THE UNIVERSITY OF

SYDNEY KU LEUVEN

-

£

<R

R _Yawei Li WenLi Martﬁanelljan " Kai Zhang

y e \\.\\_ : -
\ ‘{‘A
\»q v . g \'\ . }f i
" \ \""ﬁLﬁé;Van Gool Radu Timofte
B 'f“;:_‘._fﬁ. d
= ."f:. 2
R g



/ Contents \

][ 1. Introduction

-{@j[ 2. Question One: The Heterogeneity Hypothesis
(=

.\' i
( .][ 3. Question Two: Methodology

-/. \
@ 4. Question Three: Explanation \
j[ 5. Conclusion \

ETH:zlurich



Introduction



Architecture Optimization



Introduction

Neural Architecture Design

Architecture Search

Manual Design Architecture Optimization

m Network Layer Ratio
1.2

}!F

0.2

0

Layer 1 Layer 2 Layer L

sNe

ETH:zlrich



Introduction

Hints: Lottery Ticket Hypothesis (Unstructured)

 MNIST

:
-
é 0.96

5000 10000 15000
Training Iterations

Observation 1: Pruned network performs better than the original network.

[1] Jonathan Frankle, Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. ICLR 2019.
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Introduction

Hints: Channel Pruning (Structured)

» Tiny-ImageNet

* «: width multiplier . —A—MobileNetV/1
MobileNetV1 by DHP

MobileNetV2
- © -MobileNetV2 by DHP
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Observation 2: Channel pruned network outperforms the original network under
different model complexities.

[1] Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, Radu Timofte. DHP: Differentiable Meta Pruning via HyperNetworks. ECCV 2020.
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Introduction

Limitation of Previous Work

* The lottery ticket hypothesis is only valid under the setting of weight removal.
— Extension to architecture optimization in terms of channel reconfiguration is not studied.

* The optimized network architectures are derived under different training protocols (epoch).
— Where the improvement comes from.

« Small dataset (MNIST, Tiny-ImageNet).
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The Heterogeneity Hypothesis:
The Existence of LW-DNA models



The Heterogeneity Hypothesis

Question |:The existence LW-DNA models

With the same training protocol, there exists a layer-wise differentiated network
architecture (LW-DNA) that can outperform the original network with regular
channel configurations but with a lower level of model complexity.

v" The same training protocol

v LW-DNA

v Lower level of model complexity
= Parameters
= Computation
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The Heterogeneity Hypothesis

Question |:The existence LW-DNA models

—— Baseline
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20 40 60
Layer Index

(b) RegNet-4GF, ImageNet.

20 40
Layer Index

(a) ResNet50, ImageNet.

Top-1 FLOPs [G] Params [M]
Error (%) / Ratio (%) / Ratio (%)

4.1177/100.0 25.557/100.0
3.7307/90.60 23.741/92.90

Network Method

ResNet50 Baseline
LW-DNA

RegNet-4GF Baseline
LW-DNA

4.0005/100.0 22.118/100.0
3.8199/95.49 15.285/69.10
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Methodology
How to identify LW-DNA models



Methodology

Question 2: How to identify an LW-DNA model efficiently?

« Starting from a baseline architecture

« Cost-free architecture optimization I
— Fair comparison | | ‘
 Single-shot network shrinkage ‘“M" .‘Jl |‘ ,’,'l‘ I i” i ” ’
— Initialize a network o { 20 '_ | ‘ |
— Prune the initialized network -
— Train the pruned the network

Layer 6, Epoch 1

ax: 1.9722 »'45--:- 0 4‘356-,7‘~1n 0 CCIQI ]
 Why single-shot?
« Two problems:

— 1. Unable to grow a layer

— 2. Unstructured pruning
.
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Layer 6, Epoch 4 Layer 16, Epoch 4
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Methodology

Question 2: How to identify an LW-DNA model efficiently?

 Problem One: Unable to grow a layer

« Channel configuration vector in the configuration space
— Assembly of channel number into a vector.

ETH:zlurich



Methodology

Question 2: How to identify an LW-DNA model efficiently?

 Problem One: Unable to grow a layer
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Methodology

Question 2: How to identify an LW-DNA model efficiently?

 Problem One: Unable to grow a layer
— Solution: Expand the network by an upscaling factor
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Methodology
Question 2: How to identify an LW-DNA model efficiently?
 Problem One: Unable to grow a layer

— Solution: Expand the network by an upscaling factor
— Constrain the minimum channel width by a factor p

C(pe, pc) < H(0, Se)

H(0,fc)={xeE|0<z < fc}
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Methodology

Question 2: How to identify an LW-DNA model efficiently?

 Problem One: Unable to grow a layer
— Shrink to the optimal solution ¢’

C(pe, pc) < H(0, Se)

H(0,fc)={xeE|0<z < fc}
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Methodology

Question 2: How to identify an LW-DNA model efficiently?

 Problem 2: Unstructured Pruning
— Reparameterization of the network

Hypernetwork takes latent vectors as input.

Generate Weight Parameters

Hypernetwork Backbone Network

[1] Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, Radu Timofte. DHP: Differentiable Meta Pruning via HyperNetworks. ECCV 2020.
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Methodology

Question 2: How to identify an LW-DNA model efficiently?

 Problem 2: Unstructured Pruning
— Reparameterization of the network

/ Latent Vector Latent Matrix Embedding Vector

Output Weight \

_1T
'l !

N e DR ]
X EETE
= HEEEN
l OIS
% Latent Layer Embedding Layer Explicit Layer /
Hypernetwork.

[1] Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, Radu Timofte. DHP: Differentiable Meta Pruning via HyperNetworks. ECCV 2020.
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Methodology

Question 2: How to identify an LW-DNA model efficiently?

« Steps of the architecture optimization method

Widen Baseline Network

Reparameterize with Hypernetwork

Compute Gradients with
One Random Mini-Batch

Conduct Single-Shot Shrinkage

Greedily Shrink the

Train LW-DNA with the Same Network wrt Gradients
Training Protocol
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Explanation:
Why LW-DNA models performs better?



Explaination

Question 3: How to explain the benefits of LW-DNA?
* CNNs are redundant.
— It is possible to find a layer-wise specific channel configuration comparable with the baseline under lower

model complexity.
 The redistribution of computational budget could help to improve the performance.

Baseline Baseline
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(b) RegNet-4GF, ImageNet.

20 40 ' 20
Layer Index

(a) ResNet50, ImageNet.
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Explanation

Question 3: How to explain the benefits of LW-DNA?

 Maybe related to overfitting
— Evidence one: training and test log.
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MobileNetV1
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Explanation
Question 3: How to explain the benefits of LW-DNA?

 Maybe related to overfitting

— Evidence three: On the same dataset, it is easier to identify an LW-DNA model version for larger
networks than for smaller networks.

Dataset Network ‘ Method Top-1 Error (%) | FLOPs [G]/Ratio (%) | Params [M]/ Ratio (%)

Baseline 23.28 4.1177 7 100.0 5.557 /7 100.0
LW-DNA 23.00 3.7307 / 90.60 3.741792.90
RegNet [ ] Baseline 23.05 4.0005 / 100.0 22,118/ 100.0
X-4.0GF LW-DNA 22.74 3.8199/95.49 15.285/69.10
Baseline 34901 0.0612/7100.0 3.108 / 100.0
LW-DNA 34.84 0.0605 / 98.86 3.049/98.11

ResNet50 [ 1]
ImageNet | ]

MobileNetV3 small |

Table 4: Image classification results.
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Explanation
Question 3: How to explain the benefits of LW-DNA?
 Maybe related to overfitting

— Evidence two: The accuracy gain of an LW-DNA model is larger for smaller datasets (Tiny-ImageNet)
compared with larger datasets (ImageNet).

Dataset ‘ Network | Method | Top-1 Error (%) ‘ FLOPs [G] / Ratio (%) ‘ Params [M] / Ratio (%)

ImageNet [] MobileNetV3 small [ 1] ’

Baseline 34.91 0.0612 /7 100.0 3.108 / 100.0
LW-DNA 34.84 0.0605 / 98.86 3.049/98.11

Baseline 51.87 0.0478 7/ 100.0 3.412/100.0
Baseline KD 48.00 0.0478 /100.0 3.412/7100.0
LW-DNA 46.44 0.0460 /96.23 1.265/ 37.08
Baseline 44.38 0.0930 7/ 100.0 2.480/100.0
Baseline KD 41.25 0.0930 /7 100.0 2.480/ 100.0
LW-DNA 40.74 0.0872/93.76

MobileNetV1 [ /]
Tiny-ImageNet

MobileNetV2 [/ ]

Table 5: Image classification results.
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Explanation

Extension to other vision tasks

* Visual Tracking

Metric DiMP-Baseline | DiMP-LW-DNA

Success plot
TrackingNet [ 0]
Precision 68.06 68.27
Norm. Prec. ( 79.70 79.64
Success (AUC 73.77 73.83

(¥, =)
o

| |— DIMP-LW-DNA [57.4]
DiMP-Baseline [55.9]
1 |—ATOM [51.5]
— SiamRPN++ [49.6]
— MDNet [39.7]
VITAL [39.0]
SiamFC [33.6]

LaSOT []

[¥%)
o

Precision 54.97
Norm. Prec. 63.70
Success (AUC) 55.87

)
=
o
u
(]
g
a 40
o
©
=
]
>
@]

= N
[== R

8o 0.2 0.4 0.6 0.8 1.0
Overlap threshold

Table 3: Tracking test results. DIMP-LW-DNA and DiMP-

Baseline use the identified LW-DNA and baseline version

of ResNet50), respectively.

Figure 6: Success plot on the LaSOT dataset for visual
tracking.
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Explanation

Extension to other vision tasks

» Single image super-resolution

N o PSNR [dB] FLOPs [G]/ | Params [M]/
Network ‘ Method Sel4 | BI00 | Urban100 | DIVZK[1] | Ratio (%) ‘

] 28.8¢ 32.81/100.0 /100.0
/

8 28.85 28.79/87.75 88.43

Baseline 28.50 27.52 25.8
LW-DNA 28.51 27.52 25.8

SRResNet [ ] ‘

Baseline 32.10 28.55 ‘ 27.55 26.02 28.93 90.37 /100.0 3.70/100.0

oD
EDSR 7] ‘ LW-DNA 2.13 28.61 27.59 26.09 28.99 55.44/61.34 | 2.84/76.94

Table 2: Results on single image super-resolution networks. The upscaling factor is x4.
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Conclusion



Conclusion

 We empirically validate the heterogeneity hypothesis proposed in this paper.
— It’s possible to identify an LW-DNA model.

— This could be used as a post-searching mechanism complementary to semi- or fully automated
neural architecture search.

« Secondly, an almost cost-free fine-grained architecture optimization method is proposed.
— This method only needs the computation of one random batch.

« Thirdly, the possible reason for the improved performance of an LW-DNA is explained by observing
the experimental results.
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Thanks for your attention!
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