

SYDNEY

The Heterogeneity Hypothesis: Finding Layer-Wise **Differentiated Network Architectures**

latent vector 6, Max: 3.4296, Ave: 0.7818, Min: 0.0000

Layer 6, Epoch 1

Layer 6, Epoch 4

¹ETH Zurich, Switzerland; ²UESTC, China; ³The University of Sydney, Australia; ⁴KU Leuven, Belgium

W. Li², M. Danelljan¹, K. Zhang¹

Introduction

Aim: Cost-free fine-grained architecture optimization

Lottery Ticket Hypothesis

Channel Pruning (DHP)

Observation 1: Pruned network performs better than the original network. Observation 2: Channel pruned network outperforms the original network under different model complexities.

Limitation of previous works:

- Lottery ticket hypothesis targets unstructured pruning.
- Longer training epochs for channel pruning.
- Small datasets.

Question 1: The Heterogeneity Hypothesis

With the same training protocol, there exists a layer-wise differentiated network architecture (LW-DNA) that can outperform the original network with regular channel configurations but with a lower level of model complexity.

- > The same training protocol.
- The existence of LW-DNA models
- Lower level of model complexity (parameters, computation).

Network	Method	Top-1 Error (%)	FLOPs [G] / Ratio (%)	Params [M] / Ratio (%)
ResNet50	Baseline	23.28	4.1177 / 100.0	25.557 / 100.0
	LW-DNA	23.00	3.7307 / 90.60	23.741 / 92.90
RegNet-4GF	Baseline	23.05	4.0005 / 100.0	22.118 / 100.0
	LW-DNA	22.74	3.8199 / 95.49	15.285 / 69.10

Question 2: How to identify?

Starting from a baseline architecture

Cost-free architecture optimization

> Fair comparison. Identify the origin of the improvement

Single-shot network shrinkage

Why single-shot?

Two problems of single-shot pruning:

> 1. Unable to grow a layer: modify configuration space 2. Unstructured pruning: reparameterization

Question 3: Why the benefit?

- 1. CNNs are redundant. It is possible to find a layer-wise specific channel configuration comparable with the baseline under lower model complexity.
- 2. The redistribution of computational budget could help to improve the performance.
- 3. Maybe related to overfitting
- Higher training error while lower test error.
- Easier to find an LW-DNA model for larger networks.
- Improvement on smaller dataset is more significant.

Dataset	Network	Method	T	op-1 Error (%	(FLOPs [G] / Ratio (%)
	ResNet50 [14]	Baseline	1	23.28	٦	4.1177 / 100.0
ImageNet [6]	ResNet50 [14]	LW-DNA	ш	23.00	Ш	3.7307 / 90.60
	RegNet [39]	Baseline	Т	23.05	П	4.0005 / 100.0
	X-4.0GF	LW-DNA	ш	22.74	Ш	3.8199 / 95.49
	MobileNetV3 small [16]	Baseline		34.91	П	0.0612 / 100.0
	MobileNetv3 small [10]	LW-DNA	U	34.84	,	0.0605 / 98.86
		Baseline		51.87		0.0478 / 100.0
Tiny-ImageNet	MobileNetV1 [17]	Baseline KD		48.00		0.0478 / 100.0
	MobileNetV1 [17]	LW-DNA		46.44		0.0460 / 96.23
		Baseline		44.38		0.0930 / 100.0
	MobileNetV2 [44]	Baseline KD		41.25		0.0930 / 100.0
	Mobile Net V 2 [44]	LW-DNA		40.74		0.0872 / 93.76

Table 6: Image classification results.

Training and test log. MobileNetV1, Tiny-ImageNet

Extensive Results on Image Super-Resolution and Visual Tracking

Network	Method	PSNR [dB]					FLOPs [G] /	Params $[M]$ /
		Set5 [2]	Set14 [52]	B100 [35]	Urban100 [19]	DIV2K [1]	Ratio (%)	Ratio (%)
SRResNet [23]	Baseline	32.02	28.50	27.52	25.88	28.84	32.81 / 100.0	1.53 / 100.0
	LW-DNA	32.07	28.51	27.52	25.88	28.85	28.79 / 87.75	1.36 / 88.43
EDSR [29]	Baseline	32.10	28.55	27.55	26.02	28.93	90.37 / 100.0	3.70 / 100.0
	LW-DNA	32.13	28.61	27.59	26.09	28.99	55.44 / 61.34	2.84 / 76.94

Table 2: Results on single image super-resolution networks. The upscaling factor is ×4.

Metric	DiMP-Baseline	DiMP-LW-DN
	TrackingNet [36]	
Precision	68.06	68.27
Norm. Prec. (%)	79.70	79.64
Success (AUC) (%)	73.77	73.83
	LaSOT [8]	
Precision	54.97	57.30
Norm. Prec. (%)	63.70	65.82
Success (AUC) (%)	55.87	57.43

Table 3: Tracking test results. DiMP-LW-DNA and DiMP-Baseline use the identified LW-DNA and baseline version of ResNet50, respectively.

Success plot on the LaSOT dataset for visual tracking.

References

- [9] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint arXiv:1803.03635,
- [25] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. SNIP: Single-shot network pruning based on connection sensitivity. arXiv preprint
- [28]Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu Timofte. DHP: Differentiable meta pruning via hypernetworks. arXiv preprint