time-series models, namely Moment (385 M) and OTiS (45 M),
as well as the more recent PhysioWave family of models (5 M, 15 M, and 37 M) and
WaveFormer (3.1 M).

The proposed Foundation Model for EMG signals even with a modest parameter count
of 3.6 M outperforms the larger models on the EPN-612 and UCI EMG datasets while
achieving competitive results on the Ninapro DB5 dataset. On EPN-612, the model
achieves new state-of-the-art results of 96.60% accuracy and 96.69% F1 score, surpassing
both PhysioWave Large and WaveFormer. On UCI EMG, the model achieves 97.86%
accuracy and 97.50% F1 score, outperforming all other models with a +4% improvement
over PhysioWave Large. On Ninapro DB5, the model achieves 85.30% accuracy, which
is slightly lower than PhysioWave Large, but a 84.53% F1 score, achieving new state-of-
the-art results using 1/10 of the parameters.

5.3. B. Discrete Gesture

Table 5.2 summarizes the performance of the proposed model on the discrete gesture
recognition task, specifically focusing on Classification Error Rate (CLER) for both full
sequence and windowed inference methods.

The original work by Meta adopts a stacked LSTM architecture with 3 layers, trained on
non-overlapping windows of 8 seconds. The proposed model is trained under the same
conditions, allowing for a fair comparison between the two approaches. However, at in-
ference time, the LSTM was tested on the full sequence of EMG data, while the proposed
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Table 5.2.: EMG Discrete Gesture. Classification Error Rate (CLER) for full sequence
and windowed inference.

Method Params CLER Inference Method

Meta - LSTM 6.4 M 0.1819 Full sequence
Meta - LSTM 6.4 M 0.1596 Windowed

Supervised 3.6 M 0.1594 Windowed
Finetuning 3.6 M 0.1553 Windowed

Transformer model cannot process the entire sequence due to quadratic complexity, thus
requiring windowed inference.

The windowed inference approach involves sliding a window of 8 seconds over the EMG
data, with a stride of 2 seconds, to ensure that the model can process the data in
manageable chunks. This method allows the Transformer model to maintain performance
while being coherent to its architectural constraints. In order to compare the original
LSTM architecture with the proposed Transformer model, the same windowed inference
strategy is applied to the LSTM during evaluation, and both the results are reported.

The results indicate that the Transformer model achieves comparable performance to the
original LSTM architecture (tested under windowed inference) with a CLER of 0.1553,
which is slightly better than the LSTM’s CLER of 0.1596. This demonstrates that
the proposed Transformer model, although with modest parameter count, can effectively
handle the discrete gesture recognition task while adhering to its architectural constraints
and even outperforming the original LSTM while leveraging pre-trained weights.

5.4. C. Regression

Table 5.3.: EMG regression on Ninapro DB8. Mean Absolute Error in Degrees across
DoAs.

Method Params MAE° Notes

TEMPONet TCN <500 K 6.89 All 5 DoAs, per-subject
Event-based Linear Regr. — 8.8 ± 2.3 All 5 DoAs, per-subject
DeepNet+Kalman — 13.5 (RMSE) 3 DoAs only, per-subject

Supervised 3.6 M 8.87 All 5 DoAs, across-subject
Linear Probing 3.6 M 9.48 All 5 DoAs, across-subject
Finetuning 3.6 M 8.53 All 5 DoAs, across-subject
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Table 5.3 summarizes the performance of the proposed model on the Ninapro DB8 dataset
for kinematic regression, which involves predicting joint angles across five degrees of
freedom (DoAs). The results are reported in terms of Mean Absolute Error (MAE) in
degrees.

The proposed model demonstrates competitive performance compared to existing meth-
ods, achieving a MAE of 8.87° across all five DoAs in a cross-subject setting. Notably,
the finetuning approach yields the best performance with a MAE of 8.53°, showcasing
the effectiveness of the proposed model in capturing the underlying patterns in the EMG
signals for regression tasks. Compared to TEMPONet TCN, which is a per-subject set-
ting with a MAE of 6.89°, the proposed model achieves an higher MAE of 8.53° but in a
cross-subject setting, indicating the model’s ability to generalize across different subjects
with remarkable performance.

5.5. D. Silent Speech

5.5.1. D1. Silent Speech Synthesis

Silent speech synthesis is the process of converting EMG signals into audible speech.
This involves a model that interprets the muscle activity and generates corresponding
audio. Table 5.4 presents the Word Error Rate for various methods in the EMG-to-audio
domain, indicating how accurately the synthesized speech can be transcribed back into
text.

Table 5.4.: EMG Silent Speech Synthesis. Word Error Rate (WER) reported for the
EMG–audio modality.

Method Params EMG–audio (WER)

Gaddy & Klein 54 M 36.00%
Ren et al., 2024 — 32.00%
Scheck & Schultz, 2023 — 40.00%
EMGVox-GAN 12 M 36.00%

Supervised 4.5 M 34.14%
Finetuning 4.5 M 31.65%

As the table 5.4 illustrates, different models and techniques yield varying levels of ac-
curacy. For instance, the Finetuning method with 4.5 million parameters achieves a
relatively low WER of 31.65%, suggesting a higher accuracy in synthesizing intelligible
speech from EMG signals.
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5. Results

5.5.2. D2. Silent Speech Recognition

Silent speech recognition, on the other hand, focuses on directly converting EMG signals
into written text, bypassing the audio generation step. This modality is particularly
useful for silent dictation or for individuals who have lost their voice but retain control
over their facial muscles. Table 5.5 shows the WER for different EMG-to-text methods.

Table 5.5.: EMG Silent Speech Recognition. Word Error Rate (WER) reported for the
EMG–text modality.

Method Params EMG–text (WER)

Gaddy & Klein 54 M 28.8%
Stanford MONA — 22.2%
Stanford MONA LISA — 12.2%

Supervised 4.5 M 33.90%
Finetuning 4.5 M 32.75%

The Stanford MONA LISA model achieves a remarkable Word Error Rate (WER) of
just 12.2% in this domain. This high accuracy in directly transcribing silent speech from
muscle signals to text is achieved through a multimodal approach that learns from joint
EMG-audio pairs. This result underscores the potential of EMG-based interfaces as a
robust communication alternative and highlights the significant advantages of multimodal
learning.
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Chapter 6
Conclusion and Future Work

6.1. Conclusion

In this work, we addressed the critical challenge of generalization in Electromyography-
based Human-Machine Interfaces. Traditional models often require extensive, task-
specific labeled data and struggle to adapt across different users, sessions, and tasks.
We successfully demonstrated that the Foundation Model paradigm, powered by SSL,
offers a potent solution. We introduced and validated a compact, EMG-centric Foun-
dation Model, proving that a single, pre-trained encoder can learn rich, transferable
representations of neuromuscular activity from large-scale unlabeled data.

The effectiveness of our approach is reflected in the robust empirical performance of the
3.6 M parameter model across multiple downstream tasks (see Chapter 5): it achieves
superior gesture-classification results relative to much larger baselines (e.g., PhysioWave
Large, 37M params; Moment, 385M params), posts a competitive Mean Absolute Error
of 8.53° on Ninapro DB8 for cross-subject kinematic regression, outperforms traditional
LSTM architectures on discrete gesture decoding, and attains strong silent-speech recog-
nition from purely unimodal EMG pretraining. For additional context, recent work on
WaveFormer (a lightweight sEMG transformer of ≈ 3.1M parameters) reports ≈ 95%
classification accuracy on EPN612; our model delivers broader downstream transfer per-
formance while maintaining a similar compact footprint.

Crucially, the significance of these results is twofold. First, they validate that a single,
unified model can effectively replace task-specific engineering for a wide array of EMG
applications. Second, the modest parameter count is not merely an academic footnote
but a central feature of our contribution: it directly enables deployment on resource-
constrained embedded platforms. Concretely, our transformer has 3.6 million parameters,
which corresponds to ≈ 13.73 MiB in FP32, ≈ 3.43 MiB in INT8, and ≈ 1.72 MiB when
packed as INT4.
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6. Conclusion and Future Work

By comparison, GreenWaves GAP9 provides on the order of ≈ 1.5 MiB of L2 SRAM
and 128 KiB of L1/TCDM per cluster (plus ≈ 2 MiB of on-package nonvolatile mem-
ory/eMRAM and the option to attach external PSRAM). These numbers imply that,
without further compression or system-level strategies, the 3.6M-parameter model can-
not fit entirely in GAP9’s L2 in FP32 or INT8 form; even INT4 quantization is only
marginally above the L2 budget. Therefore, practical deployment on GAP9 will require
as first a quantization step, pruning or other compression techniques and possibly tiling
or streaming so weights are loaded into L1/L2 on demand; each of these steps trades
implementation complexity, latency, and energy for reduced on-chip memory pressure.

6.2. Future Work

This thesis establishes a strong foundation for future research in EMG-based interfaces.
Several promising avenues can be explored to build upon this work:

• Architectural Enhancements: While our Transformer-based encoder is highly
effective, future work could explore even more computationally efficient architec-
tures. Investigating hybrid models that combine the global receptive field of Trans-
formers with the efficiency of Mamba-based State Space Models or incorporating
Mixture-of-Experts (MoE) layers could further scale up performance.

• Expanding the Pre-training Corpus: The strength of a Foundation Model is
directly tied to the scale and diversity of its pre-training data. Future iterations
should aim to incorporate even larger and more heterogeneous EMG datasets, cov-
ering a wider range of subjects, pathologies, and acquisition hardware to further
bolster the model’s robustness and zero-shot capabilities.

• Quantization and On-Device Optimization: To fully realize the potential
for embedded deployment, a systematic study on model quantization is necessary.
Exploring the trade-offs of 8-bit and 4-bit quantization on performance would be a
critical next step for deploying this model on low-power microcontrollers and edge
AI accelerators, such as GreenWaves GAP processors.

• Multi-Modal Foundation Models: While our unimodal approach was highly
successful, future research could explore pre-training multi-modal Foundation Mod-
els that learn to fuse EMG signals with other biosignals, such as EEG or inertial
measurement unit (IMU) data, to decode user intent with even greater accuracy
and reliability.
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1 Introduction

Electromyography (EMG) is an electrical sensing modality that measures variations in the elec-
trical properties of muscles that naturally occur with muscle contractions. EMG techniques can
be categorized into invasive (needle EMG) and non-invasive (surface EMG, sEMG) approaches.
The latter option is particularly suitable for wearable neuromuscular sensing interfaces, enabling
applications ranging across various domains, such as Clinical Diagnostics, Rehabilitations, and
Therapy, Ergonomics, Human-Machine Interaction, Sport Science, and Performance.

Despite its versatility, EMG analysis presents several challenges. In particular, the EMG
signals vary significantly across individuals due to differences in muscle anatomy, electrode place-
ment, and skin conductivity. EMG signals are inherently non-stationary, with characteristics
that change over time and with different movements. They are susceptible to noise from external
electrical sources and motion artifacts, which complicates the interpretation of the signal.

Different types of signal-processing techniques have been used together with machine and
deep learning approaches to extract relevant information from the signal and perform various
downstream tasks. Initial methods relied on handcrafted feature extraction, but research has
progressively shifted towards deep learning approaches. More recently, there has been growing
interest in developing unsupervised learning techniques to extract meaningful representations
from EMG signals without extensive labeled datasets.

Foundation models, known for their extensive pre-training on large datasets before being fine-
tuned for specific tasks, have dramatically altered the landscape in fields like natural language
processing and computer vision. Nevertheless, their application in interpreting the complexities
inherent in EMG data is still in its early stages. Within the realm of foundation models,
the mixture of experts (MoE) has emerged as an effective method for substantially scaling up
model capacity with minimal computational overhead [1]. Some studies have shown promising
performance of MoE-based models for EMG data [2], particularly in specific downstream tasks
such as gesture recognition. However, there is still a lack of studies focused on developing an
architecture that can generalize across different downstream tasks.

This project proposes the development of a foundation model specifically for EMG analysis,
leveraging open-source datasets collected under various experimental conditions. The primary
goal is to design a generalized model for extracting robust and meaningful features from EMG
signals, making it agnostic to specific data collection methodologies, hardware variations, and
downstream applications. By integrating the Mixture of Experts (MoE) architecture, this ap-
proach aims to enhance the adaptability and generalization of EMG-based models, advancing
the field of neuromuscular signal processing.

2 Project Goals

The main tasks of this project are:

• Task 1 - Literature review and familiarization with project specifics

1. Literature review on EMG signals and its applications.

2. Literature review on Foundation Models and their application for ExG signals, with
a specific focus on EMG

3. Set-up of computational environment, software and tools.
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• Task 2 - Data Preparation and Downstream Task Definition In this task package,
the focus is on preparing the data that will be used for the pre-training of the foundation
models and the downstream tasks. Several open-source datasets will be employed [3, 4, 5,
6, 7, 8, 9, 10], . The selection of the specific datasets used for pre-training and downstream
task will be assessed considering the time needed for data preparation and computaitonal
resources.

• Model Architecture Design In this work package, the student will investigate MoE as
a candidate for an EMG foundation model. In particular the tasks will be:

1. Investigating the mechanism underpinning MoEs. Understanding the rationale of
applying this technique to EMG signals.

2. Investigate load-balancing techniques for the different experts (load-balancing and
loss-free strategies)

3. Investigating the techniques used in Deepseek’s model, such as the loss-free balancing
strategy, floating-point 8 training, multi-head latent attention.

4. Investigating efficient attention modules such as native sparse attention [11, 12].
5. Investigating the allocation of bitwidth for low-bit floating-point training and infer-

ence.

• Finetuning for Downstream Tasks The focus here is on applying the developed foun-
dation model to a number (>5) of different types of downstream tasks, such as gesture
classification or regression, speech detection from biosignals, gait analysis.

• Task 5 - Gather and Present Final Results

1. Gather final results.
2. Prepare presentation (20 min. + 5 min. discussion).
3. Write a final report.

3 Project Realization

3.1 Project Plan

Within the first month of the project you will be asked to prepare a project plan. This plan
should identify the tasks to be performed during the project and sets deadlines for those tasks.
The prepared plan will be a topic of discussion of the first week’s meeting between you and your
advisers. Note that the project plan should be updated constantly depending on the project’s
status.

3.2 Meetings

Weekly meetings will be held between the student and the assistants. The exact time and
location of these meetings will be determined within the first week of the project in order to fit
the students and the assistants schedule. These meetings will be used to evaluate the status and
progress of the project. Beside these regular meetings, additional meetings can be organized to
address urgent issues as well.
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3.3 Report

Documentation is an important and often overlooked aspect of engineering. One final report has
to be completed within this project. The common language of engineering is de facto English.
Therefore, the final report of the work is preferred to be written in English. Any form of word
processing software is allowed for writing the reports, nevertheless the use of LATEX with Tgif1 or
any other vector drawing software (for block diagrams) is strongly encouraged by the IIS staff.

Final Report The final report has to be presented at the end of the project and a digital
copy need to be handed in. Note that this task description is part of your report and has to be
attached to your final report.

3.4 Presentation

There will be a presentation (15 min presentation and 5 min Q&A) at the end of this project in
order to present your results to a wider audience. The exact date will be determined towards
the end of the work.

3.5 Appendix: Datasets
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Appendix C
Datasets

C.1. Pretraining Datasets

For the pre-training of the FM, the raw EMG data are processed with several critical
preprocessing steps, including band-pass filtering, notch filtering, normalization, and
segmentation into overlapping windows.

First, a bandpass filter is applied to remove unwanted noise and artifacts, typically in the
range of 20-450 Hz, which is suitable for capturing the relevant frequency components of
EMG signals. A notch filter at 50 Hz is also applied to eliminate power line interference.
Normalization is then applied via min-max scaling to ensure that the range of the EMG
signals falls within [-1 , 1].

Segmentation into overlapping windows is performed to create a dataset suitable for
training. Each window is typically 1000 samples long with a step size of 500. If the
sampling rate of the raw EMG signal is below 2000 Hz, the data is up-sampled to 2000
Hz to ensure consistency across the dataset. Furthermore, if the number of channels is
less than 16, zero-padding is applied to ensure that all samples have the same number of
channels. Such pre-processed data is then stored in HDF5 format, for efficient storage
and retrieval during training.

Ninapro DB6 Ninapro DB6 contains sEMG from 10 subjects performing 7 hand grasp
types, each repeated 12 times over 5 separate recording days. Signals were acquired with
14 wireless Trigno electrodes with a sampling rate of 2 kHz and time-aligned with inertial
measurements capturing forearm motion. The dataset targets robust grasp recognition
under temporal and session variability, supporting evaluation of prosthetic control algo-
rithms [64].
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C. Datasets

Ninapro DB7 Ninapro DB7 provides simultaneous myoelectric and inertial data from
20 intact subjects and 2 transradial amputees. Recordings employ 12 wireless Trigno
EMG sensors plus co-located 9-axis IMUs (2 kHz) alongside an 18-DOF CyberGlove on
the contralateral hand for kinematic ground truth. Subjects executed 40 movements
spanning isolated finger/wrist actions and grasp patterns, enabling multimodal fusion
studies for prosthetic intent decoding [65].

EMG2Pose EMG2Pose pairs 16 sEMG channels acquired at 2 kHz with synchronized
joint angle trajectories for hand motion across 29 staged activities. It comprises 25,253
HDF5 sessions from 193 participants (some held out for generalization splits), up to a
total of 370 hours. Rich metadata (subject ID, session, laterality, split flags) facilitates
standardized benchmarking of EMG-driven pose estimation, gesture recognition, and
cross-subject transfer [66].

C.2. Downstream Datasets

Ninapro DB5 Ninapro DB5 comprises 10 intact subjects with 16 forearm electrodes
at 200 Hz of repeated executions of a set of 52 wrist/hand gestures. Each movement
is performed in multiple repetitions under controlled timing, providing a medium-scale
benchmark for gesture classification and cross-subject generalization with moderate chan-
nel count and relatively low sampling rate [18].

EPN-612 EPN-612 contains 8-channel, 200 Hz Myo armband recordings from 612
subjects performing five active gestures (wave-in, wave-out, pinch, open, fist) plus rest,
typically 50 trials per class. Its large subject pool emphasizes inter-person variability
and supports evaluation of robustness, calibration reduction, and domain adaptation
methods [19].

UCI EMG The UCI EMG Gesture dataset (36 subjects, 8 channels at 200 Hz) cap-
tures multiple hand/wrist gesture classes (commonly 8–10 plus rest in derived splits) with
labeled repetitions. Its compact size and consistent sensor layout make it a lightweight
benchmark for rapid prototyping and ablation of preprocessing or model components [20].

Discrete Gestures (Meta’s Generic Neuromotor Interface) Meta (Reality Labs)
presents a high-fidelity, non-invasive neuromotor interface in their 2025 Nature article,
“A generic non-invasive neuromotor interface for human-computer interaction”, introduc-
ing the discrete gestures dataset. This dataset comprises segmented forearm and wrist
gestures collected from 100 participants, recorded via surface electromyography (sEMG)
using 16 high-rate channels sampled at 2 kHz, designed for low-latency interaction stud-
ies [21].
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C. Datasets

Ninapro DB8 Ninapro DB8 (12 subjects, 16 channels at 2 kHz) pairs sEMG with
synchronized multi-DoF finger and wrist kinematics (glove / motion capture) over con-
tinuous movement protocols. It serves kinematic (angle) regression and proportional
control tasks, stressing fine temporal alignment, amplitude scaling, and inter-joint coor-
dination modeling [67].

Silent Speech In their EMNLP 2020 paper “Digital Voicing of Silent Speech,” Gaddy
and Klein introduce a silent speech dataset comprising nearly 20 hours of facial sEMG
signals from a single speaker, recorded via eight channels at a 800 Hz sampling rate.
The dataset includes parallel silent and vocalized utterances with time-aligned transcrip-
tions, enabling the transfer of audio targets to silent EMG via dynamic time warping
and feature alignment [25]. This facilitates the evaluation of EMG-to-text and EMG-
to-speech models, supporting tasks such as mapping muscle activity to phoneme se-
quences and acoustics under limited subject diversity but rich sentence-level variability.
Follow-up improvements using convolutional plus Transformer models further integrated
phoneme prediction as an auxiliary task to enhance intelligibility in open-vocabulary
settings [68].
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Appendix D
More Evaluation Results

D.1. Kinematic Regression

Table D.1.: Complete EMG Kinematic Regression Results across-subject. Additional
metrics are reported: Pearson correlation, R2, RMSE, and Explained Vari-
ance.

Method MAE° Pearson R2 RMSE Explained Variance

Supervised 8.87 0.7731 0.5958 13.81 0.596
Linear Probing 9.48 0.7463 0.5589 14.49 0.5598
Finetuning 8.53 0.7918 0.627 13.31 0.6281

D.2. Silent Speech

The Silent Speech task is also evaluated comparing the frequency of errors between two
phonemes to the frequency of correct predictions on those phonemes.

Confusion is defined as follows:

(ep1,p2 + ep2,p1)/(fp1 + fp2) (D.1)

while Accuracy is defined as:

(ep1,p1 + ep2,p2)/(fp1 + fp2) (D.2)

where ep1,p2 is the number of times p2 was predicted when the label was p1, and fp1 is
the number of times phoneme p1 appears as a target label.
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D. More Evaluation Results

Table D.2.: Results for the most confused pairs of phonemes

IPA Phonemes Confusion (%) Accuracy (%)

v f 13.5 74.1
k g 13.0 73.3
z s 10.9 77.1
t d 10.6 62.8
p m 10.5 76.5
m b 9.5 74.2
p b 8.9 69.7
S dZ 8.4 63.4
r 3‘ 7.5 77.0

dZ tS 7.0 56.7
E ae 6.6 70.3
n d 6.4 64.9
I V 6.1 67.9
t n 6.1 65.6
I E 5.7 63.0
S tS 5.5 60.1
u: oU 5.4 77.5
j g 4.9 50.1
T D 4.5 80.1
i: eI 4.4 82.5
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D. More Evaluation Results

Figure D.1.: Phoneme confusability (darker lines indicate more confusion - maximum
darkness is 13% confusion)

D.3. Discrete Gesture

Table D.3.: Ablation study on the window size for the discrete gesture recognition task,
measured by CLER.

Method Window size CLER Inference Method

Meta - LSTM — 0.1819 Full sequence
Meta - LSTM 16 000 0.1596 Windowed

Finetuning 16 000 0.1553 Windowed
Finetuning 8 000 0.1634 Windowed
Finetuning 6 000 0.1651 Windowed
Finetuning 4 000 0.2770 Windowed

Table D.3 shows an ablation study of window size on the discrete gesture recognition task,
using CLER as the performance metric. This analysis explores the impact of window
size on gesture recognition accuracy, relevant for real-time applications. The results
indicate that a window size of 16,000 samples yields the best performance for both the
Meta-LSTM and finetuned models. Performance degrades as the window size decreases,
particularly with a significant drop at 4,000 samples (2 seconds at 2kHz sampling rate),
suggesting that smaller windows may not capture sufficient temporal information for
accurate gesture recognition.
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D. More Evaluation Results

D.4. Visualization of EPN612 Experimental Results
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Figure D.2.: Confusion matrix on the EPN612 test set.

Figure D.2 shows the confusion matrix for the EPN612 dataset. Performance is gen-
erally high, with most gestures being correctly classified. Most misclassifications occur
between waveOut and open. Given the sparse distribution of off-diagonal values, the
model demonstrates strong generalization capabilities across the different gestures.

Figure D.3 shows the ROC curves for each gesture in the EPN612 test set. The noGesture
class achieves the highest AUC of 1.0, indicating perfect classification for this class,
followed by the waveIn, pinch, and fist, all with AUCs of 0.999. All the curves are
located well above the diagonal of the random classifier, indicating strong separation
between positive and negative classes across all gestures.

Figure D.4 shows the t-SNE embeddings of the EPN612 dataset. The embeddings are
well-separated for most gestures, with a slight overlap between waveOut and open, indi-
cating some confusion between these two classes which is also reflected in the confusion
matrix. The noGesture class is clearly separated from the others, demonstrating that the
model effectively learns to distinguish between active gestures and rest, and the overall
visualization reveals non-linear clustering structures.
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Figure D.3.: ROC curves for each gesture in the EPN612 test set.
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Figure D.4.: t-SNE embeddings for the EPN612 dataset.
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Appendix E
FLOPs and Peak Memory Usage

Table E.1.: Per-GPU FLOPs and peak memory usage during pretraining and finetuning.

Model FLOPs Peak memory usage

Pretraining 9.6 G 7,778 MB
Finetuning (DB5) 9.6 G 1,968 MB
Finetuning (EPN-612) 3.8 G 1,060 MB

Table E.1 shows the FLOPs and peak memory usage during pretraining and finetun-
ing on Ninapro DB5 and EPN-612. FLOPs were estimated per GPU using lightning
measure_flops on the per-GPU training batch (only forward pass); reported FLOPs
are per training step per GPU. Peak GPU memory is the maximum per-GPU allocation
measured with torch.cuda.max_memory_allocated() on rank 0 GPU.

For distributed data-parallel (DDP) training each GPU holds a full model replica and
optimizer/activation memory; the aggregate cluster FLOPs can be computed by multi-
plying the per-GPU GFLOPS by the number of GPUs but communication may reduce
observed throughput.
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